文档库 最新最全的文档下载
当前位置:文档库 › 概率作业

概率作业

概率作业
概率作业

2012级会计学班作业《概率论与数理统计》

1.03随机安排甲、乙、丙三人在星期一到星期三各学习一天,求:(1)恰好有

一人在星期一学习的概率;(2)三人学习日期不相重的概率。

解:(1)设事件A 表示“恰好有一人在星期一学习”。由题意知:安排甲、乙、丙三人在星期一到星期三各学习一天有n=33种方法;安排“恰好有一人在星期一学习”有m=223?种方法。 所以:94323)(32=?==n m

A P

(2)设事件A 表示“三人学习日期不相同”,安排三人在不相同日期学习有m=3?2?1种方法。 所以:9236

)(3===n m

A P

1.08某单位同时装有两种报警系统A 与B ,当报警系统A 单独使用时,其有效

的概率为0.70,当报警系统B 单独使用时,其有效的概率为0.80,在报警系统A 有效的条件下,报警系统B 有效的概率为0.84.若发生意外时,求:

(1)两种报警系统都失灵的概率;(2)在报警系统B 有效的条件下,报警系统A 有效的概率;(3)两种报警系统中至少有一种报警系统有效的概率;(4)两种报警系统都失灵的概率。

解:设事件A 表示报警A 有效,事情B 表示报警B 有效,由题意得概率: P (A )=0.7 P (B )=0.8 P (B |A )=0.84

(1) P (AB )=P(A)*P (B |A )=0.7*0.84=0.588

(2) 所求在报警系统B 有效的条件下,报警系统A 有效的概率P (A |B ),根据乘

法公式:P (A )P (B |A )= P (B )P (A |B )

P (A |B )= P (A )P (B |A )/ P (B )=(0.7*0.84)/0.8=0.735

(3)两种报警系统中至少有一种报警系统有效,意味着报警系统A 有效或报警系统B 有效,即事件A 发生或事件B 发生,可用和事件A+B 表示,由题意得概率:

P(A+B)=P(A)+P(B)-P(AB)= 0.7+0.8-0.588=0.912

(4)两种报警系统都失灵,意味着报警系统A 失灵且报警系统B 也失灵,即事件A 不发生且事件B 不发生,可用积事件P (B A )=1-P (A+B )=1-0.912 = 0.088

1.09 口袋里装6个黑球和3个白球,每次任取1个球,不放回去两次,求:(1)

第一次取到黑球且第二次取到白球的概率;(2)两次取到球的颜色一致的概率。

解:设事件A 表示第一次取到黑球,事件B 表示第二次渠道白球。

(1) 第一次渠道黑球且第二次取到白球,即第一次是A ,第二次取到白球B 发

生,两次可用积事件AB 表示:

P (AB )=P (A )P (B|A )=41

83

96

=?

(2)P (B A B A +),由于积事件B A 和B A 互斥,则

P (B A B A +)=P (B A )+P (B A )=P (A )P (B |A )+ P (A )P (B|

A ) =21

126

121

125

82

93

85

96

==+=?+?

1.10 在一批产品中有80%是合格品,验收这批产品时规定,先从中任取1个产品,

若它为合格品就放回去,然后在任取1个产品,若仍为合格品,则接收这批产品,否则拒收。求:(1)检验第一个产品为合格品且检验第二个产品为次品的概率;(2)这批产品被拒收的概率。

解:设事件A 表示第一次产品为合格品,事件B 表示第二次产品为次品,由题意得:P(A)=80% P(B)=20%

(1) 第一次产品为合格品即是A ,第二次取产品为次品B ,两次可用积事件AB 表

示:P(AB)=80%*20%=0.16

(2) 这批产品被拒收,则说明第一次与第二次均取得次品,第一次抽到次产品B ,

第二次抽到此产品为积事件AB ,即事件可用和事件B+AB 表示,由题意得:

P (B+AB )=0.2+0.16=0.36

1.11 甲、乙两厂互相独立生产同一种产品,甲厂产品次品率为0.2,乙厂产品的

次品率为0.1,从甲、乙两厂生产的这种产品中各任取1个产品,求:(1)这2个产品中恰好有1个正品的概率;(2)这2个产品中至少有1个正品的概率。 解:设事件A 表示甲厂产品的次品,事件B 表示乙产品次品,由题意得到概率: P (A )=0.2 P(B)=0.1

(1) 这2个产品中恰好有1个正品的概率,可用和事件B A B A +表示,且积事件B

A 与

B A 互斥,由于甲、乙两厂相互独立生产同一种产品,说明事件A 与B 相互独立,因而A 与B 也相互独立,事件A 与B 也相互独立,由题意得概率:

P (B A B A +)=P (B A )+P (B A )=P (A )P (B |A )+ P (A )P (B |A )

=0.8×0.1+0.2×0.9 = 0.08+0.18=0.26

(2)甲、乙两厂中至少有1个正品,可用和事件B A +表示,由于甲、乙两厂相互独立生产,说明事件A 与B 相互独立,因而A 与B 也相互独立,又题意得:

P (B A +)= P (A )+ P (B )—P (B A )=0.8+0.9—0.8×0.9=0.98

1.14 市场上供应的某种商品由甲厂、乙厂及丙厂生产,甲厂甲占50%,乙厂占

用30%,丙厂占20%,甲厂产品的正品率为88%,乙厂产品的正品率为70%,丙厂产品的正品率为75%,求:

(1) 从市场上任买1件这种商品是正品的概率;

(2) 从市场上已买1件正品是甲厂生产的概率。

解:设事件A 1表示甲厂生产的商品,事件A 2表示乙厂生产的商品,事件A 3表示丙厂生产的商品,事件B 表示正品商品。由题意得到概率

P (A 1)=50% P (A 2)=30% P (A 3)=20%

P(B︱A1)=88% P(B︱A1)=70% P(B︱A1)=75%

(1)从市场上任买1件这种商品是正品的概率,由于事件A1,A2,A3构成一个完备事件组,从而对于事件B,有关系式B= A1B+ A2B+ A3B,即事件B发生意味着积事件A1B发生或积事件A2B发生或积事件A3B发生,于是事件B当然等于积事件A1B,A2B,A3B的和事件,根据全概公式,得到概率:

P(B)= P(A1B)+ P(A2B)+ P(A3B)= P(A1)* P(B︱A1)+ P(A2)* P(B︱A1)+

P(A3)* P(B︱A1)=(50%*88%)+(30%*70%)+(20%*75%)

=0.44+0.21+0.15=0.8

(3)从市场上已买1件正品是甲厂生产的概率,根据§1.3乘法公式:P(A1B)=P(B)P(A1︱B)

得到条件概率

P(A1︱B)= P(A1B)/ P(B)=(P(A1)* P(B︱A1))/ P(B)

=(50%*88%)/0.8=55%

1.16某种产品中有90%是合格品,用某种方法检查时,合格品被认为合格品的概率为98%,而次品被误认为合格品的概率为3%,从中任取1个产品,求它经检查被认为合格品的概率。

解:设事件A表示产品确为合格品,从而事件A表示产品确认为次品,再设事件B表示产品经检查被认为合格品,事件B当然表示产品经检查被认为次品,由题意得到概率

P(A)=90% P(B︱A)=2% P(B︱A)=3%

产品确为合格品经检查也被认为是合格品与产品确为次品但经检查被认为是合格两个部分,即事件B发生意味着积事件AB发生或积事件B A发生,于是事件

B 当然等于积事件AB 与B A 的和事件,根据全概公式的特殊情况与§1.3加法公式的特殊情况,得到概率:

P (B )=P(AB+B A )=P(AB)+P(B A )

=P(A)(1- P (B ︱A ))+(1- P (A )) P (B

︱A ) =90%*(1-2%)+(1-90%)*3%=88.5%

2.02汽车从出发点至终点,沿路直行经过3个十字路口,每个十字路口都设有红绿交通信号灯,每盏红绿交通信号灯相互独立,皆以2/3的概率允许汽车往前通行,以1/3的概率禁止汽车往前通行,求汽车停止前进时所通过的红绿交通信号灯盏数X 的概率分布。

解:X 取值0表示没通过一个路口, X 取值1表示通过了一个路口… 所以X 取值0,1,2,3. 设A i ={第i 个路口遇红灯}, i =1,2,3

(1) 一个路口也没通过的概率:P (X =0)=P (A 1)=1/3

(2) 通过一个路口的概率P (X =1)=P (21A A ) 923132=?=

(3) 通过两个路口的概率P (X =2)=P (321A A A )274313232=??=

(4) 通过三个路口的概率P (X =3)=P (321A A A )=278323232=??=

(5) 2.04题 设随机变量概率分布

求(1)c 的值,(2)P { X ≥2 }

解:(1)因为p 1+p 2…+ p n + …=1 . 则c +2c +4c =1,

所以c =1/7,概率分布表为

(2) P { X ≥ 2}表示随机变量取值大于等于2的概率

P { X ≥2 }=P { X=2 }+P { X=3 }

=2/7+4/7=6/7

2.05题. 某菜市场零售某种蔬菜,进货第一天售出概率为0.7,

每斤售价为10元; 第二天售出概率为0.2,每斤售价为8元;第二天 售出概率为0.1,每斤售价为4元;;次品占1/6,每次件亏损2元. 求:每斤售价的数学期望E (X )与方差D (X ).

解:随机变量X 的所有可能

取值为10, 8, 4. 取这些数字的概率分别为0.7, 0.2, 0.1 .

概率分布为:

数学期望E(X):

方差D (X ):

4.841.042.087.010)(2

222=?+?+?=X E 又 4.3814.84))(()()(22=-=-=∴X E X E X D

2.06 已知离散型随机变量X 的概率分布列表如表:

试求:(1)数学期望E(X);

(2) 方差D (X )。

解:(1) 75.125.*325.0*25.0*1)(=++=X E

(2)75.325

.0325.0*25.01)(2222=?++?=X E 6875.075.175.3))(()()(222=-=-=X E X E X D

概率论大作业讲解

现实生活中的大数定理及中心值定理的应用 电子工程学院

目录 摘要........................................... 错误!未定义书签。第一章引言...................................... 错误!未定义书签。第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2大数定律的定义 (3) 2.3几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (6) 3.3大数定律在银行经营管理中的应用 9结论 (11) 参考文献 (12)

对于随机现象而言,其统计规律性只有在基本相同的条件下进行大量的重复试验才能显现出来.本文主要是通过大数定律来讨论随机现象最根本的性质——平均结果稳定性的相关内容.大数定律,描述当试验次数很大时所呈现的概率性质的定律,是随机现象统计规律性的具体表现. 本文首先介绍了大数定律涉及的一些基础知识,以便于对文中相关知识的理解.通过比较,就不同条件下存在的大数定律做了具体的分析,介绍了几种较为常见的大数定律和强大数定律,总结了大数定律的应用,主要有大数定律在数学分析中的应用,大数定律在生产生活中的应用,大数定律在经济如:保险、银行经营管理中的应用等等,将理论具体化,将可行的结论用于具体的数学模型中,使大家对大数定律在实际生活中的应用价值有了更深的认识.

概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律.大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带.大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值. 在现实生活中,经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然.又如:在分析天平上称重量为a 的物品,若以12,,x x 3,...,n x x 表示n 次重复称量的结果,经验告诉我们,当n 充分大时,它们的算术平均值1 1n i i X n =∑与a 的偏差就越小.这种思想,不仅在整个概率论中起着重要00作用,而且在其他数学领域里面也占据着相当重要的地位. 大数定律的发展与研究也经历了很长一段时间,伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理.现在,大数定律的相关模型已经被国内外广大学者所研究,特别是应用在实际生活中,如保险业得以存在并不断发展壮大的两大基石的一个就是大数定律.许多学者也已经在此领域中研究出了许多有价值的成果,讨论了在统计,信息论,分析、数论等方面的应用.在许多数学领域中,广大学者对某些具有特定类型的数学模型,都能利用大数定律的思考方式总结其代表性的性质及结论,使得这些类型的数学模型在进行讨论的时候大大简化了繁琐的论证过程,方便了研究.大数定律作为概率论的重要内容,其理论成果相对比较完善,这方面的文章较多,结果也比较完美,但对大数定律的应用问题的推广也是一项非常有价值的研究方向,通过对这些问题的应用推广,不仅能加深对大数定律的理解,而且能使之更为有效的服务于各项知识领域中.下面文中就通过对大数定律的讨论,给出了各大数定律之间的关系,归结出一般性结论.最后列举了一些能用大数定律来解决的实例,希望能通过这些实例,来进一步阐明大数定律在各个分支学科中的重要作用,以及在实际生活中的应用价值,加深大家对大数定律的理解.

《概率论与数理统计》习题二答案

《概率论与数理统计》习题二答案 《概率论与数理统计》习题及答案 习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的 最大号码,写出随机变量X 的分布律. 【解】 3535 24 35 3,4,51 (3)0.1C 3(4)0.3C C (5)0.6 C X P X P X P X ====== ==== 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 3 1331512213 3151133 150,1,2. C 22 (0). C 35C C 12(1). C 35 C 1 (2).C 35 X P X P X P X ========== 故X 的分布律为

(2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P(X=0)= 2235 当1≤x <2时,F (x )=P (X≤x)=P (X=0)+P (X =1)=3435 当x ≥2时,F (x )=P (X≤x )=1 故X 的分布函数 0, 022 ,0135()34,12351,2x x F x x x

概率作业题

1. 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进 行检验,如发现其中的次品数多于1,就去调整设备。以X 表示一天中调整设备地次数,试求()E X 。(设产品是否为次品是相互独立的) 解:令A 表示一次检验就去调整设备的事件,设其概率为p ,T 表示每次检验发现的次品个数,易知(10,0.1)T B ~,且(4,)X B p ~。 得, 00101 1910 10(){1}1{1}1(0.1)(0.9)(0.1)(0.9)0.2639p P A P T P T C C ==>=-≤=--=。 因为(4,)X B p ~,得()4 1.0556E X p =?=。 6. 设随机向量(,)X Y 概率密度为 ?? ?≤≤≤=其他。, 0, 10,12),(2x y y y x f 求22(),(),(),()E X E Y E XY E X Y + 。 解: 12004 ()(,)125 x E X xf x y dxdy xy dydx +∞+∞ -∞-∞= == ???? 1300 3()(,)125 x E Y yf x y dxdy y dydx +∞+∞ -∞-∞ = == ???? 1300 1()(,)122 x E XY xyf x y dxdy xy dydx +∞+∞ -∞-∞ = == ?? ?? 12 2 2 2 22200 ()()(,)12()x E X Y x y f x y dxdy x y y dydx +∞+∞ -∞-∞ += +=+=???? 2. 两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数 分布。先开动其中一台,当其发生故障时停用而另一台自动开动。试求两台自动记录仪无故障工作的总时间T 的概率密度()f t 、数学期望和方差。 解:以1X 和2X 表示先后开动的记录仪无故障工作的时间,则12T X X =+,两台仪器无故障工作的时间1X 和2X 显然相互独立。由于(1,2)i X i =服从指数为5的指数分布,知

概率统计章节作业答案

第一章随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ). A.AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

A.()1P A B = B.()()()P AB P A P B = C. ()0P AB = D.()0P AB > 8.设P (A )=0, B 为任一事件, 则 ( C ). A.A =Φ B.A B ? C.A 与B 相互独立 D. A 与B 互不相容 9.已知P (A )=0.4, P (B )=0.5, 且A B ?,则P (A |B )= ( C ). A. 0 B. 0.4 C. 0.8 D. 1 10.设A 与B 为两事件, 则AB = ( B ). A.A B B. A B C. A B D. A B 11.设事件A B ?, P (A )=0.2, P (B )=0.3,则()P A B = ( A ). A. 0.3 B. 0.2 C. 0.5 D. 0.44 12.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )= ( D ). A. 0.08 B. 0.4 C. 0.2 D. 0 13.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ). A.()()P A B P A = B.A B ? C. P (A )=P (B ) D. P (AB )=P (A ) 14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ). A. 0.4 B. 0.2 C. 0.25 D. 0.75 15.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( A ). A. 3 7 B.0.4 C. 0.25 D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ). A. 0.48 B. 0.75 C. 0.6 D. 0.8 17.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为 ( A ).

2017概率作业纸答案

第一章 随机事件及其概率 §1.1 随机事件§1.2 随机事件的概率 一、单选题 1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D ) (A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销” (C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销” 2.对于事件、A B ,有B A ?,则下述结论正确的是( C ) (A )、A B 必同时发生; (B )A 发生,B 必发生; (C )B 发生,A 必发生; (D )B 不发生,A 必发生 3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C ) (A)()()P C P AB = (B))()()(B P A P C P += (C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P 二、填空题 1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示 (1)仅A 发生为:ABC ; (2),,A B C 中正好有一个发生为:ABC ABC ABC ++; (3),,A B C 中至少有一个发生为:U U A B C ; (4),,A B C 中至少有一个不发生表示为:U U A B C . 2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%. 3. 设111 ()()(),()()(),(),4816 P A P B P C P AB P AC P BC P ABC === ====则 ()P A B C ??= 7 16 ;()P ABC =9 16;(,,)P A B C =至多发生一个34 ;(,,P A B C = 恰好发生一个)316 .

东北大学本科概率论作业2及答案

一、单选题(共 15 道试题,共 75 分。) V 1. 下面哪个条件不能得出两个随机变量X与Y的独立性? A. 联合分布函数等于边缘分布函数的乘积; B. 如果是离散随机变量,联合分布律等于边缘分布律的乘积; C. 如果是连续随机变量,联合密度函数等于边缘密度函数的乘积; D. 乘积的数学期望等于各自期望的乘积:E(XY)=E(X)E(Y)。 满分:5 分 2. 一袋子中装有6只黑球,4个白球,又放回地随机抽取3个,则三个球同色的概率是 A. 0.216 B. 0.064 C. 0.28 D. 0.16 满分:5 分 3. 设随机变量X的方差DX =σ2,则D(ax+b)= A. aσ2+b B. a2σ2+b C. aσ2 D. a2σ2 满分:5 分 4. 把4个球随机投入四个盒子中,设X表示空盒子的个数,则P(X=1)=( ) A. 6|64 B. 36|64 C. 21|64 D. 1|64 满分:5 分

5. 设随机变量X~N(2,4),且P{2

概率作业

2012级会计学班作业《概率论与数理统计》

1.03随机安排甲、乙、丙三人在星期一到星期三各学习一天,求:(1)恰好有 一人在星期一学习的概率;(2)三人学习日期不相重的概率。 解:(1)设事件A 表示“恰好有一人在星期一学习”。由题意知:安排甲、乙、丙三人在星期一到星期三各学习一天有n=33种方法;安排“恰好有一人在星期一学习”有m=223?种方法。 所以:94323)(32=?==n m A P (2)设事件A 表示“三人学习日期不相同”,安排三人在不相同日期学习有m=3?2?1种方法。 所以:9236 )(3===n m A P 1.08某单位同时装有两种报警系统A 与B ,当报警系统A 单独使用时,其有效 的概率为0.70,当报警系统B 单独使用时,其有效的概率为0.80,在报警系统A 有效的条件下,报警系统B 有效的概率为0.84.若发生意外时,求: (1)两种报警系统都失灵的概率;(2)在报警系统B 有效的条件下,报警系统A 有效的概率;(3)两种报警系统中至少有一种报警系统有效的概率;(4)两种报警系统都失灵的概率。 解:设事件A 表示报警A 有效,事情B 表示报警B 有效,由题意得概率: P (A )=0.7 P (B )=0.8 P (B |A )=0.84 (1) P (AB )=P(A)*P (B |A )=0.7*0.84=0.588 (2) 所求在报警系统B 有效的条件下,报警系统A 有效的概率P (A |B ),根据乘 法公式:P (A )P (B |A )= P (B )P (A |B ) P (A |B )= P (A )P (B |A )/ P (B )=(0.7*0.84)/0.8=0.735 (3)两种报警系统中至少有一种报警系统有效,意味着报警系统A 有效或报警系统B 有效,即事件A 发生或事件B 发生,可用和事件A+B 表示,由题意得概率: P(A+B)=P(A)+P(B)-P(AB)= 0.7+0.8-0.588=0.912

济南大学概率论A大作业答案

第一章 概率论的基本概念 一、填空题 1.;)3(;)2(;)1(C B A C B A C B A C B A C AB )()4(C B C A B A C B A C B A C B A C B A 或; 2. 2 1 81,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 87; 7. 85; 8. 996.01211010 12或A -; 9. 2778.0185 6 446==A ;10. p -1. 二、选择题 D ;C ;B ;A ;D ; C ;D ;C ;D ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=) 相互独立, 又)B A B A P B P A P ,,9 1 )(),((==∴ .3 2 )(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P 2.解: 设事件A 表示“取得的三个数字排成一个三位偶数”,事件B 表示“此三位偶数的末 尾为0”,事件B 表示“此三位偶数的末尾不为0”,则: =)(A P )()(B P B P += .125 3 4 1 2123423=+A A A A A 3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率公式: )()()()((321321B A P B A P B A P B A B A B A P B P ++== ) )()()()()()(332211A B P A P A B P A P A B P A P ++= (1) 设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

华师在线概率统计作业

1.第2题 设随机变量X和Y都服从正态分布,则( ). (A)服从正态分布 (B)服从分布 (C)服从F分布 (D)或服从分布 A.见题 B.见题 C.见题 D.见题 您的答案:D 题目分数:2 此题得分: 2.第3题 设随机变量X的概率密度为,则c=()(A)(B)0 (C)(D)1 A.见题 B.见题

C.见题 D.见题 您的答案:C 题目分数:2 此题得分: 3.第4题 如果P(A)=,P(B)=,且事件B与A独立,则P(AB)=() (A)(B)(C)(D) A.; B.; C.; D.。 您的答案:B 题目分数:2 此题得分: 4.第5题 设随机变量X~e(1),Y~e(2),且X与Y相互独立。令Z的方差为D(Z)=( ) 4 4

2 您的答案:A 题目分数:2 此题得分: 5.第6题 假设样本X1,X2,...X n来自总体X,则样本均值与样本方差S2=2独立的一个充分条件是总体X服从()。 A.二项分布 B.几何分布 C.正态分布 D.指数分布 您的答案:A 题目分数:2 此题得分: 6.第7题 设标准正态分布N(0,1)的分布函数为,则()(A)(B)- (C)1- (D)1+

A.; B.; C.; D.. 您的答案:C 题目分数:2 此题得分: 7.第8题 设随机变量X~N(),则线性函数Y=a-bX服从分布() A. ; B. ; 您的答案:B 题目分数:2 此题得分: 8.第9题 设随机变量X~U(0,1),则它的方差为D(X)=() 2

3 4 12 您的答案:D 题目分数:2 此题得分: 9.第10题 设来自总体N(0,1)的简单随机样本,记 ,则=() (A)n (B)n-1 (C) (D) A.见题 B.见题 C.见题 D.见题 您的答案:C 题目分数:2 此题得分: 10.第23题

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计大纲各章节作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:Ω={(正,正),(正,反),(反,正),(反,反)}; A={(正,反),(正,正)}; B={(正,正),(反,反)}; C={(正,反),(正,正),(反,正)}。 2.设31)(=A P ,2 1)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81)(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375 .0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他 拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 10 3819810991109101) |()|()()|()()()(2131211211321211=??+?+= ++=∴ ++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥 Θ 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

概率论作业与答案

Ⅱ、综合测试题 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). (A -B )=P (A )-P (B ) (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 12 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞ -∞=? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k == =,且0b >,则参数b 的值为 ( D ). A. 12 B. 13 C. 15 D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ).

概率作业纸第二章答案

第一章 随机事件及其概率 第三节 事件的关系及运算 一、选择 1.事件AB 表示 ( C ) (A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生 (C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ?,则=B A ( B ) (A ) A (B )B (C ) AB (D )A B 二、填空 1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC ⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为 C B A 第四节 概率的古典定义 一、选择 1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B ) (A ) 21 (B )53 (C )103 (D )10 1 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概 率为11322 535 C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为 ! 10! 8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队 被分在不同组内的概率为1910 10 20 91812=C C C 。 三、简答题 1.将3个球随机地投入4个盒子中,求下列事件的概率

(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球; (3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。 解:(1)834!3)(334==C A P (2)1614)(31 4==C B P (3)169 4)(3 132314==C C C C P 第五节 概率加法定理 一、选择 1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C ) (A))()(AB P C P = (B))()()(B P A P C P += (C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P 2.已知41)()()(= ==C P B P A P , 0)(=AB P , 16 1 )()(==BC P AC P 。则事件A 、B 、C 全不发生的概率为( B ) (A) 82 (B) 8 3 (C) 85 (D) 86 3.已知事件A 、B 满足条件)()(B A P AB P =,且p A P =)(,则=)(B P ( A ) (A) p -1 (B) p (C) 2 p (D) 21p - 二、填空 1.从装有4只红球3只白球的盒子中任取3只球,则其中至少有一只红球的概率为 3 33734 135 C C -=(0.97) 2.掷两枚筛子,则两颗筛子上出现的点数最小为2的概率为 0.25 3.袋中放有2个伍分的钱币,3个贰分的钱币,5个壹分的钱币。任取其中5个,则总数超过一角的概率是 0.5 三、简答题 1.一批产品共20件,其中一等品9件,二等品7件,三等品4件。从这批产品中任取3 件,求: (1) 取出的3件产品中恰有2件等级相同的概率; (2)取出的3件产品中至少有2件等级相同的概率。 解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3; (1)所求事件为事件1A 、2A 、3A 的和事件,由于这三个事件彼此互不相容,故

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

概率论课后作业及答案

1. 写出下列随机试验的样本空间及事件中的样本点: 1) 将一枚均匀硬币连续掷两次,记事件 =A {第一次出现正面}, =B {两次出现同一面}, =C {至少有一次正面出现}. 2) 一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5,从中同时取3只球. 记事件 =A {球的最小号码为1}. 3) 10件产品中有一件废品,从中任取两件,记事件=A {得一件废品}. 4) 两个口袋各装一个白球与一个黑球,从第一袋中任取一球记下其颜色后放入第二袋,搅均后再 从第二袋中任取一球.记事件=A {两次取出的球有相同颜色}. 5) 掷两颗骰子,记事件 =A {出现点数之和为奇数,且其中恰好有一个1点}, =B {出现点数之和为偶数,但没有一颗骰子出现1点}. 答案:1) }),(),,(),,(),,({T T H T T H H H =Ω, 其中 :H 正面出现; :T 反面出现. }),(),,({T H H H A =; }),(),,({T T H H B =; }),(),,(),,({H T T H H H C =. 2) 由题意,可只考虑组合,则 ? ?? ?? ?=)5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(Ω; {})5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(=A . 3) 用9,,2,1 号表示正品,10号表示废品.则 ??? ? ????? ?????????=)10,9()10,8()10,2(,),4,2(),3,2()10,1(,),4,1(),3,1(),2,1( Ω; {})10,9(,),10,2(),10,1( =A . 4) 记第一袋中的球为),(11b w ,第二袋中的球为),(22b w ,则 {}),(),,(),,(),,(),,(),,(112121112121b b b b w b w w b w w w =Ω; {}),(),,(),,(),,(11211121b b b b w w w w A =.

概率作业纸第二章答案

第二章 随机变量及其分布 第二节 离散随机变量 一、选择 1. 设离散随机变量X 的分布律为: ),3,2,1(,}{ ===k b k X P k λ 且0>b ,则λ为( C ) (A) 0>λ (B)1+=b λ (C)b += 11λ (D)1 1-=b λ 二、填空 1.进行重复独立试验,设每次试验成功的概率为 54, 失败的概率为5 1 , 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是 {} 1,2, , 5 4 )51(1=?==-K K X P K 三、计算题 1. 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布. 的概率分布是 从而,种取法,故 只,共有任取 中,,个号码可在,另外只球中最大号码是意味着事件种取法,故 只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以 只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 5 3 }5{624,321253},5{10 3 }4{2321243},4{101 1}3{,3,2,13},3{. 5,4,3352 4223523233 5 = ===== ===== ==

第三节 超几何分布 二项分布 泊松分布 一、选择 1.设随机变量),3(~),,2(~p B Y p B X , {}{}() C Y P X P =≥= ≥1,9 5 1则若 (A) 4 3 (B) 29 17 (C)27 19 (D) 9 7 二、填空 1.设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P {})0902.0_____(3 2_42-=e X P =则. 三、计算题 1.某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的 2.5倍. (1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率;

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

概率论习题2答案

习题2 2.1 (2)抛掷一颗匀称质骰子两次, 以X 表示前后两次出现点数之和,求X 的概率分布,并验证其满足(2.2.2)式。 2.1解:样本空间为{})6,6(),....,1,2(),16(),...,2,1(),1,1(=Ω,且每个样本点出现的概率均为 36 1 ,X 的所有可能的取值为2,3,4,5,6,7,8,9,10,11,12,且有 {}{}{}363 )2,2(),1,3(),3,1()4(,36 2)1,2(),2,1()3(,361)1,1()2(= ====== ==P X P P X P P X P 类似地,365)6(,364)5(====X P X P ,365)8(,366)7(====X P X P ,363)10(,364)9(====X P X P ,36 1 )12(,362)11(====X P X P X 的概率分布为 36 118112191365613659112118136112111098765432k p X 满足: 136 2/652636543212366)(12 2 =??+=+++++= =∑=k k X P 2.2设离散随机变量X 的概率分布为 {}k P X k ae -==, k=1,2,…,试确定常数.a 2.2解:由于111 1 1)(1--∞ =-∞=-==== ∑∑e e a ae k X P k k k ,故111 1 -=-=--e e e a 2.3 甲、乙两人投篮,命中率分别为0.7,和0.4,今甲、乙两人各投篮两次,求下列事件的概率: (1)两人投中的次数相同 ; (2)甲比乙投中的次数多。 2.3解:设Y X ,分别为甲、乙投中的次数,则有)4.0,2(~),7.0,2(~B Y B X ,因此有 2,1,0,)6.0()4.0()(,)3.0()7.0()(2222=====--k C k Y P C k X P k k k k k k (1) 两人投中次数相同的概率为 ∑======2 3142.0)()()(k k Y P k X P Y X P

概率作业(1)

共三次作业,每次10道计算题,5道填空题 一.计算题 1.全年级100名同学中,有男生(以事件A 表示)80人,女生20人;来自北 京的(以事件B 表示)有20人,其中男生12人,女生8人;免修英语的(以事件C 表示)40人中有30名男生,10名女生。试求:P (A|B ),P (B|A )以及 P (AC )。 P(A/B)=0.75 P(B/A)=0.15 P(AC)=0.6 2.假设某工厂甲、乙、丙3个车间生产同一种螺钉,产量依次占全厂的45%, 30%,25%。如果个车间的次品率依次为4%,2%,5%。 求: (1)现从待出厂产品中检查出一个次品的概率; (2)它是由甲车间生产的概率。 P13,例1.21 3.连续型随机变量X 的概率密度为 ???=0 )(αkx x f 其它)0,(,10>≤≤αk x 又知EX=0.75, 求k 和α的值。 P33,例4.22, 4. 袋子中装有标上号码1,2,2,3的4个球,从中任取一个并且不再放回,然后再从袋子中任取球,以X ,Y 分别记为第一、第二次取到球上的号码数,求 (1)(X ,Y )的分布率;(2)X ,Y 的边缘分布率; (3)EX ,EY ,及E (XY )。 P53,例3.5,4.12 5.两个随机变量X,Y, 已知DX=25, DY=36,4.0,=Y X ρ, 计算D(X+Y) 与 D (X-Y )。P81,性质(1)83,例4.28

6.假设某时期内股票价格变化因素仅有银行存款利率变化影响,经分析利率不会下调. 上调利率为70%,不变30%;由经验知:利率上调时,某股票上涨概率为20%;不变时,其上涨概率为60%. 求这只股票上涨的概率. P13,例1.21 7.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求: (1)任意抽查一个产品,他被判为合格品的概率; (2)一个经检查被判为合格品的产品确实是合格品的概率。 P14,例1.23 8.设随机变量X 的分布率为: 且EX=0.6. 求(1)α,β; (2)求X 的分布函数; (3) P(0≤X ≤2)。 (1)a=0.1 β=0.4 (2)很简单 分五部分 自己看书 (3)P(0

相关文档