文档库 最新最全的文档下载
当前位置:文档库 › 航空复合材料结构修补技术与应用

航空复合材料结构修补技术与应用

航空复合材料结构修补技术与应用
航空复合材料结构修补技术与应用

金属填充复合材料修补金属件知识讲解

金属填充复合材料修 补金属件

金属填充复合材料修补金属件 金属填充复合材料修补金属件 一、为什么使用Loctite? Fixmaster?金属填充复合材料? Loctite? Fixmaster? 金属填充复合材料可为设备因冲击及机械损伤造成的缺陷提供维修解决方案,如套的裂纹,轴及套的磨损等。 Loctite? Fixmaster?金属填充复合材料可有效修复和重建机械设备的损伤不需要加热和焊接。 传统方式 VS. 现代解决方案 传统方式如硬表面堆焊需大量的时间,成本昂贵。Loctite? Fixmaster?金属填充复合材料操作方便,具有优良的抗压强度。可以给设备提供有效的保护。Loctite? Fixmaster?金属填充复合材料和Loctite? Nordbak?耐磨防护剂可修复不同类的磨损,使其可重新投入使用。 二、Loctite? Fixmaster?金属填充复合材料的优点: (1)、快速维修 (2)、可选择钢粉、铝粉或非金属填充 (3)、低收缩率 (4)、耐久维修 (5)、使用方便 (6)、高抗压强度 (7)、不需加热

(8)、可在线维修 (9)、类似金属色 (10)、固化后可钻孔、攻丝和机械加工 (12)、与金属,陶瓷,木材.玻璃和部分塑料良好的粘结力 三、选择Loctite? Fixmaster?金属填充复合材料时需考虑的关键因素 金属修补Loctite? Fixmaster?复合材料填充钢粉或铝粉等不同金属粉末,使在维修时尽可能接近设备本体性能,非金属填充的产品用于修复磨损严重的场合。产品一致性产品粘度满足客户的不同需求,Loctite? Fixmaster?产品粘度分为浇铸型、膏状及棒状可供选择。 特殊需求对于一些特殊场合的应用,汉高拥有一些有特殊性能的产品,如高抗压强度,耐高温或耐磨产品可供选择。 四、表面处理正确的表面处理是这些产品成功应用的关键因素。 好的表面处理可以增加Loctite? Fixmaster?复合材料与部件的粘附力;防止金属表面与Loctite? Fixmaster?复合材料之间锈蚀;延长产品使用寿命。 正确的表面处理必须干净和干燥;无表面及内部化学污染;无锈蚀;表面粗糙度75um以上。 五、产品应用 Loctite? Fixmaster?金属填充复合材料是双组合环氧产品,应用之前必须按正确的比例混合至颜色均一为止。 膏状产品使用时必须紧刮于设备表面且达到所需要的厚度,请注意使用过程中需防止气泡的混入。

复合材料在飞机上的应用

新视点 NEW VIEWPOINT 64航空制造技术2006年第3期 目前,复合材料在飞机上的应用已非常广泛,但在20世纪90年代初复合材料市场曾一度陷入低靡,究其原因是由于复合材料设计制造的复杂性造成了成本壁垒,人们开始认识到只有重视性能和成本的平衡,才能使复合材料展现辉煌。随着复合材料先进技术的成熟,使其性能最优和低成本成为可能,大大推动了复合材料在飞机上的广泛应用。本文在介绍国外复合材料在飞机上广泛应用的基础 上,对作为技术保障的数字化设计技术和先进制造技术进行了分析研究。从国外情况看,各种先进的飞机都与复合材料的应用密不可分,复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一。下面介绍复合材料在飞机上应用的发展趋势。 (1) 复合材料在飞机上的用量日益增多。 复合材料在飞机上 的应用评述 北京航空航天大学机械工程及自动化学院 张丽华 范玉青 复合材料用量通常用其所占飞机机体结构重量的百分比表示,纵观复合材料在民机上的发展情况发现,无论是波音公司还是空中客车公司,随着时间推移,复合材料的用量都呈增长趋势。最具代表意义的是空客公司的A380客机和波音公司最新推出的787客机。在A380上仅碳纤维复合材料的用量就达32t左右,占结构总重的15%,再加上其他种类的复合材料,估计其总用量可达25%左右。787 上初步估计复合材料用量可达50%,远远超过了A380。另外,复合材料 在军机和直升机上的用量也有同样的 增长趋势。(2) 应用部位由次承力结构向主承力结构过渡。 飞机上最初采用复合材料的部位有舱门、整流罩、安定面等次承力结 构,目前已广泛应用于机翼、机身等部位,向主承力结构过渡。从1982年开始用复合材料制造飞行操纵面(如A310-200飞机的升降舵和方向舵),空客公司在主承力结构上使用复合材 料已有20多年的经验。在A380上采用的碳纤维复合材料大型构件主要有中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等,大量的主承力结构都采用了复合材料。787复合材料的应用则更让世人瞩目,其机身和机翼部位采用碳纤维增强层合板结构代替铝合金;发动机短舱、水平尾翼和垂直尾翼、舵面、翼尖等部位采用碳纤维增强夹芯板结构;机身与机翼衔接处的整流蒙皮采用玻璃纤维增强复合材料。与A380相比其用量更大,主承载部位的应用更加广泛,这将是世界上采用复合材料最多的大型商用喷气客机。 (3) 复合材料在复杂曲面构件上的应用越来越多。 飞机上复杂曲面零件很多,复合材料的应用也越来越多,比如A380机身19段、19.1段和球面后压力隔框等均为采用复合材料的具有复杂曲 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障 复合材料在飞机上的应用

复材零件修补方法探索

龙源期刊网 https://www.wendangku.net/doc/0b336742.html, 复材零件修补方法探索 作者:武彬彬 来源:《科技风》2017年第07期 摘要:随着对飞机性能要求的不断提高,复合材料零件将更加广泛的应用于飞机的各个结构中。已经迅速发展为继铝合金、钛合金之后的又一航空结构材料。但是复合材料零件固然有很多优点,但是,复合材料零件的缺陷修补一直是制约复合材料零件发展的制约条件之一。本文对复合材料零件在实际使用过程中常见的缺陷进行了分类分析,对修补方法进行了初步的研究,为其制定合适的修补方法,减少浪费,降低复合材料应用成本。 关键词:复合材料;缺陷;修补 复合材料零件加工制造过程不同于金属零件,在成型过程中,装配过程中,使用过程中均会出现不同的缺陷。在生产实践中,即使是经过研究和试验制定的合理工艺,在结构件的制造过程还可能产生缺陷,引起质量问题,严重时还会导致整个结构件的报废,造成重大经济损失。因此,研究复合材料,尤其是国产碳纤维复合材料结构件的缺陷分类及维修方法是目前迫切需要解决的问题。 随着我国飞机数量的增加和换代速度的加快,复合材料用量也越来越大,修补的重要性也就越来越凸显。但是,国内在修补方面还是参考国外的一些文献和资料,照葫芦画瓢。而且目前国内对复合材料零件的修补还是没有进行验证,产品设计对此领域还是持保守状态。 对复合材料结构提出的修补要求主要有: ①恢复结构的70%承载能力和使用功能,即恢复结构的基本完整性; ②修理后重量不能增加太多; ③尽量保证原结构外形。 一、缺陷类型 根据目前国内复合材料制件结构及形成时段状态,缺陷存在的类型可以分为以下几类: ①实体层压板缺陷类型:零件分层、贫胶、皱折、鼓包、分层、杂质、打磨过分或伤及纤维的损伤、边缘分层损伤等缺陷。 ②针对复合材料蜂窝夹层件的缺陷类型:蜂窝芯格压缩、蜂窝芯凹陷、芯子与蒙皮分层等缺陷。

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

(完整word版)飞机夹层结构复合材料零部件的损伤形式及修理方法

常见飞机蜂窝板损伤形式及修理方法 航空器复合材料中的蜂窝板是由薄而强的两层面板中间胶接蜂窝材料而成的一种新型复合材料,也称蜂窝层合结构(见图1)。其面板选材有金属板、玻璃纤维、石英纤维、碳纤维等;夹心材料主要有芳纶、玻璃纤维、铝合金及发泡型结构。蜂窝可制成不同的形状。飞机上的蜂窝结构是由耐腐蚀夹心、面板、衬垫、隔板(假梁)、边肋等零件胶合而成。面板与夹芯之间用胶膜胶接,蜂窝夹芯用芯子胶和耐腐蚀胶根据实际需要形状施加真空压力后加温胶接成型。 图1 蜂窝夹心板结构 一、航空复合材料蜂窝结构损伤种类 根据航空复合材料蜂窝结构部件在使用过程中可能出现损伤的情况,我们可以大致将胶接蜂窝结构部件的损伤分以下5类: 1、表面损伤 图2 典型表面凹坑 此类损伤一般通过目视检查发现,包括表面擦伤、划伤、局部轻微腐蚀、表面蒙皮裂纹、表面小凹坑和局部轻微压陷等。这类损伤一般对结构强度不产生明显的削弱。 2、脱胶及分层损伤

该损伤是指纤维层与层之间或面板与夹芯之间的树脂失效缺陷,主要通过敲击检查、超声波检测等手段发现。此类损伤一般不引起结构外观变化,大多是在生产过程中造成的初始缺陷,并在反复使用过程中缺陷不断扩展而导致的。脱胶或分层面积过大会引起整体复合材料强度的削弱,应及时予以修补。 3、单侧面板损伤 这类损伤包括单侧面板局部压陷、破裂或穿孔,一般通过目视检查即可发现。该类型损伤能使一侧面板和蜂窝夹芯都受到损伤(表面塌陷),对气动性能和结构强度影响较大。一旦发现该类损伤必须经过修理和检验确认后方能能重新使用。 4、穿透损伤 该类型损伤是指蜂窝部件出现穿透性损伤、严重压陷和较大范围的残缺损伤等。此类损伤对结构性能和强度有严重的影响,根据受损情况立即予以修理或按需更换新件。 5、内部积水 该损伤原因主要由于蜂窝结构边缘或蜂窝材料对接边缘密封不严或密封失效,在长期使用过程中由于雨水渗透、油液浸泡以及水汽冷凝而造成蜂窝夹芯出现积水。虽然一般情况蜂窝内部积水不会造成严重影响;但在冬季日夜气温变化较大的情况下,由于积液结冰膨胀将会会造成复合材料部件内部树脂基体脱胶;同时在积液的长期浸泡下也会使复合材料的树脂基体的胶接强度大幅降低而降低部件的整体性能;特别是各类复合材料制备的舵面、襟翼、翼身整流罩及发动机部件等,均应及时检查其内部蜂窝结构的积水情况并作出相应修理措施。目前该类损伤主要通过红外热成像、X-射线检测仪等手段进行检测。 二、蜂窝结构的检查方式 1、目视检查 目视检查法是使用最广泛、最直接的无损检测方法。主要借助放大镜和内窥镜观测结构表面和内部可达区域的表面,观察明显的结构变形、变色、断裂、螺钉松动等结构异常。它可以检查表面划伤、裂纹、起泡、起皱、凹痕等缺陷;尤其对透光的玻璃钢产品,可用透射光检查出内部的某些缺陷和定位,如夹杂、气泡、搭接的部位和宽度、蜂窝芯的位置和状态、镶嵌件的位置等。 2、手锤敲击法 用于单层蒙皮蜂窝结构。用手锤敲击蜂窝结构的蒙皮,根据不同的声响来判断蜂窝结构是否脱胶。敲击时,注意锤头与蒙皮垂直,力度适当,以能判断故障不损坏蒙皮表面为宜。为使判断准确,可先在试件上试验。敲击回声清脆是良好,沉闷是脱粘。 3、外场在位检测的便携式相控阵超声波C扫描检测系统

复合材料在航空中的应用

《飞行器设计与工程专业技术讲座(三)》结课报 告 班级: 学号: 姓名:

日期:2016年10 月09 日

复合材料在航空中的应用 前言 现代高科技的发展离不开复合材料,复合材料[1]对现代科学技术的发展,有着十分重要的作用。复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。进入21 世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。2003~2008 年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。 一.复合材料的简介 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材 料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石 棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20 世纪40 年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50 年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70 年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金 属基体复合,构成各具特色的复合材料。 二.在航空中常用的复合材料 60 年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×10 厘米(cm),比模量大于4×10cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这 种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。 1.树脂基复合材料树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发 挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。树脂基介电--防热材料有高硅氧/聚四氟乙烯材料, 它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统 的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于 后

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术 随着科技的不断进步,复合材料逐渐出现在航空领域,在现代航空领域的发展中被广泛应用。由于复合材料已经成为现代飞机结构的重要组成部分,并且其损伤机理与金属损伤存在差异,对复合材料结构修理技术研究具有重要的现实意义。文章主要基于飞机复合材料结构修理基础之上进行研究,促进飞机复合材料的可持续发展。 标签:飞机复合材料;结构修理;技术分析 前言 国内对于先进复合材料在航空领域的应用已经取得一定成效,但对于飞机复合材料结构修理技术的研究依旧需要不断完善。由于现代航空领域需求的不断增加,对复合材料的使用要求逐渐严格。同时在具体的应用过程中需要对复合材料进行维护,体现出飞机复合材料结构修理技术的重要性。 1 飞机复合材料结构类型以及损伤类型 目前,国内外的复合材料在航空领域的应用具有广泛性特点,材料用量占总体用量总重的25%-40%,其中民用飞机占11%-16%,直升机高达60%以上。由此可见,飞机复合材料结构在航空领域的应用具有广泛性特点。对于复合材料以及损伤类型进行分析,加深对复合材料修理技术的理解。 1.1飞机复合材料结构类型 1.1.1 压层板。复合材料当中的压层板主要是由单层板粘合而成,同时构成材料可为不同材质的单层板,也可为各向异性单层板进行构成。由于单层板构成存在复杂性以及非匀质性,导致单层板的实际构成具有各向异性的特点。 1.1.2 蜂窝夹芯结构。蜂窝夹芯机构主要是由薄面板与中间胶接低密度的夹芯构成,具体的面板结构为层压板,面板较薄。其中具体的使用材料为纤维玻璃布、单向碳纤维、编织布、芳纶有机纤维布等材料。蜂窝夹芯结构比常规金属结构具有较高的比强度、抗弯强度、高结构阻尼、消音以及耐声震、隔热性等良好的性能,在航空领域应用具有较好效果。 1.1.3 蜂窝壁板。蜂窝壁板主要是承力面以及蜂窝夹芯构成,蜂窝夹芯位于承力面板之间,使得整个蜂窝壁板的强度增加[1]。此外还有骨架元件以及众多的不锈钢板材料进行实际构成。在蜂窝壁板的实际结构当中,承力面板所承受的质量一般只是自身在平面内的负荷,骨架元件在具体应用中保证局部刚劲,提升固定地点的安全性以及耐用性。 1.2 飞机复合材料损伤类型

(整理)叶片修复复合材料.

风机叶片修复材料浅谈 内容摘要 风力发电机组长期在恶劣的自然环境中暴露运行,不仅要承受强大的风载荷,还要经受气体冲刷、砂石粒子冲击,以及强烈的紫外线照射等外界侵蚀。为了提高损伤修复过程中所使用复合材料的载荷、耐腐蚀和耐冲刷等性能, 必须对所使用叶片修复材料中的树脂基体系统进行精心研究和筛选, 对传统叶片修复工艺进行创新。采用性能优异的环氧树脂, 改善玻璃纤维/树脂界面的粘结性能, 提高叶片的承载能力, 扩大玻璃纤维在大型叶片中的应用范围。研究结果表明叶片修复过程中合理使用的复合材料完全可以达到在恶劣工作环境中长期使用的性能要求。 关键词:风力机; 叶片; 环氧树脂;

引言 随着风力发电机单机功率的不断提高,叶片的质量和尺寸也越来越大,对叶片的要求也越来越高:要求叶片质量轻且分布均匀,外形尺寸精度控制准确;具有最佳的疲劳强度和机械性能,能经受暴风等极端恶劣条件和随机负荷的考验;叶片旋转时的振动频率特性曲线正常,传递给整个发电系统的负荷稳定性好;耐腐蚀、抗紫外线照射和抗雷击的性能好;发电成本较低,维护费用最低。叶片的材料越轻、强度和刚度越高,叶片抵御载荷的能力就越强,叶片就可以做得越大,它的捕风能力也就越强。因此,轻质高强、耐蚀性好、具有可设计性的玻璃纤维增强环氧树脂复合材料是目前国内大型风机叶片生产及修复的首选材料。 本文主要探讨了风机叶片生产和修复过程中所用的主要材料玻璃纤维增强环氧树脂复合材料,以及PVC材料。

一、叶片损伤原因 为了提高风机的发电效率,风机绝大多数处在地理、气候环境相对恶劣的地区,从而导致风机叶片容易遭受损伤。 其中对于风机叶片发生故障率最大的损伤原因是雷击,而且雷击往往会给风机叶片带来较严重的损伤甚至报废。 其次为风沙磨损、酸雨腐蚀,导致叶片表面出现麻点,影响风机使用寿命。 飞鸟撞击也是造成风机叶片损伤的一大杀手,由于风机所在地人眼稀少,所以飞鸟较多,飞鸟撞击往往会使风机叶片表面大面漆胶衣脱落。 另外由于风机叶片质量和体积较大,所以运输和吊装存在较大难度,不可避免的造成一定程度的损伤,发生率较小但若发生后果不堪设想,可能直接导致叶片报废,不可修复。 最后叶片材料老化也是导致风机叶片损伤的一大原因,但是由于材料质量在不断提高,所以发生概率会越来越小。

复合材料修复资料

玻璃纤维材料的修复 -----------------------------------------------------------------------------------------其他行业的玻璃纤维修复 1.汽车保险杠是玻璃钢的,损坏了只能用玻璃纤维和树脂来修补,首先你需要买树脂和玻璃纤维毡,这些卖玻璃钢产品的门市都有的,树脂论公斤卖的,叫他们给你配好了,因为其实它有三种材料:树脂、催干剂和固化剂,问清楚怎么用?因为都是化学材料,三者放在一起会起化学反应,放热的,量大的话还会爆炸的,所以要注意安全,不要被烫到了,不要被溅到眼睛里;玻璃纤维布注意最好买毡,因为毡是丝状的,可以一根根抽出来,便于修复修平汽车保险杠表面。两者都买好了,开始修理了:拿个容器另外装树脂,少装些,别一次倒完了,然后再放几滴固化剂,注意搅拌均匀,固化剂可以少放,因为他起固化作用,少放固化慢一些就是了,放多了几分钟就完全固化了,你还没来的及修补呢!用个毛刷刷到到损坏的地方,然后贴些玻璃纤维毡,再刷些树脂上去,刷一次贴一次就可以了!干了以后打磨表面,最后喷漆就可以了!做玻璃这行看起来简单,其实也是技术活,要熟练才刷的平,没有空隙才行!液体是不饱和聚酯树脂【型号一般时191和196】但是要加固化剂和促进剂【俗称红水和白水】比例根据温度而不同,调和后要在规定时间内糊完,否则就会固化 2.买玻璃丝布,环氧树脂,固化剂和柔软剂,先把破口处理一下,再刷环氧树脂混合液,后铺玻璃丝布,这样做三脂两布,固化后,打磨平整。 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 3.树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。 4.玻璃钢开裂怎么办 沿着裂缝周围用粗砂纸磨成粗糙,后用树脂和玻璃钢纤维补上 那如果非要修的话,也不是没有办法。树脂选用好点的,一般的也行,还有促进剂、固化剂、优质玻璃纤维布。粉子就不要放了。现在是秋季,温度低,所以固化剂要比夏天时多放,至于精确的比例,我随便估摸一下应该是:固化剂、促进剂、树脂;1:1.5:8 配合玻璃纤维缠在管道上,要让配好的玻璃钢迅速的涂在玻璃纤维布上,要让玻璃钢把玻璃纤维布充分浸透,等待玻璃钢充分固化后,再反复做上几层。就会结实了 航空复合材料结构修理方法 --------------------------------------------------------------------------------------适用于整流罩和玻璃纤维蒙皮1. 1复合材料的缺陷/ 损伤与修理容限

复合材料在航空中的应用

《飞行器设计与工程专业技术讲座(三)》结课报告 班级: 学号: 姓名: 日期:2016年10月09日

复合材料在航空中的应用 前言 现代高科技的发展离不开复合材料,复合材料[1] 对现代科学技术的发展,有着十分重要的作用。复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。进入21世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。2003~2008年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。 一.复合材料的简介 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 二.在航空中常用的复合材料 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于 4×10厘米(cm),比模量大于4×10cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。 1.树脂基复合材料 树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。树脂基介电--防热材料有高硅氧/聚四氟乙烯材料,它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于后

复合材料结构力学认识

暨南大学研究生课程论文 题目:复合材料结构力学认识 学院:理工学院 学系:土木工程 专业:建筑与土木工程 课程名称:复合材料结构力学 学生姓名:陈广强 学号:1339297001 电子邮箱:chengq09@https://www.wendangku.net/doc/0b336742.html, 指导教师:王璠

复合材料结构力学认识 主题词:复合材料力学;复合材料结构力学;力学特性;力学基础复合材料结构力学研究复合材料的杆、板、壳及基组合结构的应力分析、变形、稳定和振动等各种力学问题,,在广议上属于复合材料力学的一个分支。由于其内容丰富,问题重要和研究对象不同,已成为和研究复合材料力学问题的狭义复合材料力学并列的学科分支。 一、复合材料结构力学研究内容和办法 目前复合材料结构力学以纤维增强复合材料层压结构为研究对象,主要研究内容包括:层合板和层合壳结构的弯曲,屈曲与振动问题,以及耐久性、损伤容限、气功弹性剪裁、安全系数与许用值、验证试验和计算方法等专题。研究中采用宏观力学模型,可以分辩出层和层组的应力。这些应力的平均值为层合板应力。研究方法以各向异性弹性力学方法为主,同时采用有限元素法、有限差分法、能量变分法等方法。对耐久性、损伤容限等较新的课题则采用以试验为主的研究方法。 二、复合材料结构的力学特性 1、复合材料的比强度和比刚度较高 材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。这两个参量是衡量材料承载能力的重要指标。比强度和比刚度较高说明材料重量轻,而强度和刚度大。这是结构设计,特别是航空、航天结构设计对材料的重要要求。现代飞机、导弹和卫星、复合电缆支架、复合电缆夹具等机体结构正逐渐扩大使用纤维增强复合材料的

解析飞机复合材料修理全过程

飞机的复合材料修理:飞机复合材料通常被称为先进复合材料(Advanced Composite Material,ACM)。它使用高强度的纤维增强材料,嵌入在一种树脂基体里,以层或层片的形式叠加起来,形成层板,具有高强度,结实坚硬,能够减轻飞机结构重量,还具有抗腐蚀、破损安全性高等优点。 复合材料的修理工序也极其专业,涉及检查、去除修复损伤、打磨、清洁、制作浸布、铺层、粘接以及固化等众多复杂环节,其特点可用“精细”二字形容。 他们穿着白大褂、戴着口罩和细纱手套……远看你会以为这是一间手术室,其实这里是Ameco复合材料修理车间的洁净室。仅从工作场所上看,已能略猜出一二,复合材料的修理规格不一般。 近年来,复合材料作为飞机结构件的“新宠”,越来越多地被使用在飞机上,如飞机的整流罩、控制面、起落架舱门、大翼和安定面前后缘等部位。据悉,在波音787等一系列先进客机上,复合材料使用的比重甚至超过50%。但提及复合材料的修理,却鲜为人知。 其实,复合材料的修理过程很有意思,就像是为飞机表面做“外科手术”。但整个手术又涉及众多环节,每个环节都能展示出操作者的“十八般武艺”。 诊断:“病情损伤”靠耳朵 复合材料的特点是层面多,有点像“多层三明治”,中间夹层结构是蜂窝芯体,外面覆盖蒙皮,所有材料均由胶膜粘接。蒙皮也有多层,拿飞机大翼盖板来说,从里至外分别由三层碳纤维和一层玻璃纤维组成。 郭玉明是Ameco复合材料车间的一位年轻修理工,他常拿着专业敲击棒在一块襟翼盖板上轻轻敲击。他说,这个方法是为了查出那些从部件表面看不出来的“内伤”,比如开胶或脱层。 “这个地方声音清脆,说明它是完好区域,而这个地方声音沉闷、有点混沌,应该是有脱层。”据郭玉明讲,这份“练耳朵”的能力可不是随便谁都行的,需要多次实战磨炼和领悟。出师2年的郭玉明,当初为了练好这项本领,没少在部件上做“听音练耳”。此外,复合材料损伤的检查方法还有超声波、红外线热成像等。 去除损伤:完美“手术切割”工艺 去除复合材料损伤的工序很讲究。黄景森是Ameco复合材料车间的工艺工程师。据他介绍,切割一块盖板表面的损伤蒙皮,可以用切割片的边缘切去脱层部分。如果是蜂窝芯损坏,工作就会更复杂,要用切割片沿着损伤区域的蒙皮边

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

金属填充复合材料修补金属件

金属填充复合材料修补金属件 金属填充复合材料修补金属件 一、为什么使用Loctite? Fixmaster?金属填充复合材料? Loctite? Fixmaster? 金属填充复合材料可为设备因冲击及机械损伤造成的缺陷提供维修解决方案,如套的裂纹,轴及套的磨损等。 Loctite? Fixmaster?金属填充复合材料可有效修复和重建机械设备的损伤不需要加热和焊接。 传统方式 VS. 现代解决方案 传统方式如硬表面堆焊需大量的时间,成本昂贵。Loctite? Fixmaster?金属填充复合材料操作方便,具有优良的抗压强度。可以给设备提供有效的保护。Loctite? Fixmaster?金属填充复合材料和Loctite? Nordbak?耐磨防护剂可修复不同类的磨损,使其可重

新投入使用。 二、Loctite? Fixmaster?金属填充复合材料的优点:(1)、快速维修 (2)、可选择钢粉、铝粉或非金属填充 (3)、低收缩率 (4)、耐久维修 (5)、使用方便 (6)、高抗压强度 (7)、不需加热 (8)、可在线维修 (9)、类似金属色 (10)、固化后可钻孔、攻丝和机械加工 (12)、与金属,陶瓷,木材.玻璃和部分塑料良好的粘结力 三、选择Loctite? Fixmaster?金属填充复合材料时需考虑的关键因素 金属修补Loctite? Fixmaster?复合材料填充钢粉或铝粉等不同金属粉末,使在维修时尽可能接近设备本

体性能,非金属填充的产品用于修复磨损严重的场合。产品一致性产品粘度满足客户的不同需求,Loctite? Fixmaster?产品粘度分为浇铸型、膏状及棒状可供选择。 特殊需求对于一些特殊场合的应用,汉高拥有一些有特殊性能的产品,如高抗压强度,耐高温或耐磨产品可供选择。 四、表面处理正确的表面处理是这些产品成功应用的关键因素。 好的表面处理可以增加Loctite? Fixmaster?复合材料与部件的粘附力;防止金属表面与Loctite? Fixmaster?复合材料之间锈蚀;延长产品使用寿命。正确的表面处理必须干净和干燥;无表面及内部化学污染;无锈蚀;表面粗糙度75um以上。 五、产品应用 Loctite? Fixmaster?金属填充复合材料是双组合环氧产品,应用之前必须按正确的比例混合至颜色均一为止。 膏状产品使用时必须紧刮于设备表面且达到所需要的

复合材料在航天航空领域的应用现状与展望

复合材料在航天航空领域的应用现状与展望 摘要现代飞机和卫星的制造材料应具有质量轻、强度高、耐高温、耐腐蚀等特性,先进复合材料的独有性能使它成为制造卫星和飞机的理想材料。本文重点介绍了我国航天用符合材料的研究情况,并展望了今后的发展趋势。 关键词复合材料;航空航天;应用现状;发展趋势 Prospect and Application of Composites in Aviation and Aerospace Abstract Nowadays, the material of producing planes and satellites should be light, strong and should resist high temperature, corrosion and so on. Because of the unique peculiarities, advanced composites become the ideal material of producing planes and satellites. In this paper, the present status and prospect of applied research on composite materials for aero-space application in China are given. Key words composites; aviation and aerospace ; application and development; development trends

abaqus复合材料

复合材料不仅仅是几种材料的混合物。它有一些普通材料所没有的特性。它在潮湿和高温环境、冲击、电化学腐蚀、雷电和电磁屏蔽环境中具有不同于普通材料的特性。 复合材料的结构形式包括层板、夹层结构、微模型、机织预制件等。 复合材料的结构和材料是相同的,并且在结构形成时可以同时确定材料的分布。它的性能与制造过程密切相关,但制造过程非常复杂。由于复合材料结构不同层的材料性能不同,复合材料结构在复杂荷载作用下的破坏模式和破坏准则也各不相同。 在ABAQUS中,复合材料的分析方法如下 1建模 其结构形式决定了其建模方法,可以采用基于连续介质的壳单元和常规壳单元。复合材料应用广泛,但复合材料的建模是一个难点。制作复杂的结构光需要一个月的时间2材料 使用“图纸类型”(图层材质)来建立材质参数。材料参数可以以工程参数的形式给出,也可以通过子选项给出材料强度数据。这种材料只使用平面应力问题。

ABAQUS可以用两种方式定义层压板:复合材料截面定义和复合材料层压板定义复合剖面定义对每个区域使用相同的图层特性。这样,我们只需要创建一个壳组合,将截面属性指定给二维(在网格中定义的常规壳元素)或三维(三维的大小应与壳中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合分析方法简介 复合覆盖定义由复合布局管理器定义,主要用于在模型的不同区域构造不同的层。因此,在定义之前应该先划分区域,并将不同的层分配给不同的区域。它可以根据常规shell的元素和属性进行定义。 传统的壳单元定义每个层的厚度并将其分配给二维模型。根据单元的厚度可以将单元划分为三维单元的厚度方向。 提示:堆栈参考坐标系(放置方向)的定义和每个堆栈坐标系(图层方向)的定义。定义正确的图层角度、图层厚度和图层顺序。ABAQUS无法分析单个层的法向变化超过

相关文档
相关文档 最新文档