文档库 最新最全的文档下载
当前位置:文档库 › RTC晶振设计指南

RTC晶振设计指南

RTC晶振设计指南
RTC晶振设计指南

RTC (实时时钟) 晶振设计指南

翻译: 陈其龙(香港商鼎盛国际有限公司总经理)

(适用于FM31 系列,FM3808,FM30C256所有的RTC芯片)

总体概述

FM31 系列,FM3808,FM30C256 集成了处理器外围器件,它集成了FRAM 非易失性存储器和实时时钟于一体。实时时钟在VDD 掉电以后自动切换到后备电源。在使用后备电源的情况下,实时时钟耗电量很少以便其可以长期工作。本应用笔记提醒系统设计者在使用实时时钟时应注意的问题。

振荡器和晶体

任何实时时钟的核心都是晶振,它为分频计数器提供精确的与低功耗的时基信号,它可以用于产生秒、分、时、日等信息。为了确保时钟长期的准确性,晶振必须工作正常,不能受到干扰。

除了晶体之外,所有必须的元件都被集成在器件之内。如果有额外的诸如电容和电阻等元件被连接到X1和X2引脚,晶振将不能正常工作。这种情况下,直流工作点将发生偏移,晶振频率也会偏移,甚至在上电时,晶振不能正常起振。具有10pF电容和10M阻抗的被动示波器探针也会影响晶振正常工作。所有的32.768KHZ 晶体都有等效电容。市场上最为普遍的32KHZ 晶体有两种类型:6pF 和12.5pF。在操作时,晶体必须符合推荐的容性特性。那就是说,X1/X2引脚的容性负载必须为6pF。所有的FRAM实时时钟都设计使用6pF 类型的晶体。

以上简化的晶振示意图显示了穿孔晶振与芯片内的C1和C2的连接。芯片内的这两个电容值

为12pF,它们和晶体一起工作。因此CLOAD值为C1*C2/(C1+C2)或6pF.。两个电阻每个为1千欧,它可以调整相位以提高晶振的工作稳定性。所有带有实时时钟的Ramtron 外围器件都选择6pF 晶体以在使用后备电源时实现最低功耗。一个12pF 的晶体晶振的功耗是6pF 晶体晶振的两倍。值得注意的是:晶振内的150nA 电流源为电路提供一个低值的直流偏置电流。晶振可能由于噪音和X1/X2 引脚上额外负载的影响而引起工作晶振32.768KHZ 频率不能被直接监控。不能在X1 和X2 引脚上增加电容,也不可以用探头直接接触。以下推荐几种检测晶振频率的方法:2、在实时时钟控制寄存器中,(在FM30C256和FM3808 中为Flages 寄存器),将CAL 位设置为1。这一操作将CAL:引脚(FM3808 中的INT)变为512Hz 的监控器。512Hz 是晶振频率的64 分3、可使用频率计数器或其他精确频率测量仪器测量晶振频率(可使用数码示波器观察十个周期以上,而不是只观察一个周期)。你希望读到512Hz 这一精确频率值,但只要测量值在

511.975-512.025Hz 之间,我们就可以认为晶振工作正常。CAL(4:0)寄存器位能够使实时时钟误差率小于2ppm。0.025Hz 晶振误差大约引起50ppm的时钟误差.

尽管50ppm 的时钟误差距离精确值比较远,但它在校准设置功能可纠正能力范围之内。为了进一步测试晶振,系统微控制器可进入或退出校准状态。为确保频率的准确性,可以连续监控512Hz 的频率输出。如果频率改变较大,那么晶振有可能受到噪音的影响。如果你采用推荐的电路布局,实时时钟晶振的工作性能将极大提高。重点提示:校准设置CAL(4:0)不会影响到512Hz 输出。改变CAL(4:0)位,CAL(INT)引脚上512Hz 频率不会改变。实时时钟的校准是通过对64 分频计数器的输出进行数字调整,不能通过改变晶体频率进行校正

布局推荐

X1 和X2 晶体引脚均为高阻引脚,必须小心处理。需确保晶体与X1,X2 引脚之间的连线距离最短,必须小于5mm。2. 确保VDD引脚具有良好的退藕性。(VDD与地之间连接一个0.1uF电容)3. 即使信号位于板内层,也不能允许信号线靠近X1 和X2 引脚。在晶体引脚周围使用接地保护环。在内部或板反面使用接地保护敷铜。

图三:X1 和X2 引脚周围的保护环

目前有很多表面封装晶体可用。图三为FM31系列和SMD晶体的布局示图。应当注意:通过图中示意的孔将保护环与地相连。Abracon, Citizen,Epson, Raltron, and Saronix 制造32kHz 6pF表面晶体。推荐的6pF晶体将保证晶振以32.768Hz的频率正常工作。

石英晶振设计电路,Oscillation Circuit Design Overview

Oscillation Circuit Design Overview Oscillation Circuit Design Key Parameters DRIVE LEVEL (DL), OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL), OSCILLATION ALLOWANCE, FREQUENCY-TEMPERATURE CURVE DRIVE LEVEL (DL) The drive level of a crystal unit is shown by the level of the operating power or the current consumption (see Figures 9,10, and 11). Operating the crystal unit at an excessive power level will result in the degradation of its characteristics, which may cause frequency instability or physical failure of the crystal chip. Design your circuit within absolute maximum drive level. OSCILLATION FREQUENCY AND LOAD CAPACITANCE (CL) The load capacitance (CL) is a parameter for determining the frequency of the oscillation circuit. The CL is represented by an effective equivalent capacitance that is loaded from the oscillation circuit to both ends of the crystal unit (see Figure 12). The oscillation frequency varies depending upon the load capacitance of the oscillation circuit. In order to obtain the desirable frequency accuracy, matching between the load capacitances of the oscillation circuit and the crystal unit is required. For the use of the crystal unit, match the load capacitances of the oscillation circuit with the load capacitances of the crystal

RTC晶振设计指南

RTC (实时时钟) 晶振设计指南 翻译: 陈其龙(香港商鼎盛国际有限公司总经理) (适用于FM31 系列,FM3808,FM30C256所有的RTC芯片) 总体概述 FM31 系列,FM3808,FM30C256 集成了处理器外围器件,它集成了FRAM 非易失性存储器和实时时钟于一体。实时时钟在VDD 掉电以后自动切换到后备电源。在使用后备电源的情况下,实时时钟耗电量很少以便其可以长期工作。本应用笔记提醒系统设计者在使用实时时钟时应注意的问题。 振荡器和晶体 任何实时时钟的核心都是晶振,它为分频计数器提供精确的与低功耗的时基信号,它可以用于产生秒、分、时、日等信息。为了确保时钟长期的准确性,晶振必须工作正常,不能受到干扰。 除了晶体之外,所有必须的元件都被集成在器件之内。如果有额外的诸如电容和电阻等元件被连接到X1和X2引脚,晶振将不能正常工作。这种情况下,直流工作点将发生偏移,晶振频率也会偏移,甚至在上电时,晶振不能正常起振。具有10pF电容和10M阻抗的被动示波器探针也会影响晶振正常工作。所有的32.768KHZ 晶体都有等效电容。市场上最为普遍的32KHZ 晶体有两种类型:6pF 和12.5pF。在操作时,晶体必须符合推荐的容性特性。那就是说,X1/X2引脚的容性负载必须为6pF。所有的FRAM实时时钟都设计使用6pF 类型的晶体。 以上简化的晶振示意图显示了穿孔晶振与芯片内的C1和C2的连接。芯片内的这两个电容值

为12pF,它们和晶体一起工作。因此CLOAD值为C1*C2/(C1+C2)或6pF.。两个电阻每个为1千欧,它可以调整相位以提高晶振的工作稳定性。所有带有实时时钟的Ramtron 外围器件都选择6pF 晶体以在使用后备电源时实现最低功耗。一个12pF 的晶体晶振的功耗是6pF 晶体晶振的两倍。值得注意的是:晶振内的150nA 电流源为电路提供一个低值的直流偏置电流。晶振可能由于噪音和X1/X2 引脚上额外负载的影响而引起工作晶振32.768KHZ 频率不能被直接监控。不能在X1 和X2 引脚上增加电容,也不可以用探头直接接触。以下推荐几种检测晶振频率的方法:2、在实时时钟控制寄存器中,(在FM30C256和FM3808 中为Flages 寄存器),将CAL 位设置为1。这一操作将CAL:引脚(FM3808 中的INT)变为512Hz 的监控器。512Hz 是晶振频率的64 分3、可使用频率计数器或其他精确频率测量仪器测量晶振频率(可使用数码示波器观察十个周期以上,而不是只观察一个周期)。你希望读到512Hz 这一精确频率值,但只要测量值在 511.975-512.025Hz 之间,我们就可以认为晶振工作正常。CAL(4:0)寄存器位能够使实时时钟误差率小于2ppm。0.025Hz 晶振误差大约引起50ppm的时钟误差. 尽管50ppm 的时钟误差距离精确值比较远,但它在校准设置功能可纠正能力范围之内。为了进一步测试晶振,系统微控制器可进入或退出校准状态。为确保频率的准确性,可以连续监控512Hz 的频率输出。如果频率改变较大,那么晶振有可能受到噪音的影响。如果你采用推荐的电路布局,实时时钟晶振的工作性能将极大提高。重点提示:校准设置CAL(4:0)不会影响到512Hz 输出。改变CAL(4:0)位,CAL(INT)引脚上512Hz 频率不会改变。实时时钟的校准是通过对64 分频计数器的输出进行数字调整,不能通过改变晶体频率进行校正 布局推荐 X1 和X2 晶体引脚均为高阻引脚,必须小心处理。需确保晶体与X1,X2 引脚之间的连线距离最短,必须小于5mm。2. 确保VDD引脚具有良好的退藕性。(VDD与地之间连接一个0.1uF电容)3. 即使信号位于板内层,也不能允许信号线靠近X1 和X2 引脚。在晶体引脚周围使用接地保护环。在内部或板反面使用接地保护敷铜。 图三:X1 和X2 引脚周围的保护环 目前有很多表面封装晶体可用。图三为FM31系列和SMD晶体的布局示图。应当注意:通过图中示意的孔将保护环与地相连。Abracon, Citizen,Epson, Raltron, and Saronix 制造32kHz 6pF表面晶体。推荐的6pF晶体将保证晶振以32.768Hz的频率正常工作。

如何选取正确的晶振

一个号的晶体振荡器可以被泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等。它具有多种封装类型,最主要的特点是电气性能规范多种多样。它有以下几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。 如果你的设备需要即开即用,您就必须选用VCXO或温补晶振,如果你的要求稳定度在0.5ppm以上,凯越翔建议你选择数字温补晶振(MCXO)。而模拟温补晶振则适用于稳定度要求在5ppm~0.5ppm之间的需求。VCXO只适合于稳定度要求在5ppm以下的产品。如果你的设备在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm的,可选用OCXO。 从频率稳定性方面考虑:晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。稳定性愈高或温度范围愈宽,器件的价格亦愈高。工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。所以设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。指标过高意味着花钱愈多。 晶体老化:造成频率变化的又一重要因素。根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。 与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。 输出:必须考虑的其它参数是输出类型、相位噪声、抖动、电压特性、负载特性、功耗、封装形式,对于工业产品,有时还要考虑冲击和振动、以及电磁干扰(EMI)。晶体振荡器可HCMOS/TTL兼容、ACMOS兼容、ECL和正弦波输出。每种输出类型都有它的独特波形特性和用途。应该关注三态或互补输出的要求。对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定。许多DSP和通信芯片组往往需要严格的对称性(45%至55%)和快速的上升和下降时间(小于 5ns)。 相位噪声和抖动:在频域测量获得的相位噪声是短期稳定度的真实量度。它可测量到中心频率的1Hz之内和通常测量到1MHz。晶体振荡器的相位噪声在远离中心频率的频率下有所改善。TCXO和OCXO振荡器以及其它利用基波或谐波方式的晶体振荡器具有最好的相位噪声性能。采用锁相环合成器产生输出频率的振荡器比采用非锁相环技术的振荡器一般呈现较差的相位噪声性能。 抖动与相位噪声相关,但是它在时域下测量。以微微秒表示的抖动可用有效值或峰—峰值测出。许多应用,例如通信网络、无线数据传输、ATM和SONET要

有源晶振的EMC设计

有源晶振的EMC设计 有源晶振的电路设计常见有两种: (1)、 (2)、 原理图设计要点: (1)、晶振电源去耦非常重要,建议加磁珠,去耦电容选三个,容值递减。 (2)、时钟输出管脚加匹配,具体匹配阻值,可根据测试结果而定。

(3)、图二中加了一个电容,容值要小(加大了有什么结果,你可以试一试),构成了一级低通滤波,电阻、电容的选择,根据具体测试结果而定。 PCB设计要点: (1)、在PCB设计是,晶振的外壳必须接地,可以防止晶振的向往辐射,也可以屏蔽外来的干扰。 (2)、晶振下面要铺地,可以防止干扰其他层。因为有些人在布多层板的时候,顶层和底层不铺地,但是建议晶振所在那一块铺上地。 (3)、晶振底下不要布线,周围5mm的范围内不要布线和其他元器件(有的书是建议300mil范围内,大家可以参考),主要是防止晶振干扰其他布线和器件。 (4)、晶振不要布在板子的边缘,因为为了安全考虑,板卡的地和金属外壳或者机械结构常常是连在一起的,这个地我们暂且叫做参考接地板,如果晶振布在板卡的边缘,晶振与参考接地板会形成电场分布,而板卡的边缘常常是有很多线缆,当线缆穿过晶振和参考接地板的电场是,线缆被干扰了。而晶振布在离边缘远的地方,晶振与参考接地板的电场分布被PCB板的GND分割了,分布到参考接地板电场大大减小了(可以参考《EMC电磁兼容设计与测试案例分析》第二版) (5)、当然时钟线尽量要短。如果你不想让时钟线走一路干扰一路,那就布短吧。 还有一点,关于晶振的选择,如果你的系统能工作在25M,就尽量不要选50M的晶振。时钟频率高,是高速电路,时钟上升沿陡也是高速电路。在最近的几次板卡设计中,我的晶振波形,基本上没有过冲,公司资料保密,这里就不贴图了。欢迎大家指点!

晶体振荡器电路+PCB布线设计指南

AN2867 应用笔记 ST微控制器振荡器电路 设计指南 前言 大多数设计者都熟悉基于Pierce(皮尔斯)栅拓扑结构的振荡器,但很少有人真正了解它是如何工 作的,更遑论如何正确的设计。我们经常看到,在振荡器工作不正常之前,多数人是不愿付出 太多精力来关注振荡器的设计的,而此时产品通常已经量产;许多系统或项目因为它们的晶振 无法正常工作而被推迟部署或运行。情况不应该是如此。在设计阶段,以及产品量产前的阶 段,振荡器应该得到适当的关注。设计者应当避免一场恶梦般的情景:发往外地的产品被大批 量地送回来。 本应用指南介绍了Pierce振荡器的基本知识,并提供一些指导作法来帮助用户如何规划一个好的 振荡器设计,如何确定不同的外部器件的具体参数以及如何为振荡器设计一个良好的印刷电路 板。 在本应用指南的结尾处,有一个简易的晶振及外围器件选型指南,其中为STM32推荐了一些晶 振型号(针对HSE及LSE),可以帮助用户快速上手。

目录ST微控制器振荡器电路设计指南目录 1石英晶振的特性及模型3 2振荡器原理5 3Pierce振荡器6 4Pierce振荡器设计7 4.1反馈电阻R F7 4.2负载电容C L7 4.3振荡器的增益裕量8 4.4驱动级别DL外部电阻R Ext计算8 4.4.1驱动级别DL计算8 4.4.2另一个驱动级别测量方法9 4.4.3外部电阻R Ext计算 10 4.5启动时间10 4.6晶振的牵引度(Pullability) 10 5挑选晶振及外部器件的简易指南 11 6针对STM32?微控制器的一些推荐晶振 12 6.1HSE部分12 6.1.1推荐的8MHz晶振型号 12 6.1.2推荐的8MHz陶瓷振荡器型号 12 6.2LSE部分12 7关于PCB的提示 13 8结论14

晶振电路设计

模拟电路部分晶振设计 1. 振荡器原理 振荡器是一个没有输入信号的带选频网络的正反馈放大器。从能量的角度来说,正弦波振荡器是通过自激方式把直流电能转换为特定频率和幅度的正弦交变能量的电路。 对于任何一个带有反馈的放大电路,都可以画成下图所示结构: 图4 振荡器 当增益满足1≥?a f ,且相位条件满足πβα2=+时,构成正反馈环路,起振条件得以满足。上图即构成一个振荡器。 2. 晶振原理 当在晶体两端加上一定的交变电场,晶片就会产生机械形变, 石英晶体振荡器是利用石英晶体的压电效应制的一种谐振器件, 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。同时这个机械形变又会产生相应的交变电压,并且其特征频率下的振幅比其他频率点的振幅大得多。根据这个特点,为了得到低的起振电压和短的起振时间,在晶体两端施加的交变电压的频谱能量应主要集中在晶体的特征频率附近。 在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振。石英晶体振荡器的等效电路如图5 所示。当用石英晶体组成并联谐振电路时,晶体表现为 感性,其等效品质因数Q 值很高。等效阻抗2频率特性如图6所示。

图5 晶振等效电路 图6 晶振等效阻抗 图6中,Fr 为串联谐振点。在频率为)2/(1LC F r π=时,图2中串联的L 、C 谐振,串联支路等效为一个纯电阻。Fa 为并联谐振点,此时串联支路等效为电感,与并联的C0谐振,0/1C C F F r a +=。此时等效阻抗趋于无穷大。通常这两个频率点之间的差值很小。 总的来说,可以认为晶振在串联谐振时表现为电阻,在并联谐振时表现为电感。这里建议设计时采用并联谐振。

晶振选型与应用知识

石英晶振选型与应用知识 石英晶体是压电晶体的一种,沿着特定的方向挤压或拉伸,它的两端会产生正负电荷,这种效应称为正压电效应;相反,对晶体施加电场导致晶体形变的效应,称为逆压电效应。所以在石英晶片两面施加交变电场,晶片就会产生形变,而形变又会产生电场,这是一个周期转换的过程。对于特定的晶片,这个周期是固定的,我们利用这个周期来产生稳定的基准时钟信号。 石英晶体元器件,是利用石英晶体的压电效应实现频率控制、稳定或选择的关键电子元器件。包括石英晶体谐振器、石英晶体振荡器和石英晶体滤波器。在石英晶片的两面镀上电极,经过装架、调频、封装等工序后制成石英晶体元件。石英晶体元件与集成电路等其它电子元件组合成石英晶体器件。本文主要介绍石英晶振:即所谓石英晶体谐振器(无源晶振)和石英晶体振荡器(有源晶振)的统称。一般的概念中把晶振就等同于谐振器理解了,振荡器就是通常所指钟振。石英晶振是一种用于稳定频率和选择频率的电子元件,已被广泛地使用在无线电话、载波通讯、广播电视、卫星通讯、仪器仪表等各种电子设备中. 一、石英晶振的型号命名方法 1.国产石英晶体谐振器的型号由三部分组成: –第一部分:表示外壳形状和材料, B表示玻璃壳,J表示金属壳,S表示塑料封型; –第二部分:表示晶片切型,与切型符号的第一个字母相同, A表示AT切型、B表示BT切型, –第三部分:表示主要性能及外形尺寸等, 一般用数字表示,也有最后再加英文字母的。 JA5为金属壳AT切型晶振元件,BA3为玻壳AT切型晶振元件。 2石英晶体振荡器的型号命名有四部分组成: .

–第一部分:主称 用大写字母Z表示石英晶体振荡器; –第二部:类别 用大写字母表示,其意义见下表: –第三部分:频率稳定度等级 用大写字母表示,其意义见下表: –第四部分:序号 用数字表示,以示产品结构性能参数的区别

晶振设计参考资料搜集word文档

晶振设计 1.振荡器类型 振荡方式 低功耗振荡LP(Low Power) 标准晶体振荡XT(Crystal/Resonator) 高速晶体振荡HS (High Speed) 阻容振荡 RC(Resistor/Capacitor) 1.1典型的外部并行谐振振荡电路. 74AS04反相器以来实现振荡器所需的180°相移,4.7KΩ的电阻用来提供负反馈给反相器,10KΩ的电位器用来提供偏压,从而使反相器74AS04工作在线性范围内。 1.2典型的外部串行谐振振荡电路. 74AS04反相器用来提供振荡器所需的180°相移, 330Ω的电阻用来提供负反馈,同时偏置电压。

1.3 RC振荡: 如果R EXT低于2.2KΩ,振荡器将处于不稳定工作状态,甚至停振。而R EXT大于1M[时,振荡器又易受噪声、湿度、漏电流的干扰。因此,电阻R EXT取值最好在3KΩ~100KΩ范围内。在不接外部电容时,振荡器仍可工作,但为了抗干扰及保证稳定性,建议接一20PF以上的电容。 其中,EN 为势能信号,其 Active 为“1”,振荡频率取决于 R C 的值,经验近似估算值为 T=2.2RC,在实际IC DESIGN 时,常常把 R C 都做在 IC 内部,但是,留两个PAD在外面,可以通过调整并联在外的电阻值来微调频率。 此为单稳态形振荡器,必须输入一个触发信号VIN,“HIGH”PULSE,其宽度要求大于门延迟(GATE DELAY)一倍以上即可,之后便可以一直振荡下去,除非VIN输入端为固定高电平时才停止振荡

有 GATE 的传输延迟形成自激振荡,这样,只要能调整延迟时间的大小,就可控制振荡频率。 振荡器基本上是一个具负反馈的放大器,由于 Loop Gain 在大小上大于“1”,而相位等于 360 度时,此时不需要外界的信号,自然就造成一稳定的振荡信号,因此振荡器的结构必须包括: A、在振荡频率下具有功率增益的主动元件。 B、振荡频率的决定元件。 C、振荡振幅的限制、稳定元件。 2.常见问题分析 2.1:如何选择晶体? 对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒(往往用低电压以求低功耗)的系统。这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振。这一现象在上电复位时并不特别明显,原因时上电时电路有足够的扰动,很容易建立振荡。在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。 在振荡回路中,晶体既不能过激励(容易振到高次谐波上)也不能欠激励(不容易起振)。晶体的选择至少必须考虑:谐振频点,负载电容,激励功率,温度特性,长期稳定性。 Clock Source Accuracy Advantages Disadvantages Crystal Medium to High Low cost Sensitive to EMI, vibration, damp Drive circuit matching Crystal Oscillator Module Medium to High Insensitive to EMI, damp. No additional components or matching issues. High cost High power consumption Sensitive to Vibration Large size Ceramic Resonator Medium Lower cost Sensitive to EMI, vibration, damp Drive circuit matching Silicon Oscillator Low to Medium Insensitive to EMI, vibration, damp Fast startup Small size/no additional components or matching issues. Temperature sensitivity generally worse than crystal and ceramic resonator types. High supply current with some types. RC Oscillator Very Low Lowest cost Usually sensitive to EMI, vibration,

晶振选型指南(精)

恒温晶振、温补晶振选用指南 晶体振荡器被广泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪, BP 机、移动电话发射台,高档频率计数器、 GPS 、卫星通信、遥控移动设备等。它有多种封装,特点是电气性能规范多种多样。它有好几种不同的类型:电压控制晶体振荡器(VCXO 、温度补偿晶体振荡器(TCXO 、恒温晶体振荡器(OCXO ,以及数字补偿晶体振荡器(MCXO 或 DTCXO , 每种类型都有自己的独特性能。如果您需要使您的设备即开即用, 您就必须选用 VCXO 或温补晶振,如果要求稳定度在 0.5ppm 以上,则需选择数字温补晶振 (MCXO 。模拟温补晶振适用于稳定度要求在 5ppm ~0.5ppm 之间的需求。 VCXO 只适合于稳定度要求在 5ppm 以下的产品。在不需要即开即用的环境下,如果需要信号稳定度超过 0.1ppm 的,可选用OCXO 。 频率稳定性的考虑 晶体振荡器的主要特性之一是工作温度内的稳定性, 它是决定振荡器价格的重要因素。稳定性愈高或温度范围愈宽,器件的价格亦愈高。工业级标准规定的 - 40~+75℃这个范围往往只是出于设计者们的习惯, 倘若 -30~+70℃已经够用, 那么就不必去追求更宽的温度范围。设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。指标过高意味着花钱愈多。晶体老化是造成频率变化的又一重要因素。根据目标产品的预期寿命不同, 有多种方法可以减弱这种影响。晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年, 这种现象才最为显著。例如, 使用 10年以上的晶体, 其老化速度大约是第一年的 3倍。采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如, 可以在控制引脚上施加电压 (即增加电压控制功能等。与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。输出必须考虑的其它参数是输出类型、相位噪声、抖动、电压特性、负载特性、功耗、封装形式,对于工业产品,有时还要考虑冲击和振动、以及电磁干扰 (EMI 。晶体振荡器可 HCMOS/TTL兼容、 ACMOS

晶体振荡电路设计

在该应用手册中,我们将讨论我们推荐给您的晶振电路设计方案,并解释电路中的各个元器件的具体作用,并且在元器件数值的选择上提供指导。最后,就消除晶振不稳定和起振问题,我们还 将给出一些建议措施。 图1所示为晶振等效电路。R 为ESR(串联等效阻抗)。L 和C 分别是晶振等效电感和等效电容。C P 是晶振的伴生电容,其极性取决于晶振的极性。图2所示为晶振的电抗频谱线。当晶振在串联谐振状态下工作时,线路表现为纯阻性,感抗等于容抗(XL = XC)。串联谐振频率由下式给出 LC f S π21= 当晶振工作在并联谐振模式时,晶振表现为感性。该模式的工作频率由晶振的负载决定。对于并联谐振状态的晶振,晶振制造商应该指定负载电容C L 。在这种模式下,振动频率由下式给出 P L P L C C C C L fa += π21 图 1. 晶振等效电路. 图 2. 晶振的电抗频谱线.

在并联谐振模式下,电抗线中fs 到fa 的斜线区域内,通过调整晶振的负载,如图2,晶振都可以振荡起来。MX-COM 所有的晶振电路都推荐使用并联谐振模式的晶振。 图3所示为推荐的晶振振荡电路图。这样的组成可以使晶振处于并联谐振模式。反相器在芯片内体现为一个AB 型放大器,它将输入的电量相移大约180° 后输出;并且由晶振,R1,C1和C2组成的π型网络产生另外180°的相移。所以整个环路的相移为360°。这满足了保持振荡的一个条件。其它的条件,比如正确起振和保持振荡,则要求闭环增益应≥1。 反相器附近的电阻Rf 产生负反馈,它将反相器设定在中间补偿区附近,使反相器工作在高增益线性区域。电阻值很高,范围通常在500K ? ~2M ?内。MXCOM 的有些芯片内置有电阻,对于具体的芯片,请参考其外部元器件选用说明书。 对晶振来讲,C1和C2组成负载电容。和晶振来匹配最好的电容(C L ),晶振厂家都有说明。C1和C2的计算式为 S L C C C C C C ++?=2 121 这里C S 是PCB 的漂移电容(stray capacitance ),用于计算目的时,典型值为5pf 。现在C1和C2选择出来满足上面等式。通常选择的C1和C2是大致相等的。C1和/或C2的数值较大,这提高了频率的稳定性,但减小了环路增益,可能引发起振问题。 R1是驱动限流电阻,主要功能是限制反相器输出,这样晶振不会被过驱动(over driven )。R1、C1组构成分压电路,这些元器件的数值是以这样的方式进行计算的:反相器的输出接近rail-to-rail 值,输入到晶振的信号是rail-to-rail 的60%,通常实际是令R1的电阻值和的C1容抗值相等,即R1 ≈ XC1。这使晶振只取得反相器输出信号的一半。要一直保证晶振消耗的功率在厂商说明书规定范围内。过驱动会损坏晶振。请参考晶振厂商的建议。 理想情况下,反相器提供180°相移。但是,反相器的内在延迟会产生额外相移,而这个额外相移与内在延迟成比例。为保证环路全相移为n360°,π 型网络应根据反相器的延迟情况,提供小于180°的相移。R1的调整可以满足这一点。使用固定大小的C1和C2,闭环增益和相位可随R1变化。如果上述两个条件均得到了满足,在一些应用中,R1可以忽略掉。 图 3. 晶振电路

常用晶振型号一览表

1.8432MHz 18.432MHZ 25MHZ 4 MHZ 12 MHZ 16 MHZ 13 MHZ 21.47727 MHZ 33.8688 MHZ 3.6864 MHZ 10.245 MHZ 14.7456 MHZ 7.9296875 MHZ 24.576 MHZ 7.2 MHZ 22.1184 MHZ 21.504 MHZ 1.8432 MHZ 13.25 MHZ 24 MHZ 2 MHZ 9.8304 MHZ 20.945 MHZ 9.216 MHZ 14.31818 MHZ 76.8 MHZ 7.3728 MHZ 11.0592 MHZ 44.545 MHZ 40 MHZ 16.384 MHZ 27 MHZ 26 MHZ 48 MHZ 45 MHZ 90 MHZ 130 MHZ 112.32 MHZ 130 MHZ 45.1 MHZ 110.52 MHZ 21.4 MHZ 106.95 MHZ 128.45 MHZ 21.4 MHZ 38.85 MHZ 70 MHZ 45.1 MHZ 26.050 MHZ 8.192 MHZ 44 MHZ 15.36 MHZ 20 MHZ 125 MHZ 25 MHZ 50 MHZ 27 MHZ 65 MHZ 17.734475 MHZ 100 MHZ 32.768 KHZ 31.5 MHZ 29.5 MHZ 56 MHZ 12.288 MHZ 18.432 MHZ 33.333 MHZ 26.975 MHZ 27.145 MHZ 75 MHZ 153.6 MHZ 150 MHZ 455 KHZ 4.91 MHZ 6 MHZ 16.9344 MHZ 10 MHZ 3.64 MHZ 4.1952 MHZ 30 MHZ 8.38 MHZ 4.09 MHZ 16.8 MHZ 4.25 MHZ 9.83 MHZ 33.8688 MHZ 10.7 MHZ 10.8 MHZ 32 MHZ 5 MHZ 14 MHZ 17.28 MHZ 2.68 MHZ 3 MHZ 12.5 MHZ 3.2 MHZ 465 MHZ 446 MHZ 1960 MHZ 433.92 MHZ 225 MHZ 1842 MHZ.5 MHZ 942.5 MHZ 243.5 MHZ 85.38 MHZ 1489 MHZ 1441 MHZ 897.5 MHZ 280 MHZ 926.5 MHZ 903.5 MHZ 360 MHZ 881.5 MHZ 947.5 MHZ 340 KHZ 400 KHZ 26 MHZ 10.245 MHZ 1880 MHZ 1747.5 MHZ 1960 MHZ 1575.45 MHZ 1847 MHZ 842.5 MHZ 1842.5 MHZ 315 MHZ 310 MHZ 19.68 MHZ 13.56 MHZ

晶振的作用与原理

晶振的作用与原理 一,晶振的作用 (1)晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 (2)晶振还有个作用是在电路产生震荡电流,发出时钟信号.晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 (3)晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 (4)晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。

如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。 (5)电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。石英晶振不分正负极, 外壳是地线,其两条不分正负 二,晶振的原理; 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本结构大致是从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

晶振布局指南(Best Practices for the PCB layout of crystal)

A V R18R186 6:晶振布局指南Best Practices for the PCB layout of Oscillators 1.简介 我们通常所使用的振荡器是皮尔斯振荡器(Pierce 个带宽很窄的选频滤波器组成.放大器集成在芯片内部,滤波器则是由晶振或陶瓷谐振腔(ceramic resonator)构成,如图1: 图1M i c r oc oco 翻译:地球仪 diqiuyi2010@https://www.wendangku.net/doc/0019318251.html, https://www.wendangku.net/doc/0019318251.html, 该系统的输入阻抗在谐振频率上很低使它更容易受到周围电路的干扰.此外,1V以下,这进一步降低了其抗干扰的能力.

8128A–AVR–03/08 2.描述 为了增强振荡器抗干扰的能力,PCB 布局十分重要.如图2: 图2.PCB 布局实例. 晶振/Cout 接地点 2 A VR VR1818186 6

AV 1866 AVR R18 3.设计指南 为降低由振荡器引发问题的风险,我们建议您遵循如下设计指南: ?晶振或谐振腔对于寄生电容和其它信号带来的干扰十分敏感.因此布局时要远离高速信号 线,以降低Xin与Xout管脚和其它信号线之间的容性耦合. ?晶振的线路与数字信号线越远越好,尤其是时钟信号线或频繁改变状态的信号线.信号之间 的串扰会影响振荡器的波形. ?负载电容的接地点需要足够的短,以避免来自USB,RS232,LIN,PWM与电源线的返回电流. ?负载电容的漏电流要小,热稳定性要好(如NPO或COG型号). ?两个负载电容需要挨的很近。 ?负载电容中的Cin优先靠近GND和Xin管脚. ?寄生电容会降低增益裕度.因此要尽可能的降低寄生电容,下面给出寄生电容的典型值: –Xin对地:1pF –Xout对地:2pF –Xin对Xlout:0.5pF 这些数值与元件的封装也有少许关联. ?为降低Xin与Xout两管脚之间的寄生电容,就要使其引出的两条线离得越远越好. ?在晶振下方需要铺地,并与振荡器的地相连. ?将晶振和陶瓷谐振腔所需要的外部电容与晶振外壳一同接地(该条附原文:Connect the external capacitors needed for the crystal and the ceramic resonator operation as well as the crystal housing to the ground plane). ?如果是单层板,建议在振荡器电路各元件周围设置一保护环(guard ring),并将其连接 到相应的接地引脚. 3

F系列OCXO恒温晶振选型手册

技术指标项目 Parameter 规格 Specification 测试条件 标称频率 Nominal Frequency (MHz)10.0—100.0----频率准确度 Frq accuracy at the time of shipment (ppm)±0.1—±1.0全测 温度范围工作温度 Operating Temperature Range (℃)-40~+85全测 Temperature Range 储存温度 Storage Temperature Range (℃)-55~+105---- 输入 Input Power 供电电压 Supply Voltage (Vdc)+3.3—+12 ±5%---- 功率 (W) Power 初始状态 At switch on (W) 3.5 (max.)全测稳定状态 At steady state@25oC 1.5 (max.) 全测 频率调整 Frequency Turning 调整范围 Frequency Turning Range (ppm)±0.5—±5.0全测 控制电压 Control Voltage Range (V)0.0 —9.0全测参考电压 Reference Voltage (V) 2.8—9.0全测 线性度 Linearity 10%抽测 输出 Output Signal 波形 Waveform Sine HCMOS 全测 幅度 Level 5dBm—10dBm H Level ≥0.9Vdc 全测 L Level ≤0.1Vdc 负载 Load 50Ω15pF--50pF ---- 上升/下降时间 Rise / Fall time (ns)≤6抽测 占空比 Duty cycle 50%±5﹪—±10%全测 频率稳定度Frequency Stability 温度特性 Vs.Operating Temperature (ppb)±10—±280全测 电压特性 Vs.Supply Voltage Variation(ppb)±10—±200抽测 负载特性 Vs.Load (ppb)±10—±200抽测 短稳 Short term stability @1s (ppb/1s)0.001—0.1抽测 谐波 Harmonics (dBc)≤-20抽测 杂波 Spurious (dBc)≤-70抽测 开机特性 Vs warm up time 开机时间 warm up time@25(min)5—30 min.抽测 参考频率 Reference frequency final freq.(2hour)频率偏差 offset (ppb)±10—±200 相位噪声 Phase noise 1Hz dBc/Hz 抽测 10Hz dBc/Hz 100Hz dBc/Hz -110 1kHz dBc/Hz -13510kHz dBc/Hz -145 100kHz dBc/Hz -145 1MHz dBc/Hz 老化Aging 出厂日老化(ppb/day)±0.3—±3.0全测 首年老化first year (ppm)±0.5—±3.0抽测 10年老化 (ppm)---- 外形尺寸 (mm)20.4﹡12.7﹡12.7 mm 3 下载:F系列产品规格表系列恒温晶振 深圳捷比信--高品质精密元件供应商www.jepsun.com

RTC (实时时钟) 晶振设计指南

RTC (实时时钟) 晶振设计指南(适用于FM31系列,FM3808,FM30C256) 总体概述 FM31系列,FM3808,FM30C256集成了处理器外围器件,它集成了FRAM非易失性存储器和实时时钟于一体。实时时钟在VDD掉电以后自动切换到后备电源。在使用后备电源的情况下,实时时钟耗电量很少以便其可以长期工作。 本应用笔记提醒系统设计者在使用实时时钟时应注意的问题。 振荡器和晶体 任何实时时钟的核心都是晶振,它为分频计数器提供精确的与低功耗的时基信号,它可以用于产生秒、分、时、日等信息。为了确保时钟长期的准确性,晶振必须工作正常,不能受到干扰。 Figure 1. Crystal Hookup to RTC 除了晶体之外,所有必须的元件都被集成在器件之内。如果有额外的诸如电容和电阻等元件被连接到X1和X2引脚,晶振将不能正常工作。这种情况下,直流工作点将发生偏移,晶振频率也会偏移,甚至在上电时,晶振不能正常起振。具有10pF电容和10M阻抗的被动示波器探针也会影响晶振正常工作。 所有的32.768KHZ晶体都有等效电容。市场上最为普遍的32KHZ晶体有两种类型:6pF和12.5pF。在操作时,晶体必须符合推荐的容性特性。那就是说,X1/X2引脚的容性负载必须为6pF。所有的FRAM 实时时钟都设计使用6pF类型的晶体。 Figure 2. Simplified Oscillator Circuit 以上简化的晶振示意图显示了穿孔晶振与芯片内的C1和C2的连接。芯片内的这两个电容值为 12pF,它们和晶体一起工作。因此CLOAD值为 C1*C2/(C1+C2)或6pF.。两个电阻每个为1千欧,它可以调整相位以提高晶振的工作稳定性。  所有带有实时时钟的Ramtron外围器件都选择6pF晶体以在使用后备电源时实现最低功耗。一个12pF的晶体晶振的功耗是6pF晶体晶振的两倍。值得注意的是:晶振内的150nA电流源为电路提供一个低值的直流偏置电流。晶振可能由于噪音和X1/X2引脚上额外负载的影响而引起工作异常。 晶振频率测量 晶振32.768KHZ频率不能被直接监控。不能在X1和X2引脚上增加电容,也不可以用探头直接接触。以下推荐几种检测晶振频率的方法: 1、上电后将OSCEN位设为0。 2、在实时时钟控制寄存器中,(在FM30C256和FM3808中为Flages寄存器),将CAL位设置为1。这一操作将CAL:引脚(FM3808中的INT)变为512Hz的监控器。512Hz是晶振频率的64分频。 3、可使用频率计数器或其他精确频率测量仪器测量晶振频率(可使用数码示波器观察十个周期以上,而不是只观察一个周期)。你希望读到512Hz这一精确频率值,但只要测量值在511.975-512.025Hz之间,我们就可以认为晶振工作正常。CAL(4:0)寄存器位能够使实时时钟误差率小于2ppm。0.025Hz晶振误差大约引起50ppm 的时钟误差。.

晶体振荡器选用指南

晶体振荡器选用指南 晶体振荡器被广泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等。它有多种封装,特点是电气性能规范多种多样。它有好几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。如果您需要使您的设备即开即用,您就必须选用VCXO或温补晶振,如果要求稳定度在0.5ppm以上,则需选择数字温补晶振(MCXO)。模拟温补晶振适用于稳定度要求在5ppm~0.5ppm之间的需求。VCXO只适合于稳定度要求在5ppm以下的产品。在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm的,可选用OCXO。 频率稳定性的考虑 晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。稳定性愈高或温度范围愈宽,器件的价格亦愈高。工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。指标过高意味着花钱愈多。 晶体老化是造成频率变化的又一重要因素。根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。 与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。 输出 必须考虑的其它参数是输出类型、相位噪声、抖动、电压特性、负载特性、功耗、封装形式,对于工业产品,有时还要考虑冲击和振动、以及电磁干扰(EMI)。晶体振荡器可HCMOS/TTL兼容、ACMOS兼容、ECL和正弦波输出。每种输出类型都有它的独特波形特性和用途。应该关注三态或互补输出的要求。对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定。许多DSP和通信芯片组往往需要严格的对称性(45%至55%)和快速的上升和下降时间(小于5ns)。 相位噪声和抖动 在频域测量获得的相位噪声是短期稳定度的真实量度。它可测量到中心频率的1Hz 之内和通常测量到1MHz。

相关文档
相关文档 最新文档