文档库 最新最全的文档下载
当前位置:文档库 › 四川大学电力电子第一次实验报告

四川大学电力电子第一次实验报告

四川大学电力电子第一次实验报告
四川大学电力电子第一次实验报告

目录

一、主要内容 (2)

二、实验条件描述 (3)

1、主要仪器设备 (3)

2、实验小组人员分工 (4)

三、课前思考:黑板上五个问题的答案 (4)

四、实验过程 (5)

1、实现同步 (5)

2、半控桥纯阻性负载实验 (6)

3、半控桥阻-感性负载(串联电感L=200mH)实验 (7)

五、实验数据处理(含原始数据记录单及工程特性曲线,误差分析) (10)

六、课后思考:讨论题及我们的分析 (12)

七、实验综合评估 (15)

1、对实验方案、结果进行可信度分析 (15)

2、提出可能的优化改进方案 (15)

八、multsim11仿真 (15)

1带纯阻性负载仿真 (16)

2、晶闸管突然失去触发脉冲即失控仿真 (18)

3、带阻感负载仿真 (18)

一、主要内容

1、项目名称:单相半控桥整流电路实验

2、已知条件 :

(1)单相半控桥整流电路

(2)触发电路原理图

3、实验完成目标

(1) 实现控制触发脉冲与晶闸管同步。

(2) 观测单相半控桥在纯阻性负载时d ct u u 、波形,测量最大移相范围及输入-输出特性。

(3) 单相半控桥在阻-感性负载时,测量最大移相范围,观测失控现象并讨论解决方案。

二、实验条件描述

三、课前思考:黑板上五个问题的答案

1、如何为晶闸管匹配有效的同步移相控制?

利用u2产生触发脉冲,首先用整流滤波电路将正弦波u2变为锯齿波,再利用直流电压u ct和放大电路产生触发脉冲,因为是利用u2产生的脉冲,故此触发脉冲与u2同步,整流电源为正弦波u2,由此便实现了晶闸管与触发脉冲同步,同时调节u ct的大小便可实现对触发角的控制。

2、如何测量u d, id,α的大小及瞬态波形?

测量u d用示波器两端接在负载R两端测量,对于电阻,i d与u d波形形状一致,故只需将示波器两端放在负载两端即可得到波形,测量电流i d的时候用电流表,串联在负载侧,可读出i d的值,实验过程中要观察i d的变化,保证I d不超过0.6Α;测量ud 的时候,要将电压表并联在晶闸管B的阴极以及二极管D的阳极,并读出u d的大小。

测量α的时候,先控制示波器定格,把两条垂直标尺移动到整流后的波形的末端到另一个波形的始端,即用标尺测量波形缺失的部分的长度t,在从示波器上能够读

到半波的周期T,

t

T

πα=

3、如何设定趋势测量的边界(值)及取样点分布的有效性?

改变u ct的大小调节α,分别测量α最大及最小和α为90o时的u d及i d值,由此便可

确定边界值,在此范围内均匀取点,并记录。

4、如何变更负载阻抗角,形成并观测电流的连续或断续状态?

固定触发导通角α在较大值,调节负载电阻由最大到最小(注意电流不能超过0.6Α),并非分别观察电流断续到连续的情况,并记录临界的情况。

5、如何制造本电路特有的失控现象?

调整控制角α或者负载电阻,使i d≈0.6A,突然断掉晶闸管的触发脉冲信号(模拟将α迅速调到1800),制造失控现象,并记录失控前后u d的波形。

四、实验过程

1、实现同步

(1)从三相交流电源进端取线电压U uw(约230v)到降压变压器(MCL-35),输出单相电压(约124v)作为整流输入电压u2;

(2)在(MCL-33)两组基于三相全控整流桥的晶闸管阵列(共12只)中,选定两只晶闸管要实现同步则要选两只管脉冲相位角相差1800度的,实验面板提供了两组三相全控整流桥的晶闸管阵列,序号相邻晶闸管相位相差600,两组序号相同的晶闸管相位相同,选定两只晶闸管VT1和VT4,将两只二极管组成共阴极连接方式。

(3)将连接好的两只共阴极晶闸管与整流二极管整列(共6只)中的两只共阳极方式连接的二极管组成半控桥整流保证控制同步,并外接纯阻性负载。

(4)在负载回路上串接电流表、可调电阻负载,并把电阻调到最大。

(5)按照原理图完成接线,检查电路接线正确后,打开电源开关,示波器显示u d波形。

(6)用双踪示波器观察u d波形,在示波器上得到稳定输出电压波形,一个周期输出两个正半周波形,并从输出电压波形能观察到明显的电压过零跳变,如果每一个过零时刻与前一个电压过零时刻之差相等,则移相控制同步。同步时会产生稳定的频率正弦波频率为两倍的锯齿波,并且波形随控制信号连续变化而变化。

试验台实际连接图

同步移向控制信号产生的原理图

2、半控桥纯阻性负载实验

(1)连续改变控制角α,测量并记录电路实际的最大移相范围,用数码相机记录α小、

最大和90o 时的输出电压u d 波形(注意:负载电阻不宜过小,确保当输出电压较大时, i d 不超过0.6A ); 实验数据及波形:

①通过调节移相可调电位器R P 调节触发角α ,观察当晶闸管触发延迟角α 最小时输出电压u d 波形,并拍摄此时波形如下图:

②再次调节移相可调电位器R P 改变触发角α,观察当晶闸管触发延迟角α为90度时输出电压u d 波形,并拍摄此时波形如下图:

③再次调节移相可调电位器R P 改变触发角α,观察当晶闸管触发延迟角α大时输出电

压u d 波形,并拍摄此时波形如下图:

(2)调节移相可调电位器R P ,在最大移相范围内,测量13组不同触发延迟角α之下,控制角α、交流输入电压u2、控制信号u ct 和整流输出u d 的大小。 (3)计算移相控制角

原始数据

注:Ud ’为在α下由公式2'0.92

d U U =算得的理论值

3、半控桥阻-感性负载(串联电感L=200mH )实验

(1)断开总电源,将负载电感串入负载回路;

(2)连续改变控制角α,记录α最小、最大和90o 时的输出电压u d 波形,(注意电流表指针的变化)观察其特点(i d 不超过0.6A );

①通过调节移相可调电位器R P 调节触发延迟角α ,观察接入阻感性负载情况下当晶闸管触发脉冲角α最小时输出电压u d 波形,并拍摄此时示波器上波形如下图:

②再次调节移相可调电位器R P调节触发延迟角α,观察接入阻感性负载情况下当晶闸管触发延迟角α为900时输出电压u d波形,并拍摄此时示波器上波形如下图:

③再次调节移相可调电位器R P调节触发延迟角α,观察接入阻感性负载情况下当晶闸管触发延迟角α最大时输出电压u d波形,并拍摄此时示波器上波形如下图:

(3)固定触发延迟角α在较大值,调节负载电阻由最大逐步减小(分别达到电流断续、

临界连续和连续0.5A三种情况测量。注意i d≤0.6Α),并记录电流i d波形,观察负载阻抗角的变化对电流i d的滤波效果;

①调节触发延迟角α在较大值,保持α不变,调节负载电阻值有最大值逐步减小,同时观察电流表指针,直至输出波形明显电流出现断续,停止调节电阻,拍摄示波器输出电压波形如下:

②继续减小负载电阻值,同时观察电流表指针,直至电流出现临界连续,停止调节电阻,拍摄示波器输出电压波形如下:

③继续减小负载电阻值,同时观察电流表指针,直至示波器上出现连续电流波形,停止调节电阻,拍摄示波器输出电压波形如下:

(4)保持触发延迟角α<90o,适当调整负载电阻,使i d≈0.6Α,突然断掉两路晶闸管的脉冲信号(模拟将控制角α快速推到180o),制造失控现象,记录失控前后的u d波形,并提出如何判断哪一只晶闸管失控的测试方法。

①调整负载电阻,使i d≈0.6Α,拍摄晶闸管失控前波形如下:

②断掉两路晶闸管的脉冲信号,拍摄失控后波形如下:

五、实验数据处理(含原始数据记录单及工程特性曲线,误差分析)

我们认为这里Uct与α应该呈线性关系(即下图所示),而实验所测与所想的有出入,下面将重点分析。

通过比较两图可知,

理论中Uct=f(α)曲线的线性关系

可能是α (rad)= 0.087965,Uct=14.81这一组数据测量不当,与其他组测量数据相差太大,如果重测或忽略这组数据可得到Uct=f(α)的线性关系。

4

误差分析:

①由于该实验中用到晶闸管和二极管,由于晶闸管和二极管有导通压降,故一定会存在误差;

②实验过程中,存在操作误差、仪器误差和读数误差等;

③导通角接近180°时误差比较大,原因在于此时输出电压比较小,波形易出现脉动,以致波形不稳定甚至失真。

④输出电压的理论值与实际值的误差可以看出,当导通角的值在50°左右误差最小,在接近0°和180°时误差比较大

六、课后思考:讨论题及我们的分析

1、阐述选择实验面板晶闸管序号构成半控桥的依据

在实验原理图中,VT1、VT2的触发脉冲相位应该互差180o,然而在实验面板上的两组晶闸管阵列,每组阵列中相邻的两只晶闸管(例如VTI与VT4)互差180o,但是两只晶闸管之间是互联的,并且无法改变,因此讨论后发现,第一组的VT1和第二组的VT4,相位互差180o,并且之间不相连接,而且触发电压相同,也即触发都是同步的,从而选用这两只管子接入电路。

2、分析同样的阻感负载时,本电路与单相全控桥电路的输出电压u d特征差异,说明原因

当阻抗角比较大时,改变α使单相半控电路电流断续,在同样的条件下,单相全控电流不会出现断续的情况,并且波形会出现负的部分,而单相半控电路产生的波形没有负的部分,且有断续。

对于单相半控电路:电源电压u2的正半周,触发导通时,VT1、VD4导通,电流从电源流出来经VT1、负载、VT4流回电源,负载电压u d= u2。

当u2变为负时,由于电感的存在,VT1将持续导通,,此时a点比b点电位低,故二极

管自然换相,从VD4到VD2续流,这样电流不再经过变压器绕组,忽略器件压降,则u2=0,整流电路不会输出负的电压。

对于单相全控:电源电压正半周时,触发导通后VT1、VT4导通,负载电压等于u2;当u2变为负的时候,由于电感中的感应电动势使得VT1、VT4继续导通,此时u d波形中出现负的部分,负载电压u d= u2。

3、思考:部分波形理论分析

(1).阻感负载时波形出现负电压过冲

理想情况下阻感负载时当时间在之间时,晶闸管Α由于电感电流不能突变会继续导通,二极管D关断换为C导通形成如图中红色线所示的通路,由电感对电阻供电。

电流在回路中流动,输出电压V,所以输出电压在之间应为0

而实验中示波器测出的阻感负载时的波形为下图,而且如果把电阻调小就不会出现电压过冲现象。

现对该情况进行分析:取电压为参考向量计为则在之间电流

I

①②

电流相位滞后电压相位,在电压相位为也就是电流相位为之后电流开始衰减

所以带阻感负载时电流连续时的的波形从处开始呈指数衰减如照片所示

在 之间电流

0-

L =Rt L

d i I e

电流呈指数规律衰减,当电流

d i 在下一个晶闸管触发之前(即之前)降到晶闸管的维持

电流以下时,晶闸管的电流放大系数迅速下降晶闸管关断,迅速降为0,由于负载中有电感会在电感中感应出上负下正(按照以上所示电路中的位置来说)的感应电势,该感应电势对晶闸管Α产生反向电压,使Α的反向偏置的PN 结空间电荷层厚度增加,导致反向恢复电流产生,由于负载中电感的作用,反向恢复电流逐步增大达到峰值后才减小。增大的反向电流在电阻上形成负的压降,在电感上感应出上负下正的感应电势,所以出现负向的冲击。

负载电阻的大小对此冲击的产生有影响。因为若R 越大,由①,②可知越小,负载阻抗角越小电流衰减的起始值就越小,使负载电流(即晶闸管的阳极电流)更易降到以下,就会产生负向电压冲击。所以实验中把负载电阻阻值调小后该波形中的电压过冲就不会出现。 ②实验中失控现象是在电路正常运行且的情况下突然断掉晶闸管的脉冲信号后出现的,若负载电流就不会出现失控现象。

其原因分析如下:正如上面所说,若衰减的起始电流太小会使在下一个晶闸管触发之前低于使晶闸管关断。当时由于电流较小晶闸管关断便不会出现某一晶闸管连续导通的失控现象。

4.为该直流控制电源静态建模

根据电路带纯阻性负载时测得的和的值画出关系曲线并用matlab 对该曲线进行拟合,拟合图像如下所示

图中的点是测量的数据,处理时发现实验时在非线性区(较小的区域)测得的点比较多,就只能用前面几个点用直线拟合,后面的用曲线拟合了。

线性拟合:1.取前五个点绿色直线:u d =45.5176×u ct +9.9804; 2.取前六个点红色直线:u d =38.2016×u ct +14.9783;

3.取第三个到第六个点蓝色直线:u d = 27.3468×u ct +33.0737; 后面的点都处在非线性区了,不能用直线画出来

非线性拟合:图中黄色曲线就是用四次方程拟合的曲线,方程为

u d =-0.2445 u ct 4+4.2904 u ct 3-28.1560 u ct 2+86.0354 u ct -2.0610;

在线性区绿色直线和实际曲线(黄色线)最接近,所以该电源的近似放大系数

七、实验综合评估

1、对实验方案、结果进行可信度分析

⑴实验方案的可信度分析:

该实验方案在内容上综合结合实验讲义内容,实验过程中充分结合课本教学内容,具有理论依据,并且组员之间进行大量的讨论和交流,所用方案为全体通过的结果。实验过后对实验内容进行进一步的学习和了解,通过网络及图书查询搜集更丰富的内容。在曲线描绘时运用excel作图,并使用multsim仿真,用理想波形与试验中的实际波形作比较,所得数据读取规范,一定程度上保证曲线的正确性以及精度,另所用试验台(双电源)及示波器(100MHZ)都在这个实验所要求的标准之上。所以,本次实验方案可信度较高。

⑵实验结果的可信度分析:

本次实验结果数据经过excel作图之后,发现实际测得输出电压与理论值基本接近。分段进行观察,数据中大部分数据所在的中段与理论值曲线几乎重合,可信度很高。在首段和尾段由于观测误差,系统以及电路自身损耗所带来的一定影响(如电流较大时电感的影响较为明显,实验中出现电流的震荡现象)但都在可以理解的范围内,所以本次实验结果可信。

2、提出可能的优化改进方案

将实验中晶闸管VT4(原理图上为VT2)与二极管VD2交换位置,交换后电路如下图所示。交换后的改进电路中两个串联的二极管除了整流作用之外,还可近似代替外接续流二极管的作用。串联二极管VD1,VD2在大电感负载时形成续流回路,发挥续流二极管作用,方案更简单。在正常工作时,在电源正半周由VT1,VD2与电源和负载组成回路,负半周则为VT2,VD1,工作原理变化很小,并且电路不易失控,可部分改进原电路。

改进电路图:

L

八、multsim11仿真

以下是基于muitisim的单相桥式半控整流电路的仿真分析,如下图所示

图中V1为130V,50Hz的虚拟正弦电源,作为整流电路的交流电源;虚拟脉冲源V2、V3,作为晶闸管VT1、VT2的触发脉冲。R为900Ω的可变电阻,仿真时调到45%;为了波形连续,故电感L1选用500mH的大电感;其中二极管选用理想元件;XSC1为虚拟双踪示波器,用来测量R两端波形。

设置虚拟脉冲信号源的振荡周期period=20ms;设置脉冲幅度-5和5V;设置脉冲宽度pulse width=2ms;设置晶闸管的触发角,第一个虚拟脉冲信号源与第二个虚拟脉冲信号源的出发延迟时间delay time应相差10ms,如图带纯阻性负载的第一个虚拟脉冲信号源的delay

time=0,第二个拟脉冲信号源的delαy time=10ms时的输出波形:

1带纯阻性负载仿真

带纯阻性负载的为54时的输出波形

带纯阻性负载的为90°时的波形

2、晶闸管突然失去触发脉冲即失控仿真

3、带阻感负载仿真

带阻感负载时为0°时的波形,与带纯阻性负载基本一样

带阻感负载角趋近180°时的仿真波形

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

四川大学三相全桥整流及有源逆变实验报告

四川大学电气信息学院 实验报告书 课程名称:电力电子技术 实验项目: 三相全桥整流及有源逆变实验专业班组:电气工程及其自动化105班实验时间:2013年12月16日成绩评定: 评阅教师: 报告撰写: 学号: 同组人员:学号: 同组人员:学号: 同组人员:学号: 电气信息学院专业中心实验室

目录 一.实验内容 1.1实验项目名 称 (3) 1.2实验完成目 标 (3) 1.3实验内容及已知条件 (3) 二.实验环境 2.1 主要设备仪器············································4 2.2小组人员分 工············································5 三.电路分析与仿真 3.1基本电 路 (5) 3.2 电路仿真 (6) 四.实验过程 4.1连接三相整流桥及逆变回路································1 1 4.2 整流工作···············································1 1 4.3 逆变工 作 (14) 五.实验数据处理与分析 5.1 实验数据与处理 (15) 5.2误差分析················································ 16 六.思考讨论与感悟 6.1 实验思考 题··············································16 6.2实验讨论 题·············································· 17 6.3实验方案、结果可信度分 析 (19) 6.4 实验感悟 (1) 9

华科电力电子实验报告

电气11级 《信号与控制综合实验》课程 电力电子部分实验报告 姓名学专业班 同组学号专业班号 同组者 实验评分表

基本实验实验编号名称/内容实验分值评分 PWM信号的生成和PWM控制的实现 DC/DC PWM升压降压变换电路性能的研究 三相桥式相控整流电路性能的研究 DC/AC单相桥式SPWM逆变电路性能的研 究 设计性实验实验名称/内容实验分值评分 实验三十九信号的调制—SPWM信号 的产生与实现 教师评价意见总分 目录

实验二十八 PWM信号的生成和PWM控制的现 (4) 实验二十九 DC/DC—PWM升压、降压变换电路性能研究 (11) 实验三十三相桥式相控整流电路性能研究 (14) 实验三十一DC/AC单相桥式SPWM逆变电路性能研究 (23) 实验三十九信号的调制—SPWM信号的产生与实现 (32) 实验心得 (40)

实验二十八 PWM信号的生成和PWM控制的实现 一.实验目的 分析并验证基于集成PWM控制芯片TL494的PWM控制电路的基本功能,从而掌握PWM 控制芯片的工作原理和外围电路设计方法。 二.实验原理 PWM控制的基本原理:将宽度变化而频率不变的的脉冲作为电力电子变换器电路中的开关管驱动信号,控制开关管的适时、适式的通断;而脉冲宽度的变化与变换器的输出反馈有着密切的联系,当输出变化时,通过输出反馈调节开关管脉冲驱动信号,调节驱动脉冲的宽度,进而改变开关管在每个周期中的导通时间,以此来抵消输出电压的变化,从而满足电能变换的需要。 本实验中采用实验室中已有的PWM控制芯片TL494来完成实验,当然在进行具体的PWM控制之前,我们必须要详细的了解和认识该控制芯片的工作原理和方式,如何输出?输出地双路信号存在怎样的关系?参考信号是如何形成的?反馈信号是如何加载到控制芯片上,同时又是如何以此反馈信号来完成输出反馈的?另外我们也必须了解和认识到对不同开关管进行驱动时,为保证开关管的完全可关断,保证电路的正常可靠工作,死区时间的控制方式。最后我们也要了解为防止电力电子变换器在突然启动时,若开放较宽脉冲而带来的较大冲击电流的影响(和会给整个电路带来许多不利影响),控制芯片要采用“软启动”的方式,这也是本实验中认识的一个重点。 三.实验内容 (1)考察开关频率为20kHz,单路输出时,集成电路的软启动功能。 (2)考察开关频率为20kHz,单路输出时,集成电路的反馈电压Vf对输出脉宽的影响。(3)考察开关频率为20kHz,单路输出时,集成电路的反馈电流If对输出脉宽的影响。(4)考察开关频率为20kHz,单路输出时,集成电路的保护封锁功能 (5)考察开关频率为20kHz,单路输出时,集成电路死区电压对输出脉宽的影响。 四.实验步骤 本实验采用单路输出,将端口13接地。 1.PWM脉宽调节:软启动后,在V1端口施加电压作为反馈信号Vf,给定信号Vg=2.5v,改变V1端口电压大小,即可改变V3,从而改变输出信号的脉宽。V3越大,K越大,C=J+K越大,脉宽越小;反之脉宽越大。记录不同V1下的输出波形并与预计实验结果比较。 2.软启动波形:为防止变换器启动时较大的冲击电流,控制芯片TL494和其他控制芯片相似也采用了软启动。在启动时,为防止变换器冲击电流的出现,驱动脉宽应从零开始增大,逐渐变宽到工作所需宽度。本实验中此功能由脉冲封锁端口电位的逐渐开放来实现,电位又打逐渐变小,便可实现软启动。为对控制芯片的该控制过程有更明确和清晰的认识,我们可以观察芯片启动过程中“启动和保护端口4”(TP3)的电压波形变化并与实验前预测进行比较。

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

中南大学电力电子实验报告

电力电子实验报告 学院名称:信息科学与工程学院 指导老师: 专业班级:电气0802班 学生姓名: 学号:

目录 实验1-1 三相脉冲移相触发电路------------------------3 一、实验目的-------------------------------------------------------3 二、实验内容---------------------------------------------------- --3 三、实验电路原理------------------------------------------------3 四、实验设备------------------------------------------------------4 五、实验步骤和方法---------------------------------------------4 实验1-2 三相桥式整流电路的研究---------------------5 一、实验目的------------------------------------------------------5 二、实验内容------------------------------------------------------5 三、实验设备------------------------------------------------------5 四、实验步骤和方法---------------------------------------------5 五、注意事项------------------------------------------------------9 六、实验原理------------------------------------------------------9 七、实验结果------------------------------------------------------10 实验1-3 三相桥式变流电路反电动势负载的研究-11 一、实验目的------------------------------------------------------11 二、实验内容------------------------------------------------------11 三、实验设备------------------------------------------------------11 四、实验步骤和方法---------------------------------------------11 五、实验结果------------------------------------------------------13 实验1-4 单相交流调压电路----------------------------14 一、实验目的------------------------------------------------------14 二、实验内容------------------------------------------------------14 三、实验设备------------------------------------------------------14 四、实验步骤和方法---------------------------------------------14 五、实验原理------------------------------------------------------16 六、实验结果------------------------------------------------------16 实验心得-----------------------------------------------------18

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

电力电子实验报告

电力电子实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验一SCR(单向和双向)特性与触发实验 一、实验目的 1、了解晶闸管的基本特性。 2、熟悉晶闸管的触发与吸收电路。 二、实验内容 1、晶闸管的导通与关断条件的验证。 2、晶闸管的触发与吸收电路。 三、实验设备与仪器 1、典型器件及驱动挂箱(DSE01)—DE01单元 2、触发电路挂箱Ⅰ(DST01)—DT02单元 3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代) 4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元 5、逆变变压器配件挂箱(DSM08)—电阻负载单元 6、慢扫描双踪示波器、数字万用表等测试仪器 四、实验电路的组成及实验操作 图1-1 晶闸管及其驱动电路

1、晶闸管的导通与关断条件的验证: 晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。打开系统总电源,将系统工作模式设置为“高级应用”。将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。闭合控制电路及挂箱上的电源开关,调节“DT03”单元的电位器“RP2”使“K”点输出电压为“0V”;闭合主电路,用示波器观测T1两端电压;调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况,记录使T1由截止变为开通的门极电压值,它正比于通入T1门极的电流I G;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测T1的端电压情况。断开主电路、挂箱电源、控制电路。将加在晶闸管和电阻上的主电源换成交流电源,即“AC15V”直接接“R1”一端,T1的阴极直接接“O”;依次闭合控制电路、挂箱电源、主电路。调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测并记录T1的端电压情况。通过实验结果,参考教材相关章节的内容,分析晶闸管的导通与关断条件。实验完毕,依次断开主电路、挂箱电源、控制电路。 2、晶闸管的触发与吸收电路: 将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;用导线连接“DT02”单元输出端子“OUT11”和“OUT12”与“DE01”单元的脉冲变压器输入端“IN1”和“IN2”;取主电源的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”;“DP01”单元的同步信号输出端“A”和“B”连接到锯齿波移相触发电路的同步信号输入端“A”和“B”;将“DE01”的脉冲变压器输出“g1”和“k1”分别接至单向

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

四川大学电力电子实验报告3

目录 实验基本内容 (1) 一.实验名称..................................... 错误!未定义书签。 二.实验内容..................................... 错误!未定义书签。实验条件.. (1) 一.主要设备仪器 (1) 二.小组人员分工 (2) 实验过程描述 (3) 实验记录及数据处理 (6) Multisim仿真 (6) 误差分析 (7) 心得体会 (7) 附:实验原始数据记录单

实验基本内容 一.实验名称 半桥型开关稳压电源的性能研究 二.实验内容 1.熟悉PWM专用芯片SG3525的基本功能和应用特色,测试其典型功能端波形; 2.测试和分析半桥型开关电源在开环和闭环两种模式下的输出性能 实验条件 一.主要设备仪器 1.电力电子及电气传动教学实验台 名称——电力电子及电气传动教学实验台 型号——MCL-III型 包括:降压变压器、MCL-35、两组晶闸管阵列,电力二极管阵列,大功率滑动变阻器,可调电感、导线若干。

厂商——浙江大学求是公司 2.Tektronix示波器 名称——Tektronix示波器 型号——TDS2012 主要参数——带宽:100MHz 最高采样频率:1GS/s 记录长度:2.5K 3.数字万用表 名称——数字万用表 型号——GDM-8145 二.小组人员分工 实验操作分工 数据记录及计算赵莉 实验拍照苏芬 调整控制仪器唐红川陈可

仪器接线陈可苏芬 监督及全局调控唐红川赵莉 实验报告分工 Matlab 拟合及相关分析唐红川 实验过程描述苏芬 实验基本内容及条件陈可 实验讨论及评估、排版整合赵莉 实验数据处理唐红川 心得体会赵莉陈可唐红川苏芬 实验过程描述 i.PWM控制芯片SG3525的特性测试 连接:选择SG3525工作于“半桥电源”模式,短接误差调节器PI参数反馈端(屏蔽PI调节)。 测试:接通SG3525工作电源。用示波器分别观察锯齿波振荡器观测点和A(或B)路PWM信号的波形,并记录波形的频率和幅值,调节“脉冲宽度调节”电位器,记录其占空比可调范围(最大、最小占空比)。 最大占空比最小占空比

电力电子实验报告

实验题目:MPD-15实验设备《电力电子技术》班级:自动化1405 姓名:KZY 学号:0901140450X 指导老师:XXX

实验一、三相脉冲移相触发电路 1.实验目的:熟悉了解集成触发电路的工作原理、双脉冲形成过程及掌握集成触发电路的 应用。 2.实验内容:集成触发电路的调试及各点波形的观察与分析。 3.实验设备:YB4320A型双线示波器一台;万用表一块;MPD-15实验设备中“模拟量可逆 调速系统”控制大板中的“脉冲触发单元”。 4.实验接线:见图1 图1 该实验接好三根线:即SZ与SZ1,GZ与GND,U GD与U CT连接好就行了。 5.实验步骤: (1)将实验台左下方的三相电源总开关QF1合上;(其它开关和按钮不要动) (2)将模拟挂箱上左边的电源开关拨至“通”位置,此时控制箱便接入了工作电源和三相交流同步电源U sa U sb U sc (注:U sa U sb U sc 与主回路电压:U A16 U B16 U C16相位一致)。 (3)将模拟挂箱上正组脉冲开关拨至“通”位置,此时正组脉冲便接至了正组晶闸管。 (4)用示波器观察U sa U sb U sc孔的相序是否正确,相位是否依次相差120°(注:用示波器的公共端接GND孔,其它两信号探头分别依次检查三个同步信号)。 (5)触发器锯齿波斜率的整定 (6)触发器相位特性整定:

实验二三相桥式整流电路的研究 一、实验目的 1、熟悉三相桥式整流电路的组成、研究及其工作原理。 2、研究该电路在不同负载(R、R+L、R+L+VDR)下的工作情况,波形及其特性。 3、掌握晶体管整流电路的试验方法。 二、实验设备 1、YB4320A型双线示波器一台 2、万用表一块 3、模拟量挂箱一个 4、MPD-08试验台主回路 三、实验接线 1、先断开三相电源总开关QF1; 2、触发器单元接线维持实验一线路不变; 3、主回路接线按图5进行。 A N0 图5 三相桥式整流电路(虚线部分用导线接好) 四、实验步骤(注意:根据表1中 所对应的Uct数据来调节Uct大小)

四川大学单相半控桥式整流电路实验报告

电气信息学院 实验报告书 课程名称:电力电子技术 实验项目:单相半控桥整流电路实验专业班组:电气工程及其自动化105班实验时间:2013年10月28日 成绩评定: 评阅教师: 报告撰写:学号: 同组人员:学号: 同组人员:学号: 同组人员:学号: 电气信息学院专业中心实验室

目录 一.实验内容 1.1 实验项目名称 (3) 1.2 实验完成目标 (3) 1.3 实验内容及已知条件 (3) 二.实验环境 2.1 主要设备仪器 (4) 2.2 小组人员分工 (5) 三.电路分析与仿真 3.1 基本电路 (5) 3.2 电路仿真 (6) 四.实验过程 4.1 实现同步 (7) 4.2 半控桥纯阻性负载实验 (8) 4.3 半控桥阻感性负载实验 (9) 五.实验数据处理与分析 5.1 理论数据与分析 (11) 5.2 实验数据与处理 (11) 5.3 误差分析 (13) 六.思考讨论与感悟 6.1 实验思考题 (13) 6.2 实验讨论题 (14) 6.3 自主思考与讨论 (18) 6.4 实验方案、结果可信度分析 (19) 6.5 实验优化改进方案 (20) 6.6 实验感悟 (20) 附件

1.1实验名称 单相半控桥式整流电路实验 1.2实验完成目标 ①实现控制触发脉冲与晶闸管同步; ②观测单相半控桥在纯阻性负载时Ud,Uvt波形,测量最大移相范围及输入- 输出特性; ③单相半控桥在阻-感性负载时,测量最大移相范围,观察失控现象并讨论解决 方案。 1.3实验内容及已知条件 ①实现同步: 从三相交流电源进端取线电压Uuw(约230V)到降压变压器(MCL-35),输出单相电压(约124V)作为整流输入电压U2; 在(MCL-33)两组基于三相全控整流桥的晶闸管阵列(共12只)中,选定两只晶闸管,与整流二极管阵列(共6只)中的两只二极管组成共阴极方式的半控整流桥,保证控制同步,并外接纯阻性负载。 思考:接通电源和控制信号后,如何判断移相控制是否同步? ②半控桥纯阻性负载实验: 连续改变控制角,测量并记录电路实际的最大移相范围,用数码相机记录α最小、最大和90°时的输出电压Ud波形(注意:负载电阻不宜过小,确保当输出电压较大时, Id 不超过0.6A); 思考:如何利用示波器测定移相控制角的大小? 在最大移相范围内,调节不同的控制量,测量控制角、输入交流电压U2、控制信号Uct和整流输出Ud的大小,要求不低于8组数据。 ③半控桥阻-感性负载(串联L=200mH)实验: 断开总电源,将负载电感串入负载回路; 连续改变控制角α,记录α最小、最大和90°时的输出电压Ud波形,观察其特点(Id 不超过0.6A); 固定控制角α在较大值,调节负载电阻由最大逐步减小(分别达到电流断续、临界连续和连续0.5A三种情况测量。注意 Id ≤0.6A),并记录电流Id波形,观察负载阻抗角的变化对电流Id的滤波效果; 思考:如何在负载回路获取负载电流的波形? 保持控制角α<90°,适当调整负载电阻,使Id≈0.6A,突然断掉两路晶闸管的脉冲信号(模拟将控制角α快速推到180°),制造失控现象,记录失控前后的ud波形,并提出如何判断哪一只晶闸管失控的测试方法。

实验报告-电力电子仿真实验

电力电子仿真实验 实验报告 院系:电气与电子工程学院 班级:电气1309班 学号: 1131540517 学生姓名:王睿哲 指导教师:姚蜀军 成绩: 日期:2017年 1月2日

目录 实验一晶闸管仿真实验 (3) 实验二三相桥式全控整流电路仿真实验 (6) 实验三电压型三相SPWM逆变器电路仿真实验 (18) 实验四单相交-直-交变频电路仿真实验 (25) 实验五VSC轻型直流输电系统仿真实验 (33)

实验一晶闸管仿真实验 实验目的 掌握晶闸管仿真模型模块各参数的含义。 理解晶闸管的特性。 实验设备:MATLAB/Simulink/PSB 实验原理 晶闸管测试电路如图1-1所示。u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。 图1-1 晶闸管测试电路 实验内容 启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型 双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。 图1-3 交流电压源模块参数

图1-4 晶闸管模块参数 图1-5 脉冲发生器模块参数 固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为0.02s(即频率为50Hz),脉冲宽度为2(即7.2o),初始相位(即控制角)设置为0.0025s(即45o)。 串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。 元件串联RLC分支并联RLC分支 类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0 单个电感0L inf inf L0 单个电容00C inf inf C

川大电气自动化毕业实习报告

川大电气自动化毕业实习报告 四川大学网络教育学院四川大学网络教育学院专业实习报告校外学习中心:重庆永川奥鹏学习中心学生姓名:蒋明山专业:电气自动化层次:高起专年级: 1509级学号: aFH1152gj001 实习起止时间:20XX年6月 8 日至 20XX年7 月11日实习单位:重庆市江津区利源实业有限公司 江津区利源实业有限公司之重庆荧鸿房地产五街区居民配电工程 前言 众所周知,电能是现代工业生产的主要能源。电能即易于其他形式的能量转换而来,又易于转换为其他形式的能量以供应用。电能的输送和分配既简单经济,又便于控制、调节、测量。有利于实现生产过程自动化。而居民供电就是指居民所需要电能的供应和分配,就必须做到:安全、可靠、优负、经济。 实习内容 我这次有幸来到江津区利源实业有限公司实习,并全程参与了荧鸿房地产五街区居民配电工程的施工作业。 工程介绍:

此工程地址在重庆江津区德感工业园区,本工程为荧鸿城四、五、六、七街区工程一期工程,含H1~H5号楼、地下室及商业H11号,其中H1~H5号楼均为33层纯住宅;H11车库面积28497m2,停车位768,为 I类汽车库;商业面积4027m2,总建筑面积约为15万平方米。本工程施工图重庆市电力设计院设计,前期荧鸿城开闭所965#和96610kV#高压出线柜引入10KV市政电源,并“手拉手”连接。供电容量为:4*800KVA+3*630KVA+2*500KVA。变压器选SCB11-,配风机、不锈钢或铝合金外壳及温控器;高压进出线设备采用XGN15-12-开关柜和 KYN28-12开关柜;配电房部分低压设备采用固定式开关柜;低压总路框架;低压出线塑壳;开闭所配置配电自动化装置,实现\三遥\功能。1至5号楼用户,为一户一表计量方式,共计1182户。电表采用单相5A全载波电表。电量采集采取低压电力线窄带载波通信技术,采用全载波方式。集中器,载波电能表组成,在台区变压器供电范围内,集中器与电能表之间直接通过电力线载波方式进行通信,无需采集终端,不需要再敷设专用通信线路,不需勘测、调整网络拓扑结构。 低压电缆选择4加1,敷设采用放射式与树干式相结合的方式,充分考虑电压降及防雷与接地。 下面是10KV高压供电模式图: 1#环网柜一次接线图:

三相桥式全控整流电路实验报告

三相桥式全控整流电路实 验报告 Prepared on 24 November 2020

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o 的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V —2V 的脉冲。注:将面板上的Ublf 接地(当三相桥式全控整流电路使用I 组桥晶闸管VT1~VT6时),将I 组桥式触发脉冲的六个琴键开关均拨到“接通”, 琴键开关不按下为导通。 (4)将给定输出Ug 接至MCL-33面板的Uct 端,在Uct=0时,调节偏移电压Ub ,使=90o 。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1) 电阻性负载 按图接线,将Rd 调至最大450 (900并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv 、U vw 、U wu ,从0V 调至70V(指相电压)。调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90° 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd 调至最大(450)。 调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30 O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90°

四川大学电力电子第一次实验报告

目录 一、主要内容 (2) 二、实验条件描述 (3) 1、主要仪器设备 (3) 2、实验小组人员分工 (4) 三、课前思考:黑板上五个问题的答案 (4) 四、实验过程 (5) 1、实现同步 (5) 2、半控桥纯阻性负载实验 (6) 3、半控桥阻-感性负载(串联电感L=200mH)实验 (7) 五、实验数据处理(含原始数据记录单及工程特性曲线,误差分析) (10) 六、课后思考:讨论题及我们的分析 (12) 七、实验综合评估 (15) 1、对实验方案、结果进行可信度分析 (15) 2、提出可能的优化改进方案 (15) 八、multsim11仿真 (15) 1带纯阻性负载仿真 (16) 2、晶闸管突然失去触发脉冲即失控仿真 (18) 3、带阻感负载仿真 (18)

一、主要内容 1、项目名称:单相半控桥整流电路实验 2、已知条件 : (1)单相半控桥整流电路 (2)触发电路原理图

3、实验完成目标 (1) 实现控制触发脉冲与晶闸管同步。 (2) 观测单相半控桥在纯阻性负载时d ct u u 、波形,测量最大移相范围及输入-输出特性。 (3) 单相半控桥在阻-感性负载时,测量最大移相范围,观测失控现象并讨论解决方案。 二、实验条件描述

三、课前思考:黑板上五个问题的答案 1、如何为晶闸管匹配有效的同步移相控制? 利用u2产生触发脉冲,首先用整流滤波电路将正弦波u2变为锯齿波,再利用直流电压u ct和放大电路产生触发脉冲,因为是利用u2产生的脉冲,故此触发脉冲与u2同步,整流电源为正弦波u2,由此便实现了晶闸管与触发脉冲同步,同时调节u ct的大小便可实现对触发角的控制。 2、如何测量u d, id,α的大小及瞬态波形? 测量u d用示波器两端接在负载R两端测量,对于电阻,i d与u d波形形状一致,故只需将示波器两端放在负载两端即可得到波形,测量电流i d的时候用电流表,串联在负载侧,可读出i d的值,实验过程中要观察i d的变化,保证I d不超过0.6Α;测量ud 的时候,要将电压表并联在晶闸管B的阴极以及二极管D的阳极,并读出u d的大小。 测量α的时候,先控制示波器定格,把两条垂直标尺移动到整流后的波形的末端到另一个波形的始端,即用标尺测量波形缺失的部分的长度t,在从示波器上能够读 到半波的周期T, t T πα= 3、如何设定趋势测量的边界(值)及取样点分布的有效性? 改变u ct的大小调节α,分别测量α最大及最小和α为90o时的u d及i d值,由此便可

电力电子实验报告

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:一、实验项目名称:锯齿波同步移相触发电路实验

接于“7”端。注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。 3.调节脉冲移相范围 将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使α=180O,其波形如图4-4所示。 调节MCL—18的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=Umax时,α=30O,以满足移相范围α=30O~180O的要求。 4.调节Uct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。 用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。 七、实验报告 1、观察波形 ⑴、“1”、“2”孔波形

⑵、“3孔波形” ⑶、“4”孔波形

⑸、U G1K1波形

2、调节脉冲移相范围 ⑴U2、U5波形

⑵、U G1K1、U G2K2波形 ⑶、U G1K1、U G3K3波形

杭电电力电子技术实验报告

电力电子技术实验报告班级: 学号: 姓名: 指导老师:余善恩、孙伟华 实验名称:锯齿波同步移相触发电路及单相半波可控整流 三相桥式全控整流及有源逆变电路实验

实验一锯齿波同步移相触发电路及单相半波可控整流一、实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 4.了解续流二极管的作用。 二、实验内容 1.锯齿波同步触发电路的调试。 2.锯齿波同步触发电路各点波形观察,分析。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 三、实验线路及原理 锯齿波同步移相触发电路主要由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-1所示。 主电路 (a) (b)锯齿波同步移相触发电路 图1-1 单相半波可控整流电路 由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R3、V3放电;调节电位器RP1可以调节恒流源的电流大小,改变对电容的充电时间,从而改变了锯齿波的斜率;控制电压U ct、偏移电压U b和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct和偏移电压U b的大小;V6、V7构成脉冲形成放大环节,C5为强触发电容用于改善脉冲的前沿,由脉冲变压器输出触发脉冲。

电力电子实验报告

电力电子实验报告 学院名称电气信息学院 专业班级电气自动化03班 学号 学生姓名 指导教师

实验一电力晶体管(GTR)驱动电路研究 一.实验目的 1.掌握GTR对基极驱动电路的要求 2.掌握一个实用驱动电路的工作原理与调试方法 二.实验内容 1.连接实验线路组成一个实用驱动电路 2.PWM波形发生器频率与占空比测试 3.光耦合器输入、输出延时时间与电流传输比测试 4.贝克箝位电路性能测试 5.过流保护电路性能测试 三.实验线路 四.实验设备和仪器 1.MCL-07电力电子实验箱 2.双踪示波器 3.万用表 4.教学实验台主控制屏 五.实验方法 1.检查面板上所有开关是否均置于断开位置 2.PWM波形发生器频率与占空比测试 (1)开关S1、S2打向“通”,将脉冲占空比调节电位器RP顺时针旋到底,用示波器观察1和2点间的PWM波形,即可测量脉冲宽度、幅度与脉冲周期,并计算出频率f与占空比D 当S2通,RP右旋时:

当S2断,RP右旋时: 当S2通,RP左旋时: 当S2断,RP左旋时: (2)将电位器RP左旋到底,测出f与D。 (3)将开关S2打向“断”,测出这时的f与D。 (4)电位器RP顺时针旋到底,测出这时的f与D。 (5)将S2打在“断”位置,然后调节RP,使占空比D=0.2左右。 3.光耦合器特性测试 (1)输入电阻为R1=1.6K 时的开门,关门延时时间测试 a.将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”,即按照以下表格的说明连线。

相关文档
相关文档 最新文档