文档库 最新最全的文档下载
当前位置:文档库 › 二次函数与几何综合运用精品教案

二次函数与几何综合运用精品教案

二次函数与几何综合运用精品教案
二次函数与几何综合运用精品教案

二次函数与几何综合运用

能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型.

重点

应用二次函数解决几何图形中有关的最值问题.

难点

函数特征与几何特征的相互转化以及讨论最值在何处取得.

一、引入新课

上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用.

二、教学过程

问题1:教材第49页探究1.

用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l 为多少米时,场地的面积S最大?

分析:

提问1:矩形面积公式是什么?

提问2:如何用l表示另一边?

提问3:面积S的函数关系式是什么?

问题2:如图,用一段长为60 m的篱笆围成一个一边靠墙的矩形菜园,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

分析:

提问1:问题2与问题1有什么不同?

提问2:我们可以设面积为S,如何设自变量?

提问3:面积S的函数关系式是什么?

答案:设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x.

提问4:如何求解自变量x的取值范围?墙长32 m对此题有什么作用?

答案:0<60-2x≤32,即14≤x<30.

提问5:如何求最值?

答案:x=-b

2a=-

60

2×(-2)

=15时,S max=450.

问题3:将问题2中“墙长为32 m”改为“墙长为18 m”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

提问1:问题3与问题2有什么异同?

提问2:可否模仿问题2设未知数、列函数关系式?

提问3:可否试设与墙平行的一边为x米?则如何表示另一边?

答案:设矩形面积为S m 2

,与墙平行的一边为x 米,则S =60-x 2·x =-x 22+30x. 提问4:当x =30时,S 取最大值.此结论是否正确?

提问5:如何求自变量的取值范围?

答案:0<x ≤18.

提问6:如何求最值?

答案:由于30>18,因此只能利用函数的增减性求其最值.当x =18时,S max =378. 小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.

三、回归教材

阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答?

四、基础练习

1.教材第51页的探究3,教材第57页第7题.

2.阅读教材第52~54页.

五、课堂小结与作业布置

课堂小结

1.利用求二次函数的最值问题可以解决实际几何问题.

2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处.

作业布置

教材第52页 习题第4~7题,第9题.

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

二次函数与几何综合压轴题题型归纳 学生版

标准实用 二次函数综合压轴题型归类、要学会利用特殊图形的性质去分析二次函数与特殊图形的关系教学目标:1 2、掌握特殊图形面积的各种求法 1、利用图形的性质找 点重点、难点: 2、分解图形求面积 一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总????22x?AB??yy?x:1、两点间的距离公式BAAB x?xy?y??BABA,ABC??的坐标为::线段的中点2 、中点坐标 22??y?kx?bk?0y?kx?bk?0)的位置关系:)与((直线212112??k?bk?kb?k)两直线相交 且(1)两直线平行(2212112??kk?b?1bk?k? 3()两直线重合(4)两直线垂直且2121213、 一元二次方程有整数根问题,解题步骤如下: ?和参数的其他要求确定参数的取值范围;①用②解方程,求出方程的根;(两种形式:分式、 二次根式) ③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 ??22mxm5<m02m?1=x?mx-的值。为整数,求例:关于的一元二次方程有两个整数根,且 x轴的交点为整数点问题。(方法同上)、4二次函数与??2mx3x?y?mx?3m1?为正整数,试确定轴交于两个不同的整数点,且例:若抛物线与此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 文案大全. 标准实用 2mxm0?2m?mx3?3(m?1)x?为何值,方程总为实数)(已知关于,求证:无论的方程有一个固定的根。1x0?m?时,解:当;??3?1?m?3??2x?2?x?1?x0?m0??3m??;、时,当,, 12m2m m为何值,方程总有一个固定的根是1。综上所述:无论 6、函数过固定点问题,举例如下: 2mm2?my?x??mx为何值,该抛物线总经过一个固已知抛物线(,求证:不论是常数)定的点,

北京版-数学-九年级上册- 二次函数的应用 教案

《二次函数的应用》教案 教学目标 一、知识与技能 1.巩固并熟练掌握二次函数的性质. 2.能够运用二次函数的性质解决实际问题. 3.能够分析和表示实际问题中变量之间的二次函数关系,并会运用二次函数求实际问题中的最大值或最小值.增强解决问题的能力. 二、能力目标 建立二次函数模型,进一步体会如何应用二次函数的有关知识解决一些生活实际问题,进而提高理解实际问题、从数学角度抽象分析实际问题和运用数学知识解决实际问题的能力. 三、情感态度与价值观 1.从实际生活中认识到:数学来源于生活,数学服务于生活. 2.培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成. 3.经历求最大面积的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值. 教学重点 能利用实际问题列出二次函数的解析式,并能利用二次函数的性质求出最大值和最小值. 教学难点 能利用几何图形的有关知识求二次函数的解析式. 教学过程 一、相关知识回顾 1.函数223y x x =+-的最值是,是最(填“大”或者“小”)值. 2.说说你是如何做的? 3.将函数2245y x x =+-化成顶点式,并指出顶点坐标,对称轴. 二、新课引入 1.合作讨论,解决问题: 如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角的边上. (1)如果设矩形的一边AB =x m ,那么AD 边的长度如何表示? (2)设矩形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?

解:(1)设AD的长度为a m,则:BC=a m BC∥AD(已知) ∴ 40 3040 a x - = ∴ 3 30 4 a x =- 即 3 30 4 AD x =- (2)∵ 2 2 3 (30) 4 3 30 4 3 (20)300(040) 4 y x a x x x x x x =? =?- =-+ =--+<< 当20300 x y == 最大 时, 2.变式训练,灵活运用 议一议:如果把上题中的矩形改为如图所示的位置,其他条件不变,那么矩形的最大面积是多少?你是怎样知道的?小组成员之间相互讨论. 解:由勾股定理可得,这个三角形的斜边长为50m 易求得斜边上的高为24m.

中考数学专题题库∶二次函数的综合题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b. (1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示); (2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式; (3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 【答案】(1)b=﹣2a,顶点D的坐标为(﹣1 2 ,﹣ 9 4 a);(2) 27327 48 a a --;(3) 2≤t<9 4 . 【解析】 【分析】 (1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可; (3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围. 【详解】 解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0), ∴a+a+b=0,即b=-2a, ∴y=ax2+ax+b=ax2+ax-2a=a(x+1 2 )2- 9 4 a ,

∴抛物线顶点D 的坐标为(- 1 2 ,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2, ∴y=2x-2, 则2 222y x y ax ax a -??+-? ==, 得ax 2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x= 2 a -2, ∴N 点坐标为( 2a -2,4 a -6), ∵a <b ,即a <-2a , ∴a <0, 如图1,设抛物线对称轴交直线于点E , ∵抛物线对称轴为122 a x a =-=-, ∴E (- 1 2 ,-3), ∵M (1,0),N ( 2a -2,4 a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM = 12 |( 2a -2)-1|?|-94a -(-3)|=274?3a ?278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+ 12 )2+94,

第12讲《实际问题与二次函数》(教案)

教学过程一、复习预习

前面三节课我们学习了二次函数图像和性质,大家都学习的非常认真,今天这节课是二次函数的知识的最后一节课,也是非常重要的一节课,我们将利用二次函数的性质,解决与实际有关的应用问题。大家先来看下面的例子: 二、知识讲解 引例:在跳大绳时,绳甩到最高处的形状可近似的看作抛物线,如图(1),正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米和2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,根据以上信息你能知道学生丁的身高吗? 要解决这个问题,同学们分析一下,我们会利用哪些知识来解决? 答案如图,水平面所在的直线为x轴,向右为正方向,以甲学生身体所在的垂线为y轴,向上为正方向,建立直角坐标系。 Θ甲、乙两名学生拿绳的手间距为4米, 距地面均为1米 ∴点A的坐标为(0,1),点B的坐标为(4,1)

学生丙距甲拿绳的手水平距离1米处,丙的身高是1.5米 ∴点C 的坐标为(1,1.5)。 设抛物线为12++=bx ax y , 把B (4,1)和C (1,1.5)代入上式的,11416=++b a ,5.11=++b a 解得:61-=a ,32 =b ,所以抛物线为13 2612++-=x x y ; 又Θ学生丁站在距甲拿绳的手水平距离2.5米处, ∴当5.2=x 时,625.113 2 612=++- =x x y 学生丁的身高为1.625米。 总结:1、要解决这个实际问题,关键是如何建立恰当的直角坐标系; 2、如何将实际问题中给的数据抽象成二次函数图象上的点的坐标; 3、根据总结出来的点的特殊性,设二次函数关系式; 4、用“待定系数法”,解方程组,求出二次函数关系式。

一次函数的应用、二次函数与几何知识的综合应用练习题

2012届一次函数的应用、二次函数与几何知识的综合应用练习题 1、某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是 会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书, 若每月租书数量为x 册. (1)写出零星租书方式应付金额y 1(元)与租书数量x (册)之间的函数关系 式; (2)写出会员卡租书方式应付金额y 2(元 )与租书数量x (册)之间的函数关 系式; (3)小军选取哪种租书方式更合算? 2、某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知 大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购 车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围); (2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最 省的方案,并求出该方案所需费用. 3、如图,抛物线y = 2 1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论; ⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. 4、如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物 线交x 轴于另一点C (3,0). 第3题图

⑴ 求抛物线的解析式; ⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求 出符合条件的Q 点坐标;若不存在,请说明理由. 5、已知双曲线x k y 与抛物线y=ax 2+bx+c 交于A(2,3)、B(m,2)、c(-3,n)三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A 、点B 、点C,并求出△ABC 的面积, 6、已知函数y=mx 2-6x +1(m 是常数). ⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值. 7、如图所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一 个交点为B ,且与y 轴交于点C . 第5题图

二次函数的应用(教学设计)

二次函数在生活中应用 浦 桂 花 学习目标: 1、会运用二次函数及其图像的知识解决现实生活中的实 际问题。 2、初步体会到数形结合、数学建模以及函数和方程互相 转化等数学思想、方法. 3、感悟“数学来源于生活,又指导生活”,激发出学习数学的浓厚兴趣. 一、引入: 在日常生活中,我们接触到许多与二次函数有关的实际问题, 例如:投篮后篮球运行的路线,推铅球时铅球运行的路线和喷池中水流的路线等等。今天就运用以前学过的二次函数的知识来解决这些实际问题。 二、典型例题: 例1: 小明参加铅球比赛,已知铅球的运行的路线是一条抛物线.铅球 出手时的高度是 米,铅球最高处离地面3米,距离出手时的水平距离是4米. 试推测小明这次铅球的比赛成绩. 35

例2:某越江隧道的横断面的轮廓线是一段抛物线. 已知隧道的地面宽度为20米,地面离隧道最高点 C 的高度为10米. (1)、请建立适当的平面直角坐标系,并求出这段抛物线所表 示的二次函数的解析式. (2)、这隧道设计为双向行驶,现有一辆宽为5米,高为6 米装满货物的卡车,问这辆卡车能否顺利通过? C A B 三、巩固练习: 如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米, (1)建立如图所示的直角坐标系,求此抛物线的解析式; (2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥280千米,(桥长忽略不计)货车以每小时 40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知, 前方连降大雨,造成水位以每小时0.25米的速度持续上涨,(货车接 到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

二次函数的应用教案试讲-推荐下载

二次函数的应用 一、教学目标 1、知识与技能: 通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶 点与最值的关系,会求解实际问题中的最值问题。 2、过程与方法: 通过观察图象,理解顶点的特殊性,会把实际问题中的最值问题转化为二 次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与 特殊的关系,了解数形结合思想、函数思想和数学模型思想。 3、情感态度价值观: 通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发 学习的兴趣和欲望,体会数学在生活中广泛的应用价值。 二、重点、难点 教学重点:利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求最值问题 教学难点:1、正确构建数学模型 2、对函数图象顶点、端点与最值关系的理解与应用 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,因而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 四、教学流程 (一)复习引入 (1)由二次函数y= -x2 +20x的解析式我们能够想到的图象特征和性质是…?(2)根据同学们描述信息,画出函数的示意图为:

(二)讲解新课 1、在情境中发现问题 师:在我们的实际生活中你还遇到过哪些运用二次函数的实例? 生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。 师:好,看这样一个问题你能否解决: 活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成矩形养兔场。 回答下面的问题: 1.设矩形一边的长为x m,试用x表示矩形的另一边的长。 2.设矩形的总面积为y ,请写出用x表示y的函数表达式。 3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?4.你能画出这个函数的图像,并借助图像说出y的最大值吗? 学生思考,并小组讨论。 解:已知周长为40m,一边长为x m,看图知,另一边长为() m。 由面积公式得y= 化简得 y= 代入顶点坐标公式,得顶点坐标x=( ),y=( ) 。y的最大值为( ) 。画函数图像: 通过图像,我们知道y的最大值为( )。 师:通过上面这个例题,我们能总结出几种求y的最值得方法呢? 生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。 师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需

二次函数最经典综合提高题

周村区城北中学二次函数综合提升寒假作业题 一、顶点、平移 1、抛物线y =-(x +2)2 -3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、若,,,,,123351A y B y C y 444??????- ? ? ??????? 为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是 A.123y y y << B. 213y y y << C.312y y y << D.132y y y << 3、二次函数y=﹣(x ﹣1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A . B .2 C . D . 4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D .y = (x + 2)2 ? 3 5、将二次函数2 45y x x =-+化为2 ()y x h k =-+的形式,则y = . 6二次函数与y=kx 2﹣8x +8的图象与x 轴有交点,则k 的取值范围是 ( ) A .k <2 B .k <2且k ≠0 C .k ≤2 D .k ≤2且k ≠0 7、由二次函数1)3(22+-=x y ,可知( ) A .其图象的开口向下 B .其图象的对称轴为直线3-=x C .其最小值为1 D .当3

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

最新二次函数的应用教案1

22. 5二次函数的应用 一、教学目标 1、知识与技能: 通过本节学习,巩固二次函数y=ax2+bx+c(a^ 0)的图象与性质,理解顶点与最值的关系,会求解实际问题中的最值问题。 2、过程与方法: 通过观察图象,理解顶点的特殊性,会把实际问题中的最值问题转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想和数学模型思想。 3、情感态度价值观: 通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。 二、重点、难点 教学重点:利用二次函数y=ax2+bx+c (a^ 0)的图象与性质,求最值问题 教学难点:1、正确构建数学模型 2、对函数图象顶点、端点与最值关系的理解与应用三、教学方法与手段的选择 四、教学流程 (一)复习引入 (1)由二次函数y= -x2 +20x的解析式我们能够想到的图象特征和性质是…? (2)根据同学们描述信息,画出函数的示意图为: (二)讲解新课 1、在情境中发现问题 [做一做] 1)、你能够画一个周长为40cm的矩形吗? 2)、周长为40cm的矩形是唯一的吗? 3)、谁画出的矩形的面积最大? 4)、有没有一个矩形的面积是最大呢?最大面积为多少? 2、在解决问题中找出方法 [想一想]:某小区想用40m的栅栏围成一个矩形花园,问矩形的长和宽各取多少米, 才能使花园的面积最大,最大面积为多少? 由于本节课是应用问题,重在通过学习总结解决问题的方法,因而本节课以“启 发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到不但 使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。3、在巩固与应用中提高技能 变式一:如果矩形的一面靠墙,(墙的最大利用长度为18m), 那么此时用40m的栅栏可以围成矩形的面积 (1)能够为202m2吗?

二次函数综合题类型

二次函数综合题常见题型 一、线段最值 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5). (1)求直线BC与抛物线的解析式; (2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值; (3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.

7),且顶点C的横坐标为4,该图象在x 轴上截2、如图,二次函数的图象经过点D(0,3 9 得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图,已知ABC =,点A、C在x轴上,点B坐标 ∠=?,AC BC ACB ?为直角三角形,90 为(3,m)(0 m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ Array并延长交AC于点F,试证明:() FC AC EC +为定值.

中考经典二次函数应用题(含答案)

二次函数训练提高习题 1. 9.如图所示的二次函数2 y ax bx c =++的图像中,刘星同学观察得出了下面四条信息: (1)2 4b ac ->0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( ) A. 2个 B. 3个 C. 4个 D. 1个 2. 在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2 的图像可能是( ) 3. .抛物线y =-(x +2)2-3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 4.、若二次函数c x x y +-=62 的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是 【 】 A 、321y y y φφ B 、321y y y φφ C 、312y y y φφ D 、213y y y φφ 5.已知二次函数5 1 2 - +-=x x y ,当自变量x 取m 时对应的值大于0,当自变量x 分别取1-m 、1+m 时对应的函数值为1y 、2y ,则1y 、2y 必须满足┅〖 〗 A .1y >0、2y >0 B .1y <0、2y <0 C .1y <0、2y >0 D .1y >0、2y <0 6. 10.二次函数2 y ax bx c =++的图象如图所示,则反比例函数a y x =与一次函数y bx c =+在同一坐标系中的大致图象是( )

O x y 1 2 3 -1 -1 1 (第17题 8.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面的函数关系式:h=-5(t-1)2+6,则小 球距离地面的最大高度是() A.1米B.5米C.6米D.7米 9. 若下列有一图形为二次函数y=2x2-8x+6的图形,则此图为何?() 12. 7.已知抛物线2(0) y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.0 > a B.0 < b C.0 < c D.0 > + +c b a 13. 8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水 在空中划出的曲线是抛物线24 y x x =-+(单位:米)的一部分,则水喷出的最大高度是 () A.4米B.3米C.2米D.1米 14.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( ) A.y=(x-2)2+1 B.y=(x+2)2+1 C.y=(x-2)2-3 D.y=(x+2)2-3 15. 如图,抛物线y=x2+1与双曲线y= x k 的交点A的横坐标是1,则关于x的不等式 x k + x2+1<0的解集是( ) A.x>1 B.x<-1 C.0

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数的应用_教案1

二次函数的应用 【教学目标】 知识与技能: 1.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值. 过程与方法: 1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力. 2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力. 情感与态度: 1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值. 2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格. 3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力. 【教学重难点】 重点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题. 难点:把实际问题转化成函数模型. 【教学过程】 一、创设情境,引入新知(放幻灯片2、3、4) 1.(1)请用长20米的篱笆设计一个矩形的菜园. (2)怎样设计才能使矩形菜园的面积最大? 设计意图:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路. 2.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为米,面积为S平方米. (1)求S与的函数关系式及自变量的取值范围; (2)当取何值时所围成的花圃面积最大,最大值是多少?

(3)若墙的最大可用长度为8米,求围成花圃的最大面积 . 设计意图:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程. 二、探究新知(放幻灯片5、6、7) 探究一:如图,在一个直角三角形的内部画一个矩形ABCD,其中AB和AD分别在两直角边上,AN=40m,AM=30m. (1)设矩形的一边AB=xm,那么AD边的长度如何表示? (2)设矩形的面积为,当取何值时,的最大值是多少? 探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A和点D分别在两直角边上,BC在斜边上.其它条件不变,那么矩形的最大面积是多少? 探究三:如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、G 分别在边AB、AC上.问矩形DEFG的最大面积是多少? 设计意图:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.

【经典文档】二次函数应用题教案

授课教案 学员姓名:授课教师:所授科目:数学 学员年级:上课时间:年月日时分至时分共小时教学标题二次函数应用题 教学目标1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函 数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。 2、理解二次函数的概念,掌握二次函数的形式。 3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值 范围。 4、会用待定系数法求二次函数的解析式。 教学重难点 二次函数在最优化问题中的应用。从现实问题中建立二次函数模型,学生较难理解。 上次作业检查 授课内容: 一、复习 利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是: (1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。 (2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。 二、新课: 1. 一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为 2.5米时,达到最大高度 3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为 3.05米。 (1)建立如图所示的直角坐标系,求抛物线的解析式; (2)该运动员身高 1.8米,在这次跳投中,球在 头顶上方0.25米处出手,问:球出手时,他跳离地 面的高度是多少? 简解: (1)由于抛物线的顶点是 (0,3.5),故可设 其解析式为y=ax2+3.5。又由于抛物线过(1.5, 3.05),于是求得a=-0.2。∴抛物线的解析式为 y=-0.2x2+3.5。 (2)当x=-2.5时,y=2.25。∴球出手时,他 距地面高度是 2.25-1.8-0.25=0.20(米)。 评析:运用投球时球的运动轨迹、弹道轨迹、 跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。解这类问题一般分为以下四个步骤: (1)建立适当的直角坐标系(若题目中给出,不用重建); (2)根据给定的条件,找出抛物线上已知的点,并写出坐标; (3)利用已知点的坐标,求出抛物线的解析式。①当已知三个点的坐标时,可用一般式 y=ax2+bx+c求其解析式;②当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式

相关文档
相关文档 最新文档