文档库 最新最全的文档下载
当前位置:文档库 › 概率统计章节作业答案

概率统计章节作业答案

概率统计章节作业答案
概率统计章节作业答案

第一章随机事件与概率 一、单项选择题

1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是

( B ).

A.AB ={出现奇数点}

B. AB ={出现5点}

C. B ={出现5点}

D. A B =Ω

2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A +=

3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为 ( D ).

A.1212A A A A

B.12A A

C.12A A

D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为 ( A ).

A.123A A A

B.123A A A ++

C.123A A A

D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是

( A

).

A.(|)0P A B =

B. (|)0P B A =

C. ()0P AB =

D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ).

A. 0.2

B. 0.4

C. 0.6

D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

A.()1P A B =

B.()()()P AB P A P B =

C. ()0P AB =

D.()0P AB >

8.设P (A )=0, B 为任一事件, 则 ( C ). A.A =Φ B.A B ? C.A 与B 相互独立 D. A 与B 互不相容 9.已知P (A )=0.4, P (B )=0.5, 且A B ?,则P (A |B )= ( C ). A. 0 B. 0.4 C. 0.8 D. 1

10.设A 与B 为两事件, 则AB = ( B ). A.A B B. A B C. A B D. A B

11.设事件A B ?, P (A )=0.2, P (B )=0.3,则()P A B = ( A ). A. 0.3 B. 0.2 C. 0.5 D. 0.44 12.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )= ( D ).

A. 0.08

B. 0.4

C. 0.2

D. 0

13.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ). A.()()P A B P A = B.A B ? C. P (A )=P (B ) D. P (AB )=P (A )

14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ). A. 0.4 B. 0.2 C. 0.25 D. 0.75

15.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( A ).

A.

3

7

B.0.4

C. 0.25

D.16

16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ).

A. 0.48

B. 0.75

C. 0.6

D. 0.8

17.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为 ( A ).

A. 0.125

B. 0.25

C. 0.5

D. 0.4

18.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为 ( A ).

A. 0.72

B. 0.75

C. 0.96

D. 0.78

19.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为 ( C ).

A. 7

10 B. 44710 C. 47410

C C D. 4710?

20.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为 ( C ).

A. 8

10 B. 38310

C C C. 33810 D. 38310C

21.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为 ( C ).

A. 20.4

B. 30.6

C. 22350.40.6C

D. 2

3250.40.6C

22.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为 ( D ).

A.156

15()66C B.156151()66

C - C.15

651()66C D.651()6- 23.把3个不同的球分别放在3个不同的盒子中,则出现2个空盒的概率为(A ).

A.

19 B. 12 C. 2

3

D. 13 24.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为 ( A ).

A.

5

18

B.

4!

6!

C.

4

4

4

6

A

A

D.

4

4!

6

25.某人每次射击命中目标的概率为p(0

( D ).

A. p2

B. (1-p)2

C. 1-2p

D. p(1-p)

二、填空题

1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为18/35.

2.甲乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为1/16.

3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为0.25 .

4.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.0486.

5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为0.94.

6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为5/12.

7.设事件A与B互不相容,P(A)=0.2, P(B)=0.3, 则()

P A B

=0.5.

8.设事件A与B相互独立,且P(A+B)=0.6, P(A)=0.2, 则P(B)=0.5.

9.设()0.3,(|)0.6

P A P B A

==,则P(AB)=0.42.

10.设

11

()()(),()(),()0

46

P A P B P C P AB P AC P BC

======,则P(A+B+C)=

5/12.

11.已知P(A)=0.7, P(A-B)=0.3, 则()

P AB=0.6.

12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为0.25.

13.已知P(A)=0.4, P(B)=0.8, P(B|A)=0.25, 则P(A|B)=0.125.

14.设111

(),(|),(|)432

P A P B A P A B ===,则()P A B =1/3.

15.一批产品的废品率为4%,而正品中的一等品率为60%,从这批产品中任取一件是一等品的概率为0.576.

16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为0.7.

三、计算题

1.设P (A )=0.4, P (B )=0.2, (|)0.3P B A =, 求P (AB )以及P (A |B ). 解:由(|)0.3P B A =得:

()

0.3,()

P AB P A =即

()()0.31()P B P AB P A -=-, 解得:P (AB )=0.02. 从而, ()0.02

(|)0.1()0.2

P AB P A B P B =

==.

2.已知,()0.2,()0.3,A B P A P B ?==求:(1)(),()P A P B ;(2)P (AB );(3)()P AB ;(4) ()P A B ;(5)P (B -A ).

(1)由概率的性质,知()1()0.8,P A P A =-=()1()0.7P B P B =-=; (2)因为A B ?,所以AB A =,P (AB )=P (A )=0.2; (3)()P AB =P (A -AB )=P (A )-P (AB )=P (A )-P (A )=0; (4) 因为A B ?,所以A B B = , ()P A B =P (B )=0.3; 或者,()P A B =P (A )+P (B )-P (AB )=0.2+0.3-0.2=0.3;

3.若事件A 与B 互不相容,P (A )=0.6, P (A+B )=0.9, 求:(1)()P AB ;(2)(|)P A B ;(3)()P AB .

解:(1) 因A 与B 互不相容,故AB =Φ,P (AB )=0,所以()P AB =1-P (AB )=1; (2) 因A 与B 互不相容,由加法公式:P (A+B )=P (A )+P (B ),得P (B )=0.3,从而

(|)P A B =

()()()0.66

1()0.77()

P AB P A P AB P B P B -===-;

(3) ()P AB =1()1()10.90.1P AB P A B -=-+=-=.

4.已知事件A 与B 相互独立,且P (A )=0.4, P (A+B )=0.6, 求(1)P (B );(2) ()P AB ;(3)P (A|B ).

解:(1)因为事件A 与B 相互独立,所以P (AB )=P (A )P (B ),

()()()()()()()()P A B P A P B P AB P A P B P A P B +=+-=+- 0.6=0.4+P (B )-0.4P (B ),解得:P (B )=1

3

(2) 因为事件A 与B 相互独立,所以A 与B 也相互独立,故()P AB =4

()()15

P A P B =; (3) 因为事件A 与B 相互独立,所以P (A|B )=P (A )=0.4.

四、应用题

1.一批产品共有50个,其中40个一等品、6个二等品、4个三等品,现从中任取3个产品,求3个产品中至少有2个产品等级相同的概率.

解:设A “3个产品中至少有2个产品等级相同”,A “3个产品等级都不同”,

由古典概率定义,得111

40643

5012

()0.049245

C C C P A C ==≈,从而 ()10.0490.951P A =-=.

2.10把钥匙中有3把能打开门,现从中任取2把,求能打开门的概率.

解:A “取出2把钥匙能打开门”,由古典概率知:

11

23732

108()15

C C C P A C +==. 3.将5双不同的鞋子混放在一起,从中任取4只,求这4只鞋子至少能配成一双的概率.

解:A “4只鞋子中至少能配成一双”,则A “4只鞋子都不同”.由古典概率

得:41111

522224

108()21

C C C C C P A C ==,故13

()1()21P A P A =-=. 4.从0,1,2,3这4个数中任取3个进行排列,求取得的三个数字排成的数是三位数且是偶数的概率.

解:A “排成的数是三位数且是偶数”,A 0“排成的三位数末位是0”,A 2“排成的三位数末位是2”,则A =A 0+A 2,且A 0与A 2互不相容,因为

230342!1(),3!4C P A C ==11

222341

(),3!6

C C P A C ==

所以,015

()()()12

P A P A P A =+=

. 5.一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求下列事件的概率:

(1)第三次才取得合格品;

(2)如果取得一个合格品后就不再取零件,在三次内取得合格品. 解:设A i “第i 次取到合格品”(i =1,2,3),则 (1)第三次才取到合格品的概率为:

12312131210990

()()(|)(|)0.00831009998

P A A A P A P A A P A A A ==

??≈. (2)A “三次内取得合格品”,则112123A A A A A A A =++,所求概率为:

112123()()()()P A P A P A A P A A A =++

1121121312()()(|)()(|)(|)P A P A P A A P A P A A P A A A =++

90109010990

100100991009998

=

+?+??

0.9993.≈ 6.盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第一次取出白球的条件下,第二次取出红球的概率;(3)第二次取到红球的概率.

解:A 1“第一次取出的是红球”,A 2“第二次取出的是红球”,则 (1)由乘法公式得,两次取出的都是红球的概率为:

121218714

()()(|)121133

P A A P A P A A ==

?=; (2)在第一次取出白球的条件下,第二次取出红球的概率为:218(|)11

P A A =

(3)由全概率公式得,第二次取到红球的概率为:

2121121()()(|)()(|)P A P A P A A P A P A A =+

7.某工厂有三台设备生产同一型号零件,每台设备的产量分别占总产量的25%,35%,40%,而各台设备的废品率分别是0.05,0.04,0.02,今从全厂生产的这种零件中任取一件,求此件产品是废品的概率.

解:设A i “第i 台设备生产的零件”(i =1,2),B “产品是废品”,由题意知:P (A 1)=25%,P (A 2)=35%,P (A 3)=40%,P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02,由全概率公式得,产品是废品的概率为:

112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++

25%0.0535%0.0440%0.020.0345=?+?+?=.

8.两台车床加工同一种零件,加工出来的零件放在一起,已知第一台出现废品的概率是0.03,第二台出现废品的概率是0.02,且第一台加工的零件比第二台加工的零件多一倍.

(1)求任取一个零件是合格品的概率;

(2)如果取出的是废品,求它是由第二台车床加工的概率.

解:设B “零件是合格品”,A “第一台车床加工的零件”,则A “第二台

车床加工的零件”,由题意知:21

(),()33

P A P A ==.

(1)由全概率公式得:()()(|)()(|)P B P A P B A P A P B A =+

21

(10.03)(10.02)0.97333

=

?-+?-≈; (2)由贝叶斯公式得,如果取出的是废品,求它是由第二台车床加工的概率为:

1

0.02

()()(|)3

(|)0.252.921()()13

P A B P A P B A P A B P B P B ?====--

9.已知5%的男人和0.25%的女人是色盲,假设男人女人各占一半.现随机地挑选一人,求:

(1)此人恰是色盲的概率是多少?

(2)若随机挑选一人,此人是色盲,问他是男人的概率多大?

(3)若随机挑选一人,此人不是色盲,问他是男人的概率多大? 解:设B “色盲患者”,A “随机挑选一人是男人”,由题设知:

11

(),(),(|)5%,(|)0.25%22

P A P A P B A P B A ====,则

(1)由全概率公式得,随机挑选一人是色盲的概率为:

()()(|)()(|)P B P A P B A P A P B A =+ 11

5%0.25%0.0262522

=

?+?=; (2)由贝叶斯公式得,随机选一人是色盲,他是男人的概率为:

1

5%

()()(|)2(|)0.952()()0.02625

P AB P A P B A P A B P B P B ?===≈; (3)由贝叶斯公式得,随机选一人不是色盲,他是男人的概率为:

1

95%

()()(|)2

(|)0.48781()0.97375()

P AB P A P B A P A B P B P B ?===≈-.

10.现有10张考签,其中4张是难签,甲、乙、丙三人抽签考试(取后不放回),甲先乙次丙最后,求下列事件的概率:

(1)甲乙都抽到难签;

(2)甲没有抽到难签,而乙抽到难签; (3)甲乙丙都抽到难签;

(4)证明:甲乙丙抽到难签的机会均等.

解:设A ,B ,C 分别表示“甲、乙、丙抽到难签”,则

(1)甲乙都抽到难签的概率为:432()()(|)10915

P AB P A P B A ==?=; (2)甲没有抽到难签,而乙抽到难签的概率为:

644()()(|)10915

P AB P A P B A ==

?=; (3)甲乙丙都抽到难签的概率为:

4321()()(|)(|)109830

P ABC P A P B A P C AB ==

??=; (4)由古典概率知,甲抽到难签的概率为:4

()0.410P A ==.

由全概率公式得,乙抽到难签的概率为:

()()(|)()(|)P B P A P B A P A P B A =+4364

0.4109109

=

?+?=. 丙抽到难签的概率为:

()()(|)()(|)()(|)()(|)P C P AB P C AB P AB P C AB P AB P C AB P AB P C AB =+++ 432643463654

1098109810981098

=

??+??+??+??=0.4. 得,P (A )=P (B )=P (C )=0.4,所以,甲乙丙抽到难签的机会均等,各占40%.

11.三个人向同一敌机射击,设三人命中飞机的概率分别为0.4,0.5和0.7.若三人中只有一人击中,飞机被击落的概率为0.2;若有两人击中,飞机被击落的概率为0.6;若三人都击中,则飞机必被击落.求飞机被击落的概率.

解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且

0()(10.4)(10.5)(10.7)0.09P A =-?--=,

1()0.4(10.5)(10.7)(10.4)0.5(10.7)(10.4)(10.5)0.70.36P A =?-?-+-??-+-?-?=, 2()0.40.5(10.7)0.4(10.5)0.7(10.4)0.50.70.41P A =??-+?-?+-??=, 3()0.40.50.70.14P A =??=.

由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====. 故,由全概率公式得,飞机被击落的概率为:

00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++

0.0900.360.20.410.60.1410.458=?+?+?+?=.

12.在上题中,假设三人的射击水平相当,命中率都是0.6,其他条件不变,再求飞机被击落的概率.

解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且由贝努里公式得:

00303()0.60.40.064P A C =??=,1

213()0.60.40.288P A C =??=, 2223()0.60.40.432P A C =??=,3333()0.60.216P A C =?=.

由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====. 故由全概率公式得,飞机被击落的概率为:

3

0()()(|)i i i P B P A P B A ==∑

0.06400.2880.20.4320.60.21610.5328=?+?+?+?=

13.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:

(1)任意抽查一个产品,它被判为合格品的概率;

(2)一个经检查被判为合格的产品,它确实是合格品的概率.

解:设A “产品是合格品”,B “经检查产品被判为合格品”,且由题意知:P (A )=95%, ()195%5%,(|)10.020.98,(|)0.03P A P B A P B A =-==-==.则

(1)由全概率公式得,任意抽查一个产品,它被判为合格品的概率为:

()()(|)()(|)P B P A P B A P A P B A =+ 95%0.985%0.030.9325=?+?=;

(2)由贝叶斯公式得,一个经检查被判为合格的产品,它确实是合格品的概率为:

()0.950.98

(|)0.9984()0.9325

P AB P A B P B ?=

=≈. 14.一个工人看管三台机床,在一小时内机床不需要工人看管的概率第一台为0.9,第二台为0.8,第三台为0.7,且三台机床是否需要看管彼此独立.求在一小时内三台机床中最多有一台需要工人看管的概率.

解:设A i “第i 台机床需要看管”,i =1,2,3. “三台机床中最多有一台需要工人看管”表示为123123123123A A A A A A A A A A A A +++,且这4个事件两两互不相容,由加法与独立性知,所求的概率为:

123123123123()P A A A A A A A A A A A A +++

123123123123()()()()P A A A P A A A P A A A P A A A =+++

123123123123()()()()()()()()()()()()P A P A P A P A P A P A P A P A P A P A P A P A =+++

0.10.80.70.90.20.70.90.80.30.90.80.70.902=??+??+??+??=

15.加工某一零件共需经过三道工序,设第一、第二、第三道工序的次品率分别是2%,3%,5%.假定各道工序是互不影响的,问加工出来的零件的次品率是多少?

解:设A i “第i 道工序加工出次品”,i =1,2,3.则加工出来的零件是次品表示为A 1+A 2+A 3,且A 1,A 2,A 3相互独立,从而123,,A A A 也相互独立. 所求概率为:

123123123(++)1()1()()()P A A A P A A A P A P A P A =-=-

1(12%)(13%)(15%)0.09693=----=.

16.甲、乙、丙三人独立地破译一密码,他们各自能破译出的概率分别是0.4,0.6,0.7,求此密码被破译的概率.

解:设A ,B ,C 分别表示“甲、乙、丙破译出密码”,则A+B+C 表示“密码被破译”,且A ,B ,C 相互独立,从而,,A B C 也相互独立,故所求概率为:

(++)1()1()()()P A B C P ABC P A P B P C =-=- 1(10.4)(10.6)(10.7)0.928=----=.

17.有甲、乙两批种子,发芽率分别为0.8和0.7,各在两批中随机取一粒,求: (1)两粒种子都能发芽的概率; (2)至多有一粒种子能发芽的概率; (3)至少有一粒种子能发芽的概率.

解:设A ,B 分别表示“甲、乙种子发芽”,由题设知:

()0.8,()0.7,()10.80.2,()10.70.3P A P B P A P B ===-==-=.

(1)两粒种子都能发芽的概率为:()()()0.80.70.56P AB P A P B ==?=; (2)至多有一粒种子能发芽的概率为:

()()()()P AB AB AB P AB P AB P AB ++=++

()()()()()()P A P B P A P B P A P B =++ 0.80.30.20.70.20.30.44=?+?+?=;

(3)至少有一粒种子能发芽的概率为:

()()()()()()()()P A B P A P B P AB P A P B P A P B =+-=+-

0.80.70.80.70.94=+-?=.

18.一批产品有70%的一级品,进行重复抽样检查,共抽取5件样品,求: (1)取出5件样品中恰有2件一级品的概率p 1; (2)取出5件样品中至少有2件一级品的概率p 2; (3)取出5件样品中至少有一件一级品的概率p 3.

解:该问题是参数p =0.7的5重贝努里试验,由贝努里公式得:

(1)取出5件样品中恰有2件一级品的概率p 1=2

2350.70.30.1323C ??=;

(2)取出5件样品中至少有2件一级品的概率为:

p 2=5

5520.70.3k k k k C -=??∑=005145510.70.30.70.30.96922C C -??-??=;

(3)取出5件样品中至少有一件一级品的概率为:

p 3=5

5510.70.3k k k k C -=??∑=005510.70.30.99757C -??=.

19.一射手对一目标独立地射击4次,若至少命中一次的概率为80

81

, 求射手射击一次命中目标的概率.

.解:设射手射击一次命中目标的概率为p ,由贝努里定理知,4次射击中至少有一次命中目标的概率为:41(1)p --,由题设知:

480

1(1)81

p --=

,解得:23p =.

20.一射手对一目标独立地射击, 每次射击命中率为p , 求射击到第4次时恰好两次命中的概率.

解:射手射击到第4次恰好有两次命中目标,即第四次命中,而前三次中恰有一次命中,由贝努里定理知,所求概率为:

1

2223(1)3(1)P pC p p p p =-=-.

五、证明题

1.设0

()()()()()

(|)()1()1()()

P AB P A AB P A P A P B P A B P A P B P B P B --=

===--, 所以,(|)(|)P A B P A B =.

充分性若(|)(|)P A B P A B =,则

()()()()()

()1()1()()

P AB P AB P A AB P A P AB P B P B P B P B --===

--, 对上式两端化简,得:()()()P AB P A P B =,所以A 与B 相互独立

2.证明条件概率的下列性质:

(1)若P (B )>0,则0(|)1,(|)1,(|)0P A B P B P B ≤≤Ω=Φ=;

(2)若A 与B 互不相容,()0P C >,则(|)(|)(|)P A B C P A C P B C =+ ; (3)(|)1(|)P A B P A B =-. 证:(1)因为()

(|)()

P AB P A B P B =

,而0()()P A B P B ≤≤,所以,0(|)1P A B ≤≤, 且()()(|)1()()P B P B P B P B P B ΩΩ=

==,()()

(|)0()()

P B P P B P B P B ΦΦΦ===; (2)若A 与B 互不相容,则AC 与BC 也互不相容,从而

()()()

(|)(|)(|)()()

P AC BC P AC P BC P A B C P A C P B C P C P C +=

==+ ;

(3)由性质(2)得:(|)(|)(|)P A A B P A B P A B =+ ,又A A =Ω ,由性质(1)知,

(|)1P B Ω=,所以,(|)(|)1P A B P A B +=,即(|)1(|)P A B P A B =-

第二章随机变量及其概率分布 一、单项选择题

1.设随机变量X 的分布律为 则P {X <1}=

( C ).

A. 0

B. 0.2

C. 0.3

D. 0.5 2.设随机变量X 的概率分布为 则a =

( D ).

A. 0.2

B. 0.3

C. 0.1

D. 0.4

3.设随机变量X 的概率密度为2,1

(),0,1

c

x f x x x ?>?=??≤?则常数c =

( D ).

A. 1-

B.

12 C. -1

2

D. 1 4.设随机变量X 的概率密度为3,01(),0,ax x f x ?≤≤?

=?

??其它

则常数a = ( D ).

A.

14 B. 1

2

C. 3

D. 4 5.下列函数中可作为某随机变量的概率密度函数的是

(A ).

A.2100

,1000,

100x x x ?>?

??≤? B.

10

,0

0,0

x x

x ?>???≤? C. 1,020,x -≤≤???其它 D. 1

13

,2

220,

x ?≤≤????其它

6.设函数()f x 在区间[,]a b 上等于sin x ,而在此区间外等于0;若()f x 可以作为某连续型随机变量的概率密度函数,则区间[,]a b 为 ( A ).

A. [0,]2π

B. [0,]π

C. [,0]2π-

D. 3[0,]2π

7.下列函数中,可以作为某随机变量X 的分布函数的是 ( C ).

A. 0,

00.3,01

()0.2,121,

2x x F x x x

=?≤

C. 0,00.1,05

()0.6,56

1,6x x F x x x

=?≤

?

8.设()F x 是随机变量X 的分布函数,则 ( B ). A. ()F x 一定连续 B. ()F x 一定右连续 C. ()F x 是不增的 D. ()F x 一定左连续

9.设()()F x P X x =≤是随机变量X 的分布函数,则下列结论错误的是(D ).

A.()F x 是定义在(,)-∞+∞上的函数

B.lim ()lim ()1x x F x F x →+∞

→-∞

-=

C.()()()P a X b F b F a <≤=-

D.对一切实数x ,都有0<()F x <1

10.设随机变量的概率分布为2

()(),(1,2,3...)3

k P X k a k ===,则常数a =( B ).

A. 1

B.

1

2

C. 2

D. 12-

11.已知随机变量X 的分布律为

()F x 是X 的分布函数,则F (2.5)=

( B ). A. 0.7 B. 0.8

C. 0.1

D. 1

12.随机变量X 的概率密度2,01()0,

x x f x <

{}22P X -≤≤=

( A ).

A.14

B.13

C.12

D.3

4

13.已知随机变量X 的分布律为 若

Y =X 2

P {Y =1}=

( C ).

A. 0.1

B. 0.3

C. 0.4

D. 0.2 14.设随机变量X ~B (4, 0.2),则P {X >3}=

( A ).

A. 0.0016

B. 0.0272

C. 0.4096

D. 0.8192

15.设随机变量X ~N (1,4),Y =2X +1,Y ~ ( C). A. N (1, 4) B. N (0, 1) C. N (3, 16) D. N (3, 9) 16.设2~(,)X N μσ,()x Φ是N (0, 1)的分布函数,则()P a X b ≤≤= ( D ). A.()()b a Φ-Φ B.()()b a Φ+Φ C.2

2

(

)(

)b a μ

μ

σ

σ

--Φ-Φ D.(

)(

)b a μ

μ

σ

σ

--Φ-Φ

17.设X ~N (-1,4),()x Φ是N (0, 1)的分布函数,则P (-2

A.1

2()12

Φ- B.(0)(2)Φ-Φ- C.1(2)2Φ- D.(2)(0)Φ-Φ

18.设X ~N (0,1),()x ?是X 的概率密度函数,则(0)?= (C ).

A. 0

B. 0.5

C.

D. 1 19.设X 服从均匀分布U[0,5],Y =3X +2,则Y 服从 ( B ). A. U[0, 5] B. U[2, 17] C. U[2, 15] D. U[0, 17] 20.某种商品进行有奖销售,每购买一件有0.1的中奖率.现某人购买了20件该商品,用随机变量X 表示中奖的件数,则X 的分布为 ( D ).

A.正态分布

B.指数分布

C.泊松分布

D.二项分布 21.设X 服从参数2λ=的泊松分布,()F x 是X 的分布函数,则下列正确的选项是 ( B ).

A.2(1)F e -=

B.2(0)F e -=

C.P (X =0)=P (X =1)

D.2(1)2P X e -≤= 22.设X 服从参数λ的泊松分布,且2

(1)(3)3

P X P X ==

=,则λ= ( C ). A. 1 B. 2 C. 3 D. 4

二、填空题

1.若2()1P X x β≤=-,1()1P X x α≥=-,其中x 1

2.设随机变量X 的概率分布为

记Y =X 2, 则P (Y =4)=0.5.

3.若X 是连续型随机变量, 则P (X =1)=0.

4.设随机变量X 的分布函数为F (x ), 已知F (2)=0.5, F (-3)=0.1, 则(32)P X -<≤=0.4.

5.设随机变量X

的分布函数为212

()x

t F x e

dt --∞

=

,则其密度函数为.

6.设连续型随机变量X 的分布函数为0,0()sin ,021,2

x F x x x x ππ?

?

=≤

?

≥??, 其密度函数

为()f x ,则()6

f π

=1/2.

7.设随机变量X 的分布函数为1,

0()0,

x e x F x x -?-≥=?

0时, X 的概率密

度()f x =1..

8.设随机变量X 的分布律为

则(01)P X ≤≤=0.6.

9.设随机变量X ~N (3, 4), 则(45)P X <<=0.148. (其中(1)0.8413,(0.5)0.6915Φ=Φ=)

10.设随机变量X 服从参数为6的泊松分布, 写出其概率分布律P(X=K)=6K/K! K=0,1,2,3.

11.若随机变量X ~B (4, 0.5), 则(1)P X ≥=15/16.

12.若随机变量X ~U (0, 5),且Y =2X ,则当010y ≤≤时, Y 的概率密度()Y f y =1/10. 13.设随机变量X ~N (0, 4),则(0)P X ≥=0.5.

14.设随机变量X ~U (-1, 1),则1

(||)2

P X ≤=0.5.

15.设随机变量X 在[2, 4]上服从均匀分布,则(23)P X <<=0.5.

16.设随机变量X ~N (-1, 4),则1

~2

X Y +=

N(0,1). 17.设随机变量X 的分布律为(),0,1,2, (3)

k a

P X k k ===,则a =2/3.

18.设连续型随机变量X 的概率密度为1,02

()0,kx x f x +<

19.若随机变量X ~N (1, 16),Y =2X -1,则Y ~N(1,64). 20.若随机变量X ~U (1, 6),Y =3X +2,则Y ~U(5,20). 三、计算题

1.设连续型随机变量X 的分布函数为20,0

(),011,1x F x x x x

=≤

,求X 的概率密度

函数.

解:由分布函数与概率密度函数之间的关系()()F x f x '=知,当0

2()()2f x x x '==,

当1x ≥或0x ≤时,()f x =0,所以,X 的概率密度为2,01

()0,x x f x <

其它.

2.设X 服从参数p =0.2的0-1分布,求X 的分布函数及P (X <0.5). 解:X 的分布律为

当0x <时,()()F x P X x =≤=0;

当01x ≤<时,()()F x P X x =≤=(0)0.8P X ==;

当1x ≥时,()()F x P X x =≤=(0)(1)0.80.21P X P X =+==+=.

所以,X 的分布函数为0,

0()0.8,011,1x F x x x

=≤

;而P (X <0.5)= P (X =0)=0.8.

3.设随机变量X ~U (a , b ),求X 的密度函数与分布函数.

概率统计章节作业答案

第一章随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ). A.AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

A.()1P A B = B.()()()P AB P A P B = C. ()0P AB = D.()0P AB > 8.设P (A )=0, B 为任一事件, 则 ( C ). A.A =Φ B.A B ? C.A 与B 相互独立 D. A 与B 互不相容 9.已知P (A )=0.4, P (B )=0.5, 且A B ?,则P (A |B )= ( C ). A. 0 B. 0.4 C. 0.8 D. 1 10.设A 与B 为两事件, 则AB = ( B ). A.A B B. A B C. A B D. A B 11.设事件A B ?, P (A )=0.2, P (B )=0.3,则()P A B = ( A ). A. 0.3 B. 0.2 C. 0.5 D. 0.44 12.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )= ( D ). A. 0.08 B. 0.4 C. 0.2 D. 0 13.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ). A.()()P A B P A = B.A B ? C. P (A )=P (B ) D. P (AB )=P (A ) 14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ). A. 0.4 B. 0.2 C. 0.25 D. 0.75 15.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( A ). A. 3 7 B.0.4 C. 0.25 D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ). A. 0.48 B. 0.75 C. 0.6 D. 0.8 17.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为 ( A ).

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

中北大学概率统计习题册第四章完整答案(详解)资料

中北大学概率统计习题册第四章完整答案 (详解)

1. 填空 1)设~(,)X B n p ,则EX =np ,DX = npq 。 2)设~()X P λ,则EX =λ, DX =λ。 3)设~()X E λ,则EX = 1λ ,DX = 2 1 λ。 4)设[]~,X U a b ,则EX = 2 a b +,DX = () 2 12 b a -。 5)设2~(,)X N μσ,则EX =μ, DX =2σ。 6)设(,)~(1,1;2,9;0.5)X Y N ,则 EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。 7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000, 625N 。 2. 已知在一定工序下,生产某种产品的次品率0.001。今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。 解:设X 表示5000件产品中的次品数,则 ()~5000,0.001X B 。 50000.0015λ=?=,则 ()()()2100P X P X P X ≥=-=-= 5000499910.99950000.0010.999=--?? 0155 5510!1! e e --≈--10.006740.033690.95957=--= 注:实际上 5000499910.99950.9990.95964--?= 3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。 解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且 {}7 07e 0.999! k N k P X N k -=≤=≥∑ 查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。 解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U , 52EX = ;2512 DX =。 5.设(){ }3.02010,,10~2=<

2020年整理概率统计章节作业答案.doc

第一章 随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ) . A. AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =ΩU 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少 有一次正面向上”可表示为 ( D ). A.1212A A A A U B.12A A C.12A A D.12A A U 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3), 则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B =U 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

第四章习题解答 1.设随机变量X ~B (30, 6 1),则E (X )=( D ). A.6 1 ; B. 65; C.6 25; D.5. 1 ()3056 E X np ==?= 2.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( A ). A. 3; B. 6; C. 10; D. 12. ()1()3E X E Y == 因为随机变量X 和Y 相互独立所以()()()3E XY E X E Y == 3.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X 2的数学期望E (X 2)=____18.4______. (10,0.4)()4() 2.4X B E X D X ==: 22()(())()18.4E X E X D X =+= 4.某射手有3发子弹,射一次命中的概率为3 2,如果命中了就停止射击,否则一直射到子弹用尽.设表示X 耗用的子弹数.求E (X ). 解: X 1 2 3 P 2/3 2/9 1/9 22113()233999 E X = +?+?= 5.设X 的概率密度函数为 , 01()2,120,x x f x x x ≤≤?? =-<≤??? 其它 求2() ,().E X E X 解:12 20 1 ()()(2)1E X xf x dx x dx x x dx +∞-∞ ==+-=? ??, 12 22320 1 7 ()()(2)6 E X x f x dx x dx x x dx +∞ -∞ ==+-= ? ??.

华师在线概率统计作业

1.第2题 设随机变量X和Y都服从正态分布,则( ). (A)服从正态分布 (B)服从分布 (C)服从F分布 (D)或服从分布 A.见题 B.见题 C.见题 D.见题 您的答案:D 题目分数:2 此题得分: 2.第3题 设随机变量X的概率密度为,则c=()(A)(B)0 (C)(D)1 A.见题 B.见题

C.见题 D.见题 您的答案:C 题目分数:2 此题得分: 3.第4题 如果P(A)=,P(B)=,且事件B与A独立,则P(AB)=() (A)(B)(C)(D) A.; B.; C.; D.。 您的答案:B 题目分数:2 此题得分: 4.第5题 设随机变量X~e(1),Y~e(2),且X与Y相互独立。令Z的方差为D(Z)=( ) 4 4

2 您的答案:A 题目分数:2 此题得分: 5.第6题 假设样本X1,X2,...X n来自总体X,则样本均值与样本方差S2=2独立的一个充分条件是总体X服从()。 A.二项分布 B.几何分布 C.正态分布 D.指数分布 您的答案:A 题目分数:2 此题得分: 6.第7题 设标准正态分布N(0,1)的分布函数为,则()(A)(B)- (C)1- (D)1+

A.; B.; C.; D.. 您的答案:C 题目分数:2 此题得分: 7.第8题 设随机变量X~N(),则线性函数Y=a-bX服从分布() A. ; B. ; 您的答案:B 题目分数:2 此题得分: 8.第9题 设随机变量X~U(0,1),则它的方差为D(X)=() 2

3 4 12 您的答案:D 题目分数:2 此题得分: 9.第10题 设来自总体N(0,1)的简单随机样本,记 ,则=() (A)n (B)n-1 (C) (D) A.见题 B.见题 C.见题 D.见题 您的答案:C 题目分数:2 此题得分: 10.第23题

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

概率统计章节作业答案教学提纲

概率统计章节作业答 案

第一章 随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的 是 ( B ). A. AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少 有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则 3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ). A.()1P A B = B.()()()P AB P A P B =

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

(完整版)概率论第四章答案

习题4-1 1. 设随机变量X 求()E X ;E (2-3 X ); 2()E X ;2(35)E X +. 解 由定义和数学期望的性质知 2.03.023.004.0)2()(-=?+?+?-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-?-=; 8.23.023.004.0)2()(2222=?+?+?-=X E ; 4.1358.235)(3)53(22=+?=+=+X E X E . 2. 设随机变量X 的概率密度为 ,0,()0, 0.x e x f x x -?>?=???≤ 求X e Z X Y 22-==和的数学期望. 解 ()(2)2()22x E Y E X E X x x ∞ -====?e d , 220 1 ()()3 X x x E Z E e e e dx ∞ ---==?= ?. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第 55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60] 上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为 1 ,060,()600, .x f x =?????≤≤其它 记Y 为游客等候电梯的时间,则 5,05,25,525,()55,2555,65, 5560. X X X X Y g X X X X X -<-<==-<-

概率统计作业解答

1文档来源为:从网络收集整理.word 版本可编辑. 《概率论与数理统计》作业解答 第一章 概率论的基本概念习题(P24-28) 1. 写出下列随机试验的样本空间S : (1) 记录一个班一次数学考试的平均分数(设以百分制记分). (2) 生产产品直到有10件正品为止,记录生产产品的总件数. (3) 对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”.如连续查出了2件次品,就停止检查,或检查了4件产品就停止检查. 记录检查的结果. (4) 在单位圆内任意取一点,记录它的坐标. 分析 要写出随机试验的样本空间,就要明确所有的样本点,即随机试验时直接产生的所有可能的结果. 解 (1) 我们考察一个班数学考试平均分的所有可能. 为此,我们先明确平均分的计算:全班的总分除以班级学生数. 设该班有n 个学生,则全班总分的所有可能为0到100n 的所有整数i . 其平均分为i n . 故,所求样本空间为::1,2,,100i S i n n ??==??????? . (2) 由已知,生产的件数至少为10(刚开始生产的10件均为正品),此后,可以取大于等于10的所有整数. 故所求样本空间为:{}10,11,12,S =???. (3) 若记0=“检查的产品为次品”,1=“检查的产品正品”,0,1从左到右按检查的顺序排列,则所求样本空间为: (5) 所求样本空间为:{} 22(,):1S x y x y =+< 2. 设,,A B C 为三个事件,用,,A B C 的运算关系表示下列各事件: (1) A 发生,B 与C 不发生. (2) A 与B 都发生,而C 不发生.

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论与数理统计作业及解答

概率论与数理统计作业及解答

概率论与数理统计作业及解答 第一次作业 ★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为 ;E ABC ABC ABC ABC =+++或;AB AC BC =U U 或;AB AC BC =U U 或;AB ACBC =或().ABC ABC ABC ABC =-++ (和A B +即并A B U ,当,A B 互斥即AB φ=时,A B U 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率. 22 1M m M C C --或1122 (21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率. A ={8只鞋子均不成双}, B ={恰有2只鞋子成双}, C ={恰有4只鞋子成双}. 61682616()32()0.2238,143C C P A C ===1414 8726 16()80 ()0.5594,143C C C P B C === 22128626 16()30 ()0.2098.143 C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求: (1)其中无次品的概率; (2)其中恰有一件次品的概率. (1)34535014190.724.1960C C == (2)21455350990.2526.392 C C C == 5. 从1~9九个数字中, 任取3个排成一个三位数, 求: (1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率. (1){P 三位数为偶数}{P =尾数为偶数4 },9= (2){P 三位数为奇数}{P =尾数为奇数5 },9 = 或{P 三位数为奇数}1{P =-三位数为偶数45 }1.99 =-= 6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率. 记事件A ={最小号码为5}, B ={最大号码为5}. (1) 253101();12C P A C ==(2) 2 43101 ().20 C P B C == 7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次, 求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}. 311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8 ()1(),9 P D P B =-=

统计学第5章概率论作业

一、选择 1、一项试验中所有可能结果的集合称为() A事件 B简单事件 C样本空间 D基本事件 2、每次试验可能出现也可能不出现的事件称为() A必然事件 B样本空间 C随机事件 D不可能事件 3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=() A{000,001,010,100,011,101,110,111} B{1,2,3}C{0,1}D{01,10} 4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=() A{t=0} B{t<0} C{t>0} D{t≥0} 5、观察一批产品的合格率P,其样本空间为Ω=() A{0

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

概率统计章节作业

第一章随机事件与概率 一、单项选择题 1?掷一枚骰子,设A={出现奇数点}, B={出现1或3点},贝U下列选项正确的是(). A. AB={出现奇数点} B. AB ={出现5点} C.B ={出现5点} D. AU B 2.设A、B为任意两个随机事件,则下列选项中错误的是(). (A B) B A. (A B) B A B A AB (A B) B A B . AB AB A 3.将一枚匀称的硬币投掷两次,令A={第i次正面向上}(i =1,2),则“至少有一次正面向上”可表示为(). A I A2U A1A2 A A2 A1A2 U A2某人向一目标射击3次,设A表示“第i次射击命中目标” (i =1,2,3),则3次都没有命中目标表示为(). A A2 A3 A A2 A3 AA2A3 AA2A3设A与B为互为对立事件,且P(A) O,P(B) 0,则下列各式中错误的是 (). P(A|B) 0 P(B| A) 0 P(AB) 0 P(AU B) 1 设事件A与B相互独立,P[A)=, P( B)=,贝U P(A|B)=(). A. 0.2 B.0.4 C. 已知事件A与B互不相容,P(A)>0, P( B)>0,则(). P(AU B) 1 . P(AB) P(A)P(B) P(AB) 0. P(AB) 0 8.设P(A)=0, B为任一事件,则(). A A B与B相互独立与B互不相容 9.已知P(A)=, P(B)=,且 A B,则P(A| B)=(). .0.4 C. 设A与B为两事件,则AB =(). AB AUB AI B AI B 设事件 A B,P(A)=, P( B)=,则P(AUB)(). A. 0.3 B.0.2 C. 设事件A与B互不相容,P(A)=, P(B)=,则P(A|B)=().

《概率论与数理统计》袁荫棠 中国人民大学出版社 课后答案 概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.08 121)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3 ,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

相关文档
相关文档 最新文档