文档库 最新最全的文档下载
当前位置:文档库 › 实验四__电阻元件伏安特性的测定

实验四__电阻元件伏安特性的测定

实验四__电阻元件伏安特性的测定
实验四__电阻元件伏安特性的测定

实验四电阻元件伏安特性的测定

【实验简介】

电阻是电学中常用的物理量。利用欧姆定律测导体电阻的方法称为“伏安法”。

为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压和电阻的关系。伏安特性曲线是直线的元件称为“线性元件”,伏安特性曲线不是直线的元件称为“非线性元件”。这两种元件的电阻都可以用伏安法测量。但是,由于测量时电表被引入测量电路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减小系统误差。

【实验目的】

1、了解电学实验常用仪器的规格、性能,学习它们的使用方法。

2、学习电学实验的基本操作规程和连接电路的一般方法。

3、掌握电阻元件伏安特性的测量方法,用伏安法测电阻。

4、了解系统误差的修正方法,学会作图法处理实验数据。

【实验仪器和用具】

直流稳压电源,直流电压表,直流电流表,滑线变阻器,电阻元件盒(一个百欧,一约千欧,一个二极管),导线10根。

【实验原理】

1、伏安特性曲线

实验中常用的线绕电阻、碳膜电阻和金属膜电阻等,它们都具有以下共同特性,即加在该电阻上的电压与通过其上的电流总是成正比例的变化(忽略电流热效应对阻值的影响)。若以纵坐标表示电流,横坐标表示电压,电流与电压的关系如图4-2(a)所示。具有这种特性的电阻元件成为“线性电阻元件”。

2、非线性电阻

如果电阻电阻元件两端的电流、电压关系为曲线,则这类电阻元件称为“非线性电阻元件”(如热敏电阻、二极管等)。这种元件的特点是电阻随加在它两端的电压改变而改变如图4-2(b)所示。一般均用伏安特性曲线来反映非线性电阻元件的特性。

3、伏安法测电阻

欧姆定律告诉我们,通过一段电路的电流,与这段电路两端的电压成正比,与这段电路

的电阻成反比,即U I R =

。由此可求得电阻U R I

=(4-1) 这是伏安法测电阻所根据的基本原理。 (1)电流表内接法

如图4-3所示,电流表内接法。电流表测出的电流I 就是通过待测电阻x R 的电流x I ,但电压表测出的电压U 应等于x R 两端的电压x U 与电流表内阻

A R 上的电压A U 之和。

(1)x A

A x A x x x

U U R U R R R R I I R +=

==+=+测 (4-2) 由此式可知,电阻的测量值测R 比实际值x R 要大,

A

x

R R 是由于电流表内接带来的误差,称为接入误差。在粗略测量的情况下,一般在A x R R >>(如x R 为几千欧)时用“内接法”。为精确计算出x R 的值,应按式x R =测R A R -进行修正。(A R 由实验室给出)。

(2)电流表外接法

图4-3中电流表外接法.电压表测出的电压U 就是x R 两端的电压x U ,但电流表测出电流I应等于x I 与V I 之和。

x x V x V x

x U U U

=

==I I I I I (1)1I x x

V

R R R =+++测R (4-3) 由此式可知,电阻的测量值R 测比实际值x R 要小,

x

V

R R 是由于电流表外接带来的接入误差。在粗略测量的情况下,一般在V x R R <<(如x R 为几欧或几十欧)时用“外接法”。为精确计算出x R 的值,应按式1x V

R R R R =

-测

测进行修正。(V R 由实验室给出)。 4、半导体二极管

半导体二极管是一种常用的非线性电子元件,由P 型、N 型半导体材料制成PN 结经欧姆接触引出电极,封装而成。两个电极分别为正极、负极。二极管的主要特点是单向导电性,其伏安特性曲线如图4-2(b )所示。其特点是:在正向电流和反向电压较小时,伏安特性呈现为单调上升曲线;在正向电流较大时,趋近为一条直线;在反向电压较大时,电流趋近极限值S I —,S I 叫做反向饱和电流;在反向电流超过某一数值—b U 时,电流急剧增大,这种情况称做击穿,b U 叫做击穿电压。由于二极管具有单向导电性,它在电子电路中得到了

图4-3电路

广泛应用,常用于整流、检波、限幅、元件保护以及在数字电路中作为开关元件。

5、测量电阻元件特性应注意的问题:

(1)伏安法测电阻

测量时加在被测电阻两端的电压不得超过该电阻的最大电压值。

(2安排测量电路时,变阻器电路的选择应考虑到调节方便。能满足测量范围的要求,实验中采用分压电路,一般变阻器的阻值应小于负载电阻。

(3)使用指针式电表选取电表量程时,既要注意测量值最好不得超指针满偏的三分之二以保证仪表安全,又要使读数尽可能大以减小读数的相对误差,并且同一组数据要在同一量程下完成。测量前应注意观察记录电表的的机械零点。对测量电阻值分别选择内接法或外接法进行测量,并进行系统误差的修正,最后对两种接法的结果进行比较分析。

【实验内容和要求】

1、用电流表内接法测电阻

按图4-3所示电路,选用内接法,先合理摆放好各仪器的位置,然后连接电路。调节电源电压和滑线变阻器,使待测电路的电压和电流逐渐增大,按数据记录要求测出5组U、I 的值。(定电压,测电流)

2、用电流表外接法测电阻

电路选用“外接法”。重新选择电表量程和电源电压。测出5组U、I值。

3、测量二极管的伏安特性曲线

按图所示电路,将待测电阻换为非线性电阻元件二极管,测量伏安特性曲线

图4-4电路

实验结束,数据送交教师审阅,教师认可后,再拆除电路,归整仪器。【数据记录与处理】

1、用“内接法”测电阻的数据记录及处理

x A R R R =-测= Ω。

()A x u S R ==

= Ω。

B u R == Ω。 (说明:()0.5%m u U U =?,()0.5%m u I I =?,U 和I 取5组中的最大值,电压表、电流表均为0.5级)

()x u R == Ω。

()x x x R R u R =±= ± Ω。

2、用“外接法”测电阻的数据记录及处理

1x V

R R R R =

=-测

测 Ω,

()A x u S R ==

= Ω,

B u R == Ω,

()x u R == Ω,

()x x x R R u R =±= ± Ω。

3、根据非线性电阻元件伏安特性曲线测量数据记录,画出伏安特性曲线。

【思考题】

1、如何使用直流稳压电源?

2、通常,滑线变阻器在电路中有几种作用?它们的接法有何不同?

3、电表分哪几个等级?等级的数值意义是什么?电表的极限误差怎么计算?使用电表应注意哪些问题?

光敏电阻特性测试实验

实验系列二、光敏电阻特性测试实验 光通路组件 图1-2 光敏电阻实验仪光通路组件 功能说明: 分光镜:50%透过50%反射镜,将平行光一半给照度计探头,一半给等测光器件,实验测试方便简单,照度计可实时检测出等测器件所接收的光照度。 1、实验之前,J4通过彩排线缆与光通路组件的光源接口相连,连接之后电路部分方可对光源对行控制。光照度计与照度计探头相连(颜色要相对应) 2、BM2拨向上时,光源发光为脉冲光,脉冲宽度由“脉冲宽度调节电位器”进行调节(用于做光敏电阻时间响应特性实验)。 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 二、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 8、精密的暗激发开关电路设计实验 三、实验仪器 1、光敏电阻综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、2#迭插头对(红色,50cm ) 10 根 5、2#迭插头对(黑色,50cm ) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台

四、实验原理 1. 光敏电阻的结构与工作原理 它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性。无光照时,光敏电阻值很大,电路中电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值急剧减小,电路中电流迅速增大。 2. 光敏电阻的主要参数 光敏电阻的主要参数有: (1)光敏电阻在不受光照射时的阻值称为暗电阻, 此时流过的电流称为暗电流。 (2)光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。 (3)亮电流与暗电流之差称为光电流。 3. 光敏电阻的基本特性 (1) 伏安特性 在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性。图2-2为硫化镉光敏电阻的伏安特性曲线。由图可见,光敏电阻在一定的电压范围内,其I-U 曲线为直线。 (2)光照特性 光敏电阻的光照特性是描述光电流I 和光照强度之间的关系,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。图2-3为硫化镉光敏电阻的光照特性。 (3) 光谱特性 光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。光敏电阻的相对光敏灵敏度与入射波长的关系称为光敏电阻的光谱特性,亦称为光谱响应。图2-4 为几种不同材料光敏电阻的光谱特性。 对应于不同波长,光敏电阻的灵敏度是不同的,而且不同材料的光敏电阻光谱响应曲线也不同。 五、实验步骤 1、光敏电阻的暗电阻、暗电流测试实验 (1)将光敏电阻完全置入黑暗环境中(将光敏电阻装入光通路组件,不通电即为完全黑暗),使用万用表测试光敏电阻引脚输出端,即可得到光敏电阻的暗电阻R 暗。 (注:由于光敏电阻个性差异,某些暗电阻可能大于200M 欧,属于正常。) (2)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。 4030 2010 I / m A 10010001 x 500 mW 1001 x 200 101 x 0.05 0.100.150.200.250.300.350.40I / m A S r / (%) 20 40 60 80 100 0 1.53

实验四__电阻元件伏安特性的测定

实验四电阻元件伏安特性的测定 【实验简介】 电阻是电学中常用的物理量。利用欧姆定律测导体电阻的方法称为“伏安法”。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压和电阻的关系。伏安特性曲线是直线的元件称为“线性元件”,伏安特性曲线不是直线的元件称为“非线性元件”。这两种元件的电阻都可以用伏安法测量。但是,由于测量时电表被引入测量电路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减小系统误差。 【实验目的】 1、了解电学实验常用仪器的规格、性能,学习它们的使用方法。 2、学习电学实验的基本操作规程和连接电路的一般方法。 3、掌握电阻元件伏安特性的测量方法,用伏安法测电阻。 4、了解系统误差的修正方法,学会作图法处理实验数据。 【实验仪器和用具】 直流稳压电源,直流电压表,直流电流表,滑线变阻器,电阻元件盒(一个百欧,一约千欧,一个二极管),导线10根。 【实验原理】 1、伏安特性曲线 实验中常用的线绕电阻、碳膜电阻和金属膜电阻等,它们都具有以下共同特性,即加在该电阻上的电压与通过其上的电流总是成正比例的变化(忽略电流热效应对阻值的影响)。若以纵坐标表示电流,横坐标表示电压,电流与电压的关系如图4-2(a)所示。具有这种特性的电阻元件成为“线性电阻元件”。 2、非线性电阻 如果电阻电阻元件两端的电流、电压关系为曲线,则这类电阻元件称为“非线性电阻元件”(如热敏电阻、二极管等)。这种元件的特点是电阻随加在它两端的电压改变而改变如图4-2(b)所示。一般均用伏安特性曲线来反映非线性电阻元件的特性。 3、伏安法测电阻 欧姆定律告诉我们,通过一段电路的电流,与这段电路两端的电压成正比,与这段电路

电路元件伏安特性的测量

实验一电路元件伏安特性的测量 一、实验目的 1、熟悉万用表的使用方法。 2、加深理解线性电阻的伏安特性与电流、电压的参考方向。 3、加深理解非线性电阻元件的伏安特性。 4、加深对理想电源、实际电源伏安特性的理解。 二、实验设备和器材 直流可调稳压电源0~30 V 万用表MF-500型 电位器 1 kΩ 电阻器100Ω,510Ω,1000Ω 二极管IN4007 三、实验原理与说明 1、线性电阻是双向元件,其端电压u与其中的电流i成正比,即u = Ri,其伏安特性是u—i 平面内通过坐标原点的一条直线,直线斜率为R,如实验图1-1所示。 2、非线性电阻如二极管是单向元件,其u、i的关系为 )1 (- =u S e I iα,其伏安特性是u—i 平面内过坐标原点的一条曲线,如实验图1-2所示。 3、理想电压源的输出电压是不变的,其伏安特性是平行于电流轴的直线,与流过它的电流无关,流过它的电流由电源电压U s与外电路共同决定,其伏安特性为平行于电流轴的一条直线,如实验图1-3所示。。 4、实际电压源为理想电压源U s与内阻R s的串联组合。其端口电压与端口电流的关系为:U = U s -R s I,伏安特性为斜率是R s的一条直线,如实验图1-4所示。

四、实验内容及步骤 1、学习万用表的使用 用万用表测量线性电阻、直流电流和直流电压,测量电路如实验图1-5所示。 (1)用直接法测电阻R1 = 100Ω,R2= 510Ω,R3= 1000Ω。 (2)按实验图1-5接好电路,用万用表测量电压U s、U1、U2,电流I、I1、I2。 (3)用间接法求电阻R1、R2、R3、R(总)。 (4)自制表格填入相关数据。 2、测量线性电阻的伏安特性 (1)按实验图1-6接线,检查无误后,接通电源。 (2)调节直流电源的输出电压,使U分别为实验表1-1所列数据,测量相应的I值填入表中。 (3)画出线性电阻的伏安特性曲线。 实验表1-1 3、测量非线性电阻元件的伏安特性 (1)按实验图1-7接好电路,检测无误后接通电源。

实验10(光敏电阻)实验报告

实验十-光敏电阻及光敏二极管的特性实验 实验1:光敏电阻的特性实验 一、实验目的 了解光敏电阻的光照特性和伏安特性。 二、实验原理 在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照愈强,器件自身的电阻愈小。基于这种效应的光电器件称光敏电阻。光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。实验原理图如图10-1。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流 表、电压表;光电器件实验(一)模板、光敏电阻、发光二极管、庶光筒。 四、实验接线图 五、实验数据记录和数据处理 1:亮电阻和暗电阻测量

实验数据如下: 2:光照特性测量 实验数据如下: 实验数据拟合图像如下: 3:伏安特性测量 实验数据如下: 实验数据拟合图像如下: 六、实验思考题

1:为什么测光敏电阻亮阻和暗阻要经过10 秒钟后读数,这是光敏电阻的缺点,只能应用于什么状态? 答:稳定态 实验2:光敏二极管的特性实验 一、实验目的 了解光敏二极管工作原理及特性。 二、实验原理 当入射光子在本征半导体的p-n 结及其附近产生电子—空穴对时,光生载流子受势垒区电场作用,电子漂移到n 区,空穴漂移到p 区。电子和空穴分别在n 区和p 区积累,两端便产生电动势,这称为光生伏特效应,简称光伏效应。光敏二极管基于这一原理。如果在外电路中把p-n 短接,就产生反向的短路电流,光照时反向电流会增加,并且光电流和照度基本成线性关系。 三、实验器械 主机箱中的转速调节0~24V 电源、±2V~±10V 步进可调直流稳压电源、电流表、电压表;光电器件实验(一)模板、光敏二极管、发光二极管、庶光筒 四、实验接线图 将上图中的光敏电阻更换成光敏二极管(注意接线孔的颜色相对应即+、-极性),按上图安装接线,测量光敏二极管的暗电流和亮电流。 五、实验数据记录和数据处理 1:光照特性 亮电流测试实验数据如下: 实验数据拟合图像如下:

光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究 (FB815型光敏传感器光电特性实验仪) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。 【实验原理】 1.光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体PN结内部有自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P 区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。 2.光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。

电阻元件伏安特性的测定

电阻元件伏安特性的测定 一、引言 电阻是电学中最常用到的物理量之一,我们有很多方法可以测量电子组件的电阻,采用补偿原理的方法称为补偿法测电阻,利用欧姆定律来求导体电阻的方法称为伏安法,其中,伏安法是测量电阻的基本方法之一。为了研究元件的导电性,我们通常测量出其两端电压与通过它的电流之间的关系,然后作出其伏安特性曲线,根据曲线的走势来判断元件的特性。伏安特性曲线是直线的元件称为线性元件,不是直线的元件称为非线性元件,这两种元件的电阻都可以用伏安法来测量。采用伏安法测电阻,有两种接线方式,即电压表的外接和内接(或称为电流表的内接和外接)。不论采取那种方式,由于电表本身有一定的内阻,测量时电表被引入电路,必然会对测量结果有一定的影响,因此,我们在测量过程中必须对测量结果进行必要的修正,以减小误差。 二、实验内容 本实验包含测量金属膜的伏安特性和测量小灯泡的伏安特性两个实验,其中,测量金属膜的伏安特性又分为电压表外接和电压表内接两种方式。 三、实验原理 当一个电子元件接入电路构成闭合回路,其两端的电压与通过它的电流的比值即为该条件下电子组件的电阻。若电子元件两端的电压与通过它的电流成固定的正比例,则其伏安特性曲线为一条直线,这类元件称为线性元件;而当电子元件两端的电压与通过它的电流不成固定的正比例时,其伏安特性曲线是一条曲线,这类元件称为非线性元件。

一般金属导体的电阻是线性电阻,其伏安特性曲线是一条直线。 电阻是电子元件的重要特性,在电学实验中我们经常要测量其大小。在要求不是很精确的条件下,我们可以采用伏安法测电阻,即测出被测元件两端的电压U和通过它的电流I,然后运用欧姆定律R=U/I,,即可求得被测元件的电阻R。同时,我们也可以运用作图法,作出其伏安特性曲线,从曲线上求得电阻的阻值。伏安特性曲线是直线的电阻称为线性电阻,否则则为非线性电阻。非线性电阻的阻值是不确定的,只有通过作图法才能反映其特性。 用伏安法测电阻,原理和操作都很简单,但由于电表有一定的内阻,必然就会给实验带来一定的误差。伏安法测电阻的电路连接方式有电压表的内接和外接两种方式。 在电压表内接法中,电流表测出的电流值I是通过电阻和电压表的电流之和,即I=I X+I V,因此,R=U X/I=U X/(I X+I V)=R X/(1+R X/R V)。可见,这种条件下,电压表的内阻对实验有一定的影响,运用电压表内接法,会导致测量值比真实值要小。 在电压表外接法中,电压表测出的电压值U包含了电流表两端的电压,即U=U mA+U X,因此,R=U/I X=(U X+U mA)/I X=R X+R mA(其中,U X为电阻两端的真实电压,R X为电阻的真实值,R mA为电流表的内阻,R为测量值)。可见,电流表的内阻对实验结果有一定的影响,运用电压表外接法,会导致测量值比真实值要大,而其差值正好是电流表的内阻。 上述两种伏安法测电阻的电路连接方式,都会给实验结果带来一定的系统误差,为了减小上述误差,我们可以根据被测电阻的大小与电表内阻的大小来选择合适的电路连接方式。当:R X〈〈R V且R X〉R mA时,选择电压表的内接法;R X〉〉R mA且R X〈R V 时,选择电压表的外接法;R X〉〉R mA且R X〈〈R V时,两种接法均可。

实验一光敏电阻特性测量实验

光电子技术基础实验报告 实验题目光敏电阻特性测量实验日期2020.09.04 姓名组别04 班级18B 学号 【实验目的】 1、了解光敏电阻的工作原理和使用方法; 2、掌握光强与光敏电阻电流值关系测试方法; 3、掌握光敏电阻的光电特性及其测试方法; 4、掌握光敏电阻的伏安特性及其测试方法; 5、掌握光敏电阻的光谱响应特性及其测试方法; 6、掌握光敏电阻的时间响应特性及其测试方法。 【实验器材】 光电技术创新综合实验平台一台 特性测试实验模块一块 光源特性测试模块一块 连接导线若干 【实验原理】 光敏电阻在黑暗的室温条件下,由于热激发产生的载流子使它具有一定的电导,该电导称为暗电导,其倒数为暗电阻,一般的暗电导值都很小(或暗电阻阻值都很大)。当有光照射在光敏电阻上时,电导将变大,这时的电导称为光电导。电导随光照量变化越大的光敏电阻,其灵敏度就越高,这个特性就称为光敏电阻的光电特性,也可定义为光电流与照度的关系。 光敏电阻在弱辐射和强辐射作用下表现出不同的光电特性(线性和非线性),实际上,它的光电特性可用在“恒定电压”下流过光敏电阻的电流IP ,与作用到光敏电阻上的光照度 E 的关系曲线来描述,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。光敏电阻的本质是电阻,因此它具有与普通电阻相似的伏安特性。在一定的光照下,加到光敏电阻两端的电压与流过光敏电阻的亮电流之间的关系称为光敏电阻的伏安特性。 光敏电阻的符号和连接

【实验注意事项】 1、打开电源之前,将“电源调节”处旋钮逆时针调至底端; 2、实验操作中不要带电插拔导线,应该在熟悉原理后,按照电路图连接,检查无误后,方可打开电源进行实验; 3、若照度计、电流表或电压表显示为“1_”时说明超出量程,选择合适的量程再测量; 4、严禁将任何电源对地短路。 5、仪器通电测试前,一定要找老师检查后方可通电测试。 【主要实验步骤】 基础实验: 组装好光源、遮光筒和光探结构件,如下图所示: 1、打开台体电源,调节照度计“调零”旋钮,至照度计显示为“000.0”为止。 2、特性测试模块的 0-12V(J5)和 GND 连接到台体的 0-30V 可调电源的 Vout+和 Vout- 上。 3、J5连接电流表+极,电流表-极连接光敏电阻套筒黄色插孔,光敏电阻套筒蓝色插孔连接J6,电压表+极连接光敏电阻套筒黄色插孔,电压表-极连接光敏电阻套筒蓝色插孔。光敏电阻红黑插座与照度计红黑插座相连。(RP1的值可根据器件特性自行选取) 4、将光源特性测试模块+5V,-5V和GND连接到台体的+5V,-5V和GND1上,航空插座FLED-IN与全彩灯光源套筒相连接。打开光源特性测试模块电源开关K101,将S601,S602, S603开关向下拨(OFF档),使光照强度为0,即照度计显示为0。 5、将S601,S602,S603开关向上拨(ON档),将可调电源电压调为5V,光源颜色选为白光,按“照度加”或“照度减”,测量照度为100Lx、150Lx、200Lx、250Lx、300Lx、350Lx、400Lx、450Lx、500Lx、550Lx、600Lx电压表对应的电压值U,电流表对应的电流值I,光敏电阻值 RL=U/I。且将实验数据记录于表1-1中: 6、改变电源供电偏压,分别记录电压为 7V 和 9V 时,不同光照度下对应的电流值,并分别记录于表 1-2 及表 1-3 中: 7、保持照度为 100Lx 不变,调节电源供电偏压,使供电偏压为 1V、2V、3V、4V、5V、 6V、7V、8V、9V、10V,分别记录对应的电流值,并记录表 1-4 中: 8、按“照度加”,调节使光照为 200Lx、400Lx,记录同一光照不同电压下对应的电流值,并分别记录表 1-5 至表 1-9 中: 9、使可调电源偏压调为 5V 分别测量不同颜色光在 200 Lx 光照强度下,光敏电阻的电流值,将各个光源 200 lx 照度下光敏电阻的电流值记录在表 1-10 中: 10、将S601,S602,S603开关向下拨(OFF档),将可调电源电压调为5V。将光源特性测试模块的J701与光源特性测试模块的J601,J602,J603插座相连接。观察光源特性测试模块的J701点波形和特性测试模块J6点波形,分析光敏电阻的时间响应特性。 11、将“电源调节”旋钮逆时针旋至不可调位置,关闭实验台电源。

电阻伏安特性

实验19 电阻伏安特性及电源外特性的测量 一、实验目的 1. 学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线; 2. 学习测量电源外特性的方法; 3. 掌握运用伏安法判定电阻元件类型的方法; 4. 学习使用直流电压表、电流表,掌握电压、电流的测量方法。 二、实验仪器 直流恒压源恒流源,数字万用表,各种电阻11只,白炽灯泡1只(12V/3W)及灯座,稳压二极管(2CW56),电位器(470/2W),短接桥和连接导线及九孔插件方板 三、实验原理 1. 电阻元件 (1)伏安特性 (a) 线性电阻的伏安特性曲线(b) 非线性电阻的伏安特性曲线 二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。根据

测量所得数据,画出该电阻元件的伏安特性曲线。 (2)线性电阻元件 线性电阻元件的伏安特性满足欧姆定律。可表示为:U=IR ,其中R 为常量,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。如图19-1(a )所示。 (3)非线性电阻元件 非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,其伏安特性是一条过坐标原点的曲线,如图19-1(b )所示。 (4)测量方法 在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。 2. 直流电压源 (1)直流电压源 理想的直流电压源输出固定幅值的电压,而它的输出电流大小取决于它所连接的外电路。因此它的外特性曲线是平行于电流轴的直线,如图19-2(a )中实线所示。实际电压源的外特性曲线如图19-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图19-2(b )所示。图19-2(a )中角θ越大,说明实际电压源内阻Rs 值越大。实际电压源的电压U 和电流I 的关系式为: I R U U S S ?-= (19-1) (2)测量方法 将电压源与一可调负载电阻串联,改变负载电阻R 2的阻值,测量出相应的电压源电

实验一 电路元件伏安特性的测试

实验一电路元件伏安特性的测试 一、实验目的 1.学会识别常用电路元件的方法 2.掌握线性电阻、非线性电阻元件伏安特性的测试方法 3.熟悉实验台上直流电工仪表和设备的使用方法 二、原理说明 电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。 万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。 1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。 图1-1 元件的伏安特性 2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。 3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。二极管的电阻值随电压或电流的大小、方向的改变而改变。它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电

光敏电阻特性测定实验及分析

光敏电阻特性测定实验及分析 何乾伟1 张钰2 摘要:随着电子技术的不断发展,光敏电阻作为一种重要的电子元件,由于其具有灵敏度高、反应速度快、体积小和可靠性好等特点而不断被开发,但科学研究以及市场应用对光敏电阻的性能要求也越来越高。首先简单介绍了光敏电阻的工作原理及主要参数,然后针对光敏电阻的伏安特性和光照特性的测量需要进行了实验设计,完成了对光敏电阻暗电阻、亮电阻、灵敏度、光谱特性、响应时间和频率特性等参数的测量,并分析其中的规律。 关键词:光敏电阻特性分析实验 0引言 光敏电阻是利用材料或器件的电导率会随外加光源的改变而变化的性质制作的一种不同于普通定值电阻的可变电阻。由于其灵敏度高、反应速度快、体积小和可靠性好等原因,被广泛运用于各种光控电路之中。作为一种重要的电子元件,光敏电阻具有许多特性参数。光敏电阻在无光照的条件下电阻一般很大,当存在光照时,其电阻便会大大下降。本文针对光敏电阻的伏安特性和光照特性的测量需要进行了实验设计,完成了对光敏电阻暗电阻、亮电阻、灵敏度、光谱特性、响应时间和频率特性等参数的测量,并分析其中的规律,为以后对光敏电阻的研究提供了资料。 1光敏电阻的工作原理及主要参数 1.1光敏电阻的工作原理 材料或器件受到光照时电导率发生变化的现象称为内光效应。当光源存在时,发生内光效应,材料或器件吸收的能量使部分价带电子变迁到导带,与此同时,在价带中便形成了空穴,由于载流子个数的增加,材料或器件的导电率也随之增加。光源消失后,由光子激发产生的电子──空穴对将逐渐复合,光敏电阻的阻值也将恢复原值。 光敏电阻的制作材料为半导体,它是利用内光效应原理而制作的光电元件。在光照条件下阻值一般会减小,这种现象称之为光导效应。光敏电阻是一个可变电阻器件,没有极性,在直流电和交流电压下都可以正常工作。

实验5:光敏电阻特性实验

实验5 光敏电阻特性实验 一、实验目的:了解光敏电阻的光照特性和伏安特性。 二、基本原理:在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照愈强,器件自身的电阻愈小。基于这种效应的光电器件称光敏电阻。光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。实验原理图如图4-1。 图4-1 光敏电阻实验原理图 三、需用器件与单元:主机箱中的转速调节0~24V电源、±2V~±10V步进可调直流稳压电源、电流表、电压表;光电器件实验(一)模板、光敏电阻、发光二极管、庶光筒。 四、实验步骤: 1.发光二极管(光源)的照度标定 1)按图4—2安装接线,接线时注意+、-极性,并将主机箱中的0~24V可调电压调节至 最小值; 2)将电压表量程拧至20V档,合上主机箱电源,调节主机箱中的0~24V可调电压就可以 改变光源(发光二极管)的光照度值按照表4-1进行标定(调节电压源),得到照度——电压对应值,根据表4-1数据做出发光二极管的电压——照度特性曲线。 图4-2 发光二极管工作电压与光照度的对应关系实验接线示意图

表4-1 发光二极管电压与光照度的对应关系 光照度(Lx)0 10 20 30 40 50 60 70 80 90 100 电压(V) 电压U(V) 照度(Lx) 2.亮电阻和暗电阻测量 1)按图4-3安装接线,接线时注意+、-极性,并将主机箱中的0~24V可调电压调节至最 小值。打开主机箱电源,将±2V~±10V的可调电源开关打到10V档,再缓慢调节0~24V可调电源,使发光二极管二端电压为光照度100Lx时对应的电压(实验步骤1中的标定值)值。 2)10秒钟左右读取电流表(可选择电流表合适的档位20mA档)的值为亮电流I亮。 图4-3 光敏电阻特性实验接线图 3)将0~24V可调电源的调节旋钮逆时针方旋到底后10秒钟左右读取电流表(20μA档) 的值为暗电流I暗。 4)根据以下公式,计算亮阻和暗阻(照度100Lx): R亮=U测/ I亮;R暗=U测/ I暗 3.光照特性测量

光敏电阻实验

中国石油大学 智能仪器 实验报告 成 绩: 班级: 姓名: 同组者: 教师: 光敏电阻实验 【实验目的】 1、 了解光敏电阻的工作原理; 2、 掌握光敏电阻的光电特性,光谱响应特性,频率特性等基本特性; 3、 理解光敏电阻的一般应用。 【实验原理】 光敏电阻是利用半导体光电导效应制成的一种特殊电阻,对光线十分敏感,它的电阻值能随着外界光照强弱(明暗)变化而变化.它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小.光敏电阻通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成的,如图1所示。可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在我们日常生活中随处可见,广泛应用于各种自动控制电路(如自动照明灯控制电路、自动报警电路等)、 家用电器(如电视机中的亮度自动调节,照相机的自动曝光 图1 光敏电阻结构图 控制等)及各种测量仪器中。 在光照作用下能使物体的电导率改变的现象称为内光电效应.本实验所用的光敏电阻就是基于内光电效应的光电元件.当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。这样由于材料中载流子个数增加,使材料的电导率增加,电导率的改变量为 p n p e n e σμμ?=???+??? (1) 在(1)式中,e 为电荷电量,p ?为空穴浓度的改变量,n ?为电子浓度的改变量,μ表示迁移率。 当两端加上电压U 后,光电流为: ph A I U d σ= ??? (2) 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量 一、实验目的 1. 掌握线性、非线性电阻元件及电源的概念。 2.学习线性电阻和非线性电阻伏安特性的测试方法。 3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。 二、实验仪器 电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻 三、实验原理 1、数字万用表的构成及使用方法 数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。 直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。 2、整体结构 1)交直流电压测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于V量程档。 将测试表笔并联在被测元件两端 2)交直流电流测量 (1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。(2)将功能开关置A量程。 (3)表笔串联接入到待测负载回路里。 3)电阻测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于Q量程。 (3)将测试表笔并接到待测电阻.上 4)二极管和蜂鸣通断测量 (1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。(2)将功能开关置于二极管和蜂鸣 通断测量档位。 (3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的 读数为二极管正向压降的近似值。 将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。同时LCD显示被测线路两端的电阻值。

光敏电阻特性测试实验(精)

光敏电阻特性测试实验 一、实验目的 1、学习掌握光敏电阻工作原理 2、学习掌握光敏电阻的基本特性 3、掌握光敏电阻特性测试的方法 4、了解光敏电阻的基本应用 三、实验内容 1、光敏电阻的暗电阻、暗电流测试实验 2、光敏电阻的亮电阻、亮电流测试实验 3、光敏电阻光电流测试实验; 4、光敏电阻的伏安特性测试实验 5、光敏电阻的光电特性测试实验 6、光敏电阻的光谱特性测试实验 7、光敏电阻的时间响应特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光敏电阻及封装组件 1套 4、光照度计 1台 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1. 光敏电阻的结构与工作原理 光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。 光敏电阻的结构很简单,图1-1(a)为金属封装的硫化镉光敏电阻的结构图。在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告 (数据附页) 一、半定量观察分压电路的调节特点 二、用两种线路测电阻的对比研究 电流表准确度等级1.5,量程I m=5mA,R I=8.38±0.13Ω 电压表准确度等级1.5,量程U m=0.75V,R V=2.52±0.04kΩ; 量程U m=3V,R V=10.02±0.15kΩ

三、测定半导体二极管正反向伏安特性 由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。 四、戴维南定理的实验验证 1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效 e e

取第二组和第七组数据计算得到: E e =2.15V R e =319.5Ω 由作图可得: E e =2.3V R e =352.8Ω 3. 理论计算。 % 6.17% 7.10.30034.2951.14917.19932.6162 12 132 12 321的相对误差为的相对误差为与实验值比较e e e e R E R R R R R R V R R ER E V E R R R Ω =++ ==+= =Ω=Ω=Ω= 4.讨论。 等效电动势的误差不是很大,而等效电阻却很大。原因是多方面的。但我认为最大的原因应该是作图本身。所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。 如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e =2.07V ,R e =303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。 另外一点,仪表读数也是造成误差大的一个原因。比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

伏安特性实验报告

伏安特性实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。 (a)线性电阻 (b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表1 块 3.直流电流表1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管1 只 7.稳压二极管1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤, 在表1-2中记下相应的电压表和电流表的读数。 3 按图1-3接线,R为限流电阻,取200Ω,二极管的型号为1N4007。测二极

电路元件的伏安特性

课程名称电路原理实验日期 实验名称电路元件伏安特性的测定成绩 实验目的: 1. 掌握几种元件的伏安特性的测试方法; 2. 掌握实际电压源和电流源的使用调节方法; 3. 学习常用电工仪表和设备的使用方法。 实验条件: 机房七,Multisim 仿真平台。 实验内容及步骤: (1)测定线性电阻的伏安特性 按图1-2接线,依次调节稳压电源的输出电压为原始数据为表 1 —1中数值,并测相应的电流值记入表中。 图1-2

_|_V1 ::: 二 10& (2) 测定理想电压源的伏安特性 直流稳压电源,其内阻很小,作为理想的电压源。按图 1 —3线路接好后,接通 晶体管稳压电源,调节输出电压 Us=10v ,再调节可变电阻R L ,使直流电流表读数分 别为表1 —4中数据,将相应的电压数据写入表 1 —3中。 200 0 R L 图1-3 (t (3) 测定实际电源内阻及伏安特性 晶体管直流稳压电源和一个 51欧的电阻串联,作为一个实际电压源。按图 1— 4 0.020 一 WV-」 ::::::: DC 1e-&032 R2:: 丄⑷] 二 10 V 10.000 DC U2 0.0 0 UT ; I ; DC 10MC-■ mA

接线,当负载R L开路时调节稳压电源的输出电压U=10V,再调节负载,当电流表的数据分别为表1-1~表1-3中的数值时,将相应的电压、电流数值写入表1-3中,并计算相应的功率值。 图1-4 数据记录: 表1-2 理想电压源的伏安特性 表1-3实际电压源伏安特性

实验总结: 通过本次实验,我学会了用Multisim仿真平台测定电路元件的伏安特性。并且,在连接电路时一定要注意电压表和电流表的正负极,使之正确的接入电路中。否者,电表的读数可能会出现负值。在进行电压源伏安特性的研究中,我们可以看到当电阻R L小于51 Q时电阻的功率随着电阻的增大而增大,当R L大于51Q时,功率随着电阻的增大而减小。因此,我们可以知道当R L等于51Q时,电源的输出功率达到最大。实验思考: 用电压表和电流表测量元件的伏安特性时,电压表可接在电流表之 前或之后,两者对测量误差有何影响? 答:电流表内接,电流测量准确,电压测的是元件和电流表共同的电压,所以会较实际偏大。使得测量的电阻偏大。电流表外接的话,电压表测量准确,电流表测的是电压表和元件并联电路的电流,较实际偏大,根据公式算出结果电阻偏小。

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案) 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式 I=f(U)来表示,即用 I -U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图 1-1(a)所示。该直线的斜率只由电阻元件的电阻值R 决定,其阻值 R 为常数,与元件两端的电压 U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图 1-1(b)、(c)、(d)所示。在图 1-1 中, U >0的部分为正向特性,U<0 的部分为反向特性。

绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压 U 作用下,测量出相应的电流 I ,然后逐点绘制出伏安特性曲线 I = f ( U ),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表 1 块 3.直流电流表 1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管 1 只 7.稳压二极管 1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性 五、实验预习 1. 实验注意事项 (1)测量时,可调直流稳压电源的输出电压由 0 缓慢逐渐增加,应时刻注意电压表和电流表,不能超过规定值。

实验一--光敏电阻特性实验

实验一光敏电阻特性实验 实验目的: 1. 了解光敏电阻的工作原理及相关的特性。 2. 了解非电量转化为电量进行动态测量的方法。 3. 了解简单光路的调整原则和方法。 4. 在一定照度下,测量光敏电阻的电压与光电流的关系。 5. 在一定电压下,测量光敏电阻的照度与光电流的关系。 实验原理: 1.光敏电阻的结构与工作原理 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管。是一种均质的半导体光电器件,其结构如图1-1所示。光敏电阻没 有极性,纯粹是一个电阻器件,使用时既可加直流电压,也 可以加交流电压。光敏电阻采用梳状结构是由于在间距很近 的电阻之间有可能采用大的灵敏面积,提高灵敏度。无光照时, 光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。 当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻) 急剧减小,电路中电流迅速增大。一般希望暗电阻越大越 好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光 敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以 下。 2. 光敏电阻的主要参数 (1) 暗电阻:光敏电阻在不受光照射时的阻值称为暗电阻,此时流过的电流称为暗电流。 (2) 亮电阻:光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。 (3) 光电流:亮电流与暗电流之差称为光电流。 3. 光敏电阻的基本特性 (1) 伏安特性 光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。 图1-2光敏电阻的伏安特性曲线

相关文档