文档库 最新最全的文档下载
当前位置:文档库 › 马科维茨的均值一方差组合模型简介.

马科维茨的均值一方差组合模型简介.

马科维茨的均值一方差组合模型简介.
马科维茨的均值一方差组合模型简介.

马科维茨的均值一方差组合模型简介

证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。

[编辑]

马科维茨模型的假设条件

该理论依据以下几个假设:

1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。

2、投资者是根据证券的期望收益率估测证券组合的风险。

3、投资者的决定仅仅是依据证券的风险和收益。

4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。

根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型:

目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj)

rp= ∑ xiri

限制条件:1=∑Xi (允许卖空)

或1=∑Xi xi>≥0(不允许卖空)

其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri 、rj ) 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。

[编辑]

马科维茨模型的意义

马科维茨的投资组合理论不仅揭示了组合资产风险的决定因素,而且更为重要的是还揭示了“资产的期望收益由其自身的风险的大小来决定”这一重要结论,即资产(单个资产和组合资产)由其风险大小来定价,单个资产价格由其方差或标准差来决定,组合资产价格由其协方差来决定。马可维茨的风险定价思想在他创建的“均值-方差”或“均值-标准差”二维空间中投资机会集的有效边界上表现得最清楚。下文在“均值-标准差”二维空间中给出投资机会集的有效边界,图形如下:

上面的有效边界图形揭示出:单个资产或组合资产的期望收益率由风险测度指标标准差来决定;风险越大收益率越高,风险越小收益率越低;风险对收益的决定是非线性(二次)的双曲线(或抛物线)形式,这一结论是基于投资者为风险规避型这一假定而得出的。具体的风险定价模型为:

(5)

其中,且A,B,C,D 为常量;R表示N个证券收益率的均值(期望)列向量,Ω为资产组合协方差矩阵,1表示分量为1的N维列向量,上标T表示向量(矩阵)转置(公式(5)的推导过程。

[编辑]

马科维茨均值一方差组合模型的优缺点

马可维茨的风险定价思想和模型具有开创意义,奠定了现代金融学、投资学乃至财务管理学的理论基础。不过这种理论也有缺点,就是他的数学模型较为复杂,不便于实际操作。

[编辑]

相关条目

?马可维茨的投资组合理论

?马克维兹的有效边界模型

马科维茨的均值一方差组合模型简介.

马科维茨的均值一方差组合模型简介 证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。 [编辑] 马科维茨模型的假设条件 该理论依据以下几个假设: 1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。 2、投资者是根据证券的期望收益率估测证券组合的风险。 3、投资者的决定仅仅是依据证券的风险和收益。 4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。 根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型: 目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj) rp= ∑ xiri 限制条件:1=∑Xi (允许卖空) 或1=∑Xi xi>≥0(不允许卖空) 其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri 、rj ) 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。 [编辑] 马科维茨模型的意义

考点39 均值与方差在生活中运用(讲解)(原卷版)

考点39 均值与方差在生活中运用解析版 1.设1 02 a << ,随机变量X 的分布列是: 则当()D X 最大时的a 的值是( ) A . 14 B . 316 C . 15 D . 325 2.随机变量X 的分布列如表所示,若1 ()3 E X = ,则(32)D X -=( ) A . 9 B . 3 C .5 D .7 3.已知1 02a << ,102 b <<,随机变量X 的分布列是: 若()3 E X = ,则a =________,()D X =________. 4.如下为简化的计划生育模型:每个家庭允许生男孩最多一个,即某一胎若为男孩,则不能再生下一胎,而女孩可以多个.为方便起见,此处约定每个家庭最多可生育3个小孩,即若第一胎或前两胎为女孩,则继续生,但若第三胎还是女孩,则不能再生了.设每一胎生男生女等可能,且各次生育相互独立.依据每个家庭最多生育一个男孩的政策以及我们对生育女孩的约定,令X 为某一家庭所生的女孩数,Y 为此家庭所生的男孩数.

(1)求X ,Y 的分布列,并比较它们数学期望的大小; (2)求概率()() P X D X >,其中()D X 为X 的方差. 5.某投资公司在2020年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利40%,也可能亏损10%,且这两种情况发生的概率分别为 35和25 ; 项目二:通信设备据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和1 15 .针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由. 6.某超市计划在九月订购一种时令水果,每天进货量相同,进货成本每个8元,售价每个12元(统一按个销售).当天未售出的水果,以每个4元的价格当天全部卖给水果罐头厂根据往年销售经验,每天需求量与当天最高气温(单位:C )有关.如果最高气温不低于30,需求量为500个;如果最高气温位于区间[)25,30,需求量为350个;如果最高气温低于25,需求量为200个.为了确定九月份的订购计划,统计了前三年九月份各天的最高气温数据,得下面的频数分布表: 以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求九月份这种水果一天的需求量X (单位:个)的分布列. (2)设九月份一天销售这种水果的利润为Y (单位:元).当九月份这种水果一天的进货量n (单位:个)为多少时,Y 的数学期望达到最大值?

马柯维茨均值方差模型

马柯维茨均值-方差模型 在丰富的金融投资理论中,组合投资理论占有非常重要的地位,金融产品本质上各种金融工具的组合。现代投资组合理论试图解释获得最大投资收益与避免过分风险之间的基本权衡关系,也就是说投资者将不同的投资品种按一定的比例组合在一起作为投资对象,以达到在保证预定收益率的前提下把风险降到最小或者在一定风险的前提下使收益率最大。 从历史发展看,投资者很早就认识到了分散地将资金进行投资可以降低投资风险,扩大投资收益。但是第一个对此问题做出实质性分析的是美国经济学家马柯维茨(Markowitz)以及他所创立的马柯维茨的资产组合理论。1952年马柯维茨发表了《证券组合选择》,标志着证券组合理论的正式诞生。马柯维茨根据每一种证券的预期收益率、方差和所有证券间的协方差矩阵,得到证券组合的有效边界,再根据投资者的效用无差异曲线,确定最佳投资组合。马柯维茨的证券组合理论在计算投资组合的收益和方差时十分精确,但是在处理含有较多证券的组合时,计算量很大。 马柯维茨的后继者致力于简化投资组合模型。在一系列的假设条件下,威廉·夏普(William F. Sharp)等学者推导出了资本资产定价模型,并以此简化了马柯维茨的资产组合模型。由于夏普简化模型的计算量相对于马柯维茨资产组合模型大大减少,并且有效程度并没有降低,所以得到了广泛应用。 1 模型理论 经典马柯维茨均值-方差模型为: 21min max ()..1p T p n i i X X E r X R s t x σ=? ?=∑??=???=?? ∑T 其中, 12(,,...,)T n R R R R =;()i i R E r =是第i 种资产的预期收益率;12(,,...,)T n X x x x =是投资组合的权重向量; ()ij n n σ?=∑是n 种资产间的协方差矩阵;()p p R E r =和2 p σ分别 是投资组合的期望回报率和回报率的方差。 点睛:马柯维茨模型以预期收益率期望度量收益;以收益率方差度量风险。在教课书中通常以资产的历史收益率的均值作为未来期望收益率,可能会造成“追涨的效果”,在实际中这些收益率可能是由研究员给出;在计算组合风险值时协方差对结果影响较大,在教课书中通常以资产的历史收益率的协方差度量资产风险与相关性,这种计算方法存在预期误差,即未来实际协方差矩阵与历史协方差矩阵间的存在偏差。 例1.以华北制药、中国石化、上海机场三只股票,如何构使用马柯维茨模型构建投资

随机变量的均值与方差、正态分布(专题复

教学过程 一、课堂导入 “离散型随机变量的分步列,均值和方差”在“排列与组合”知识的延伸,在本讲的学习中,同学们将通过具体实例理解随机变量及其分布列、均值和方差的概念,认识随机变量及其分布对于刻画随机现象的重要性.要求同学们会用随机变量表达简单的随机事件,会用分布列来计算这类事件的概率,计算简单离散型随机变量的均值、方差,并能解决一些实际问题.在高考中,这部分知识通常有一道解答题,占12─14分左右,主要考查学生的逻辑推理能力和运算能力,凸显数学的应用价值.

二、 复习预习 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)随机变量的均值是常数,样本的平均值是随机变量,它不确定. ( ) (2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小. ( ) (3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差. ( ) (4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布. ( ) 2.设随机变量ξ的分布列为P (ξ=k )=1 5(k =2,4,6,8,10),则D (ξ)等于 ( ) A .5 B .8 C .10 D .16 3.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 等于 ( ) A .3 B.5 3 C .5 D.73 4.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X 表示取到次品的件数,则D (X )=________.

均值-方差分析方法和投资组合有效边界模型。

该理论包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。在发达的证券市场中,马科维茨投资组合理论早已在实践中被证明是行之有效的,并且被广泛应用于组合选择和资产配置。但是,我国的证券理论界和实务界对于该理论是否适合于我国股票市场一直存有较大争议。从狭义的角度来说,投资组合是规定了投资比例的一揽子有价证券,当然,单只证券也可以当作特殊的投资组合。本文讨论的投资组合限于由股票和无风险资产构成的投资组合。人们进行投资,本质上是在不确定性的收益和风险中进行选择。投资组合理论用均值—方差来刻画这两个关键因素。所谓均值,是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。当然,股票的收益包括分红派息和资本增值两部分。所谓方差,是指投资组合的收益率的方差。我们把收益率的标准差称为波动率,它刻画了投资组合的风险。人们在证券投资决策中应该怎样选择收益和风险的组合呢?这正是投资组合理论研究的中心问题。投资组合理论研究“理性投资者”如何选择优化投资组合。所谓理性投资者,是指这样的投资者:他们在给定期望风险水平下对期望收益进行最大化,或者在给定期望收益水平下对期望风险进行最小化。因此把上述优化投资组合在以波动率为横坐标,收益率为纵坐标的二维平面中描绘出来,形成一条曲线。这条曲线上有一个点,其波动率最低,称之为最小方差点(英文缩写是MVP)。这条曲线在最小方差点以上的部分就是著名的(马考维茨)投资组合有效边界,对应的投资组合称为有效投资组合。投资组合有

效边界一条单调递增的凹曲线。如果投资范围中不包含无风险资产(无风险资产的波动率为零),曲线AMB是一条典型的有效边界。A点对应于投资范围中收益率最高的证券。如果在投资范围中加入无风险资产,那么投资组合有效边界是曲线AMC。C点表示无风险资产,线段CM是曲线AMB的切线,M是切点。M点对应的投资组合被称为“市场组合”。如果市场允许卖空,那么AMB 是二次曲线;如果限制卖空,那么AMB是分段二次曲线。在实际应用中,限制卖空的投资组合有效边界要比允许卖空的情形复杂得多,计算量也要大得多。在波动率-收益率二维平面上,任意一个投资组合要么落在有效边界上,要么处于有效边界之下。因此,有效边界包含了全部(帕雷托)最优投资组合,理性投资者只需在有效边界上选择投资组合。 [编辑本段]现代投资理论的产生与发展 现代投资组合理论主要由投资组合理论、资本资产定价模型、APT模型、有效市场理论以及行为金融理论等部分组成。它们的发展极大地改变了过去主要依赖基本分析的传统投资管理实践,使现代投资管理日益朝着系统化、科学化、组合化的方向发展。1952年3月,美国经济学哈里·马考威茨发表了《证券组合选择》的论文,作为现代证券组合管理理论的开端。马克威茨对风险和收益进行了量化,建立的是均值方差模型,提出了确定最佳资产组合的基本模型。由于这一方法要求计算所有资产的协方差矩阵,严重制约了其在实践中的应用。1963年,威廉·夏普提出了可以对协方差矩阵加以

均值与方差

离散型随机变量的均值与方差 【教学引入】复习分布列、三种常见分布列。说明分布列全面刻画了随机变量取值的统计规律。提出问题:如何从分布列中获取随机变量取值的总体水平(平均取值)、离散程度(区分度)等信息? 【案例探究】销售由a.b.c 三种糖果混合的混合糖,如何进行合理定价? ① 当a,b,c 价格相同,比例相同时; ② ②当a,b,c 价格不同,比例相同时; ③ ③当a,b,c 价格不同,比例也不同时。 对于①②,只需求三种糖价格的算术平均值即可,对于③,习惯的算术平均显然是不合理的。 设a,b,c 三种糖价格分别为18元/kg, 24元/kg, 36元/kg,混合比例为3:2:1,则易得合理价格为 23366 1 243118212336242183=?+?+?=++?+?+?x x x x x x (元/kg).此价格称为三种价格的 加权平均。 【权的含义】设三种糖每颗质量、外观完全相同,从混合糖中任取一颗,分别求取到a 、b 、c 的概率。 设三种糖的颗数分别为3m,2m,m ,属古典概型,用古典概型概率计算公式计算得概率分别为6 1,31,21。 权是各种糖的质量与总质量之比,其统计意义是随机变量X 等于相应值的概率。 【合理价格的统计意义】用X 表示从总体中任取一颗糖,所抽到的糖的价格,则X 有三种可 能的取值,?? ? ??=c b a X 如果取出的是如果取出的是如果取出的是,36,24,18,其分布列为: =18×P (X=18)+24×P (X=24)+36×P (X=36),是以概率为权重的每种糖果的单位价格的加权平均(即随机变量X 的均值)。 【离散型随机变量的均值(数学期望)】 ∑==n i i i p x EX 1.反映随机变量取值的平均水平。

用SPSS进行单因素方差分析和多重比较

SPSS——单因素方差分析 单因素方差分析 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。 表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数

数据保存在“data1.sav”文件中,变量格式如图1-1。 图1-1 分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。 。 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统 打开单因素方差分析设置窗口如图1-2。 图1-2 单因素方差分析窗口

3)设置分析变量 因变量:选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量:选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较 单击“Contrasts”按钮,将打开如图1-3所示的对话框。该对话框用于设置均值的多项式比较。 图1-3 “Contrasts”对话框 定义多项式的步骤为: 均值的多项式比较是包括两个或更多个均值的比较。例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1. 1倍与第二组的均值相等。单因素方差分析的“0ne-Way ANOVA”过程允许

spss教程第二章均值比较检验与方差分析要点

第二章均值比较检验与方差分析 在经济社会问题的研究过程中,常常需要比较现象之间的某些指标有无显著差异,特别当考察的样本容量n比较大时,由随机变量的中心极限定理知,样本均值近似地服从正态分布。所以,均值的比较检验主要研究关于正态总体的均值有关的假设是否成立的问题。 ◆本章主要内容: 1、单个总体均值的 t 检验(One-Sample T Test); 2、两个独立总体样本均值的 t 检验(Independent-Sample T Test); 3、两个有联系总体均值均值的 t 检验(Paired-Sample T Test); 4、单因素方差分析(One-Way ANOVA); 5、双因素方差分析(General Linear Model Univariate)。 ◆假设条件:研究的数据服从正态分布或近似地服从正态分布。 在Analyze菜单中,均值比较检验可以从菜单Compare Means,和General Linear Model得出。如图2.1所示。 图2.1 均值的比较菜单选择项 §2.1 单个总体的t 检验(One-Sample T Test)分析 单个总体的 t 检验分析也称为单一样本的 t 检验分析,也就是检验单个变量的均值是否与假定的均数之间存在差异。如将单个变量的样本均值与假定的常数相比较,通过检验得出预先的假设是否正确的结论。

例1:根据2002年我国不同行业的工资水平(数据库SY-2),检验国有企业的职工平均年工资收入是否等于10000元,假设数据近似地服从正态分布。 首先建立假设:H0:国有企业工资为10000元; H1:国有企业职工工资不等于10000元 打开数据库SY-2,检验过程的操作按照下列步骤: 1、单击Analyze →Compare Means →One-Sample T Test,打开One-Sample T Test 主对话框,如图2.2所示。 图2.2 一个样本的t检验的主对话框 2、从左边框中选中需要检验的变量(国有单位)进入检验框中。 3、在Test Value框中键入原假设的均值数10000。 4、单击Options按钮,得到Options对话框(如图2.3),选项分别是置信度(默认项是95%)和缺失值的处理方式。选择后默认值后返回主对话框。 图2.3 一个样本t检验的Options对话框 5、单击OK,得输出结果。如表2.1所示。 表2.1(a).数据的基本统计描述 One-Sample Statistics

马科维茨的均值一方差组合模型

马科维茨的均值一方差组合模型 马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model 简称MM) 马科维茨的均值一方差组合模型简介 证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。 马科维茨模型的假设条件 该理论依据以下几个假设: 1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。 2、投资者是根据证券的期望收益率估测证券组合的风险。 3、投资者的决定仅仅是依据证券的风险和收益。 4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。 根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型: 目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj) rp= ∑ xiri 限制条件:1=∑Xi (允许卖空) 或1=∑Xi xi>≥0(不允许卖空) 其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri、rj ) 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。 马科维茨模型的意义

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

第十四章_马克维茨均值方差模型

第十四章马克维茨均值方差模型 第一节可行域和合法的证券组合 以期望收益率E P为纵坐标、以标准差σP为横坐标建立坐标系。确定了每个证券的投资比例(权数),就确定了证券组合,并可以计 算组合的E P和σP,因此,证券组合对应于E P―σP中的一个点。反过来,E P―σP中的某个点有可能对应某个证券组合。 如果选择了全部的可以选择的投资比例,那么,众多的证券组合 在E P―σP中的点将组成一个E P―σP中的区域,这就是可行域(f e a s i b l e s e t)。只有可行域中的点所对应的组合才是"有可能实现"的证券组合。 设有n种证券,记作A1,A2,…,A n,证券组合P=(x1,x2,…,x n)表示将资金分别以权数x1,x2,…,x n,投资到证券A1,A2,…,A n。假设证券A i的期望收益率为E r i则,组合P的期望收益率和方差的计算公式为:

第十四章马克维茨均值方差模型 第二节有效边界和有效组合 马克维茨假设:投资者以期望收益率衡量未来收益率,以收益率 方差来衡量收益率的风险;投资者总是希望期望收益率越高越好,而 方差越小越好。 共同偏好认为:如果两种证券组合的收益率标准差(风险)相同,期望收益率不同,选择期望收益率高的;如果两种证券组合的期望收 益率相同,风险不同,选择风险小的组合;如某证券组合比另一证券 组合的风险小,而期望收益率高,选择前一种组合。如果从图形看, 任何一个点都一定比这一点"西北方(左上方)"或"正北方"的点"坏"。 选择最优的证券组合相当于在可行域中选择一个最满意的点,在这一点上均值和方差这两个目标达到最佳的平衡。首先可以排除很多 的点,余下的是共同偏好不能区分好坏的组合,也就是有效证券组合。有效组合组成的曲线叫有效边界。 可行域的左上方边界就有效边界。可行域中的任意组合,均可以在有效边界上找到一个有效组合比它好。但是,按共同偏好规则,有 效边界上的两个不同组合,比如B和C,不能区分好坏。 有效边界一定是向外凸的,但允许是线性的。图中的粗线部分为 典型的有效边界。

MATLAB求均值和方差

经常要用到,系统整理了一下。 1、均值 Matlab函数:mean >>X=[1,2,3] >>mean(X)=2 如果X是一个矩阵,则其均值是一个向量组。 mean(X,1)为列向量的均值,mean(X,2)为行向量的均值。>>X=[1 2 3 4 5 6] >>mean(X,1)=[2.5, 3.5, 4.5] >>mean(X,2)=[2 5] 若要求整个矩阵的均值,则为mean(mean(X))。 >>mean(mean(X))=3.5 也可使用mean2函数: >>mean2(X)=3.5 median,求一组数据的中值,用法与mean相同。 >>X=[1,2,9] >>mean(X)=4 >>median(X)=2

2、方差 均方差: Matlab 函数:var 要注意的是var函数所采用公式中,分母不是,而是。这是因为var函数实际上求的并不是方差,而是误差理论中“有限次测量数据的标准偏差的估计值”。 >>X=[1,2,3,4] >>var(X)=1.6667 >> sum((X(1,:)-mean(X)).^2)/length(X)=1.2500 >> sum((X(1,:)-mean(X)).^2)/(length(X)-1)=1.6667 var没有求矩阵的方差功能,可使用std先求均方差,再平方得到方差。 std,均方差,std(X,0,1)求列向量方差,std(X,0,2)求行向量方差。 >>X=[1 2 3 4] >>std(X,0,1)=1.4142 1.4142 >>std(X,0,2)=0.7071 0.7071 若要求整个矩阵所有元素的均方差,则要使用std2函数: >>std2(X)=1.2910

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

方差分析中均值比较的方法

方差分析中均值比较的方法 最近看文献时,多数实验结果用到方差分析,但选的方法不同,主要有LSD,SNK-q,TukeyHSD法等,从百度广库里找了一篇文章,大概介绍这几种方法,具体公式不列了,软件都可以计算。这几种方法主要用于方差分析后,对均数间进行两两比较。 均数间的两两比较根据研究设计的不同分为两种类型:一种常见于探索性研究,在研究设计阶段并不明确哪些组别之间的对比是更为关注的,也不明确哪些组别问的关系已有定论、无需再探究,经方差分析结果提示“ 概括而言各组均数不相同”后,对每一对样本均数都进行比较,从中寻找有统计学意义的差异:另一种是在设计阶段根据研究目的或专业知识所决定的某些均数问的比较.常见于证实性研究中多个处理组与对照组、施加处理后的不同时间点与处理前比较。最初的设计方案不同.对应选择的检验方法也不同.下面分述两种不同设计均数两两比较的方法选择。 1. 事先计划好的某对或某几对均数间的比较:适用于证实性研究。在设计时就设定了要比较的组别,其他组别间不必作比较。常用的方法有: Dunnett-t 检验、LSD-t 检验(Fisher ’s least significant dif ference t test) 。这两种方法不管方差分析的结果如何——即便对于 P稍大于检验水平α进行所关心组别间的比较。 1.1 LSD-t检验即最小显著法,是Fisher于1935年提出的,多用于检验某一对或某几对在专业上有特殊探索价值的均数间的两两比较,并且在多组均数的方差分析没有推翻无效假设H0时也可以应用。该方法实质上就是 t检验,检验水准无需作任何修正,只是在标准误的计算上充分利用了样本信息,为所有的均数统一估计出一个更为稳健的标准误,因此它一般用于事先就已经明确所要实施对比的具体组别的多重比较。由于该方法本质思想与 t 检验相同,所以只适用于两个相互独立的样本均数的比较。LSD法单次比较的检验水准仍为α ,因此可以认为该方法是最为灵敏的两两比较方法.另一方面,由于LSD法侧重于减少第Ⅱ类错误,势必导致此法在突出组间差异的同时,有增大I类错误的倾向。 1.2 Dunnett-t(新复极差法)检验,Duncan 1955年在Newman及Keuls的复极差法(muhiple range method)基础上提出,该方法与Tukey法相类似。适用于n-1个试验组与一个对照组均数差别的多重比较,多用于证实性研究。Dunnett-t统计量的计算公式与LSD-t检验完全相同。 实验组和对照组的样本均数和样本含量。需特别指出的是Dunnett—t检验有专门的界值表,不同于t检验的界值表。 一般认为,比较组数k≥3时,任何两个样本的平均数比较会牵连到其它平均数的对比关系,而使比较数再也不是两个相互独立的样本均数的比较.这是

均值与方差

学案68 离散型随机变量的均值与方差 导学目标:1.理解取有限个值的离散型随机变量均值、方差的概念.2.能计算简单离散型随机变量的均值、方差,并能解决一些实际问题. 自主梳理 1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为 (1)均值 称E (X )=____________________________________为随机变量X 的均值或___________,它反映了离散型随机变量取值的____________. (2)方差 称D (X )=__________________________为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=____________. (2)D (aX +b )=____________.(a ,b 为实数) 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=____,D (X )=_____________________________. (2)若X ~B (n ,p ),则E (X )=______,D (X )=____________. 自我检测 1.若随机变量X A.118 B.19 C.209 D.920 2.(2011·菏泽调研)已知随机变量X 服从二项分布,且E (X )=2.4,D (X )=1.44,则二项分布的参数n ,p 的值为( ) A .n =4,p =0.6 B .n =6,p =0.4 C .n =8,p =0.3 D .n =24,p =0.1 3.(2010·全国)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假 定该毕业生得到甲公司面试的概率为23 ,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=112 ,则随机变量X 的数学期望E (X )=________. 5.(2011·杭州月考)其中a ,b ,c 成等差数列.若E (ξ)=13,则D (ξ)=________.

均值-方差模型优化

均值-方差模型优化 目录 1.均值-方差模型原理 (1) 2.均值方差模型改进方向 (5) 2.1分层筛选 (5) 2.2控制最大回撤 (5) 2.3控制VaR (6) 3.实验结果比较 (6) 3.1控制回撤和VaR (6) 3.1.1实验1 (6) 3.1.2实验二 (7) 3.2基于指标等权进行配置 (8) 3.3加牛熊市分解线 (8) 3.3.1实验一 (8) 3.3.2 (9) 4.结果与讨论 (10) 本研究基于最大回撤和VaR在险价值对马科维茨进行优化,并讨论了基于牛市后期更精准的风险控制策略。 研究结果表明,最大回撤和VaR的使用,可以确保投资者在面临风险的过程中,相对于原始马科维茨,获得更加的收益。本研究应对存在高风险资产的情况时,效果更加。 1.均值-方差模型原理 美国经济学家马柯维茨于1952年3月在《金融杂志》上发表了一篇题为《证券组合选择》的论文,并于1959年出版了同名专著,详细论述了证券收益和风险的主要原理和分析方法,建立了均值-方差证券组合模型的基本框架。马柯维茨的投资组合理论认为,投资者是风险回避的,他们的投资愿望是追求高的预期收益,他们不愿承担没有相应的预期收益加以补偿的额外风险。马柯维茨根据风险分散原理,应用二维规划的数学方法,揭示了如何建立投资组合的有效边界,使边界上的每一个组合在给定的风险水平下获得最大的收益,或者在收益一定的情况下风险最小。同时马柯维茨认为,投资组合的风险不仅与构成组合的各种证券的个别风险有关,而且受各证券之间的相互关系的影响。 (一)马柯维茨理论是建立在下面几个前提假设上的: 1、呈现在投资者面前的每一项投资是在一段时期上的预期收益的概率分布,即投资者用预期收益的概率分布来描述一项投资; 2、投资者为理性的个体,服从不满足和风险厌恶假设,投资者的目标是单

均值方差分析研究

ONEWAY PH BY 质地 /STATISTICS DESCRIPTIVES HOMOGENEITY /MISSING ANALYSIS /POSTHOC=SCHEFFE ALPHA(0.05). 单向 附注 创建地输出20-12月-2011 10时02分22秒注释 输入活动地数据集数据集2 过滤器 权重 拆分文件 工作数据文件中地 N 行404 缺失值处理缺失定义用户定义地缺失值以缺失对待. 使用地案例每个分析地统计量都基于对于该分析中地任 意变量都没有缺失数据地案例. 语法ONEWAY PH BY 质地 /STATISTICS DESCRIPTIVES HOMOGENEITY /MISSING ANALYSIS /POSTHOC=SCHEFFE ALPHA(0.05). 资源处理器时间00 00:00:00.015 已用时间00 00:00:00.015 [数据集2]

在此之后检验

同类子集 ONEWAY PH BY 利用方式 /STATISTICS DESCRIPTIVES HOMOGENEITY /MISSING ANALYSIS /POSTHOC=SCHEFFE ALPHA(0.05). 单向 附注 创建地输出20-12月-2011 10时02分36秒注释 输入活动地数据集数据集2 过滤器 权重 拆分文件 工作数据文件中地 N 行404

缺失值处理缺失定义用户定义地缺失值以缺失对待. 使用地案例每个分析地统计量都基于对于该分析中地任 意变量都没有缺失数据地案例. 语法ONEWAY PH BY 利用方式 /STATISTICS DESCRIPTIVES HOMOGENEITY /MISSING ANALYSIS /POSTHOC=SCHEFFE ALPHA(0.05). 资源处理器时间00 00:00:00.016 已用时间00 00:00:00.046 [数据集2] 方差齐性检验 PH Levene 统计量df1 df2 显著性 5.484 2 401 .004

马克维茨的均值方差模型

马科维茨的均值一方差组合模型 (重定向自均值方差模型) 马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model简称MM) [编辑] 马科维茨的均值一方差组合模型简介 证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。 [编辑] 马科维茨模型的假设条件 该理论依据以下几个假设: 1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。 2、投资者是根据证券的期望收益率估测证券组合的风险。 3、投资者的决定仅仅是依据证券的风险和收益。 4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。

根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型: 目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj) rp= ∑ xiri 限制条件:1=∑Xi (允许卖空) 或1=∑Xi xi>≥0(不允许卖空) 其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri 、rj ) 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。 [编辑] 马科维茨模型的意义 马科维茨的投资组合理论不仅揭示了组合资产风险的决定因素,而且更为重要的是还揭示了“资产的期望收益由其自身的风险的大小来决定”这一重要结论,即资产(单个资产和组合资产)由其风险大小来定价,单个资产价格由其方差或标准差来决定,组合资产价格由其协方差来决定。马可维茨的风险定价思想在他创建的“均值-方差”或“均值-标准差”二维空间中投资机会集的有效边界上表现得最清楚。下文在“均值-标准差”二维空间中给出投资机会集的有效边界,图形如下:

随机变量的均值和方差学习资料

随机变量的均值和方 差

随机变量的均值和方差 自主梳理 1.离散型随机变量的均值与方差 若离散型随机变量 (1)均值 μ=E (X )=________________________________为随机变量X 的均值或______________,它反映了离散型随机变量取值的____________. (2)方差 σ2=V (X )=_________________________________=∑n i =1 x 2i p i -μ2为随机变量X 的方差, 它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差,即σ=V (x ). 2.均值与方差的性质 (1)E (aX +b )=________. (2)V (aX +b )=________(a ,b 为实数). 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=____,V (X )=

____________________________________. (2)若X ~B (n ,p ),则E (X )=____,V (X )=________. 1.若η=aξ+b ,则E (η)=aE (ξ)+b ,V (η)=a 2V (ξ). 2.若ξ~B (n ,p ),则E (ξ)=np ,V (ξ)=np (1-p ). 自我检测 1.若随机变量X 2.已知随机变量X n ,p 的值分别为________和________. 3.(2010·课标全国改编)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简 历.假定该毕业生得到甲公司面试的概率为2 3 ,得到乙、丙两公司面试的概率均为p ,且三 个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=1 12 ,则随机变量X 的数学期望E (X )=________.

相关文档
相关文档 最新文档