文档库 最新最全的文档下载
当前位置:文档库 › TLC5615应用实例

TLC5615应用实例

TLC5615应用实例
TLC5615应用实例

回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用 例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为: 123log log P Y βββ++logQ= 其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据 P ——家庭所在地的住房单位价格 Y ——家庭收入 经计算:0.247log 0.96log P Y -+logy=4.17 2 0.371R = ()() () 上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。 但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D : 01i D ?=?? 黑人家庭 白人家庭或其他家庭 模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ= 例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元) ①根据上述数据建立一元线性回归方程:

? 1.01610.09357y x =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。 01i D ?=?? 19791979i i <≥年 年 建立回归方程为: ?0.98550.06920.4945y x D =++ ()() () 20.9498R = 0.1751y S = 75.6895F = 虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。 3.5.4 岭回归的举例说明 企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下: 假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。 同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。 通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。 例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。 a. 直接进入法 显然,这种方法计算的结果中,C 界面不能通过显着性检验,直接利用分析结果是错误

PLC控制伺服电机应用实例

PLC控制伺服电机应用实例,写出组成整个系统的PLC模块及外围器件,并附相关程序。 PLC品牌不限。 以松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC 程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。 以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下: 机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T 的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000 个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。 有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下 A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下: 一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线: pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。 pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。

回归分析方法应用实例

4、回归分析方法应用实例 在制定运动员选材标准时,理论上要求先对不同年龄的运动员,各测试一个较大的样本,然后,计算出各年龄的平均数、标准差,再来制定标准。 但是,在实际工作中,有时某些年龄组不能测到较大的样本。这时能不能使用统计的方法,进行处理呢? 我们遇到一个实例。测得45名11至18岁男田径运动员的立定三级跳远数据。其各年龄组人数分布如表一。由于受到许多客观因素的限制,一时无法再扩大样本,因此决定使用统计方法进行处理。 第一步,首先用原始数据做散点图,并通过添加趋势线,看数据的变化趋势是否符合随年龄增长而变化的趋势,决定能否使用回归方程制定标准。如果趋势线不符合随年龄增长而变化的趋势,或者相关程度很差就不能用了。 本例作出的散点图如图1,图上用一元回归方法添加趋势线,并计算出年龄和立定三级跳远的: 一元回归方程:Y=2.5836+0.3392 X 相关系数 r=0.7945(P<0.01) 由于从趋势线可以看出,立定三级跳远的成绩是随年龄增加而逐渐增加,符合青少年的发育特点。而且, 相关系数r=0.7945,呈高度相关。因此,可以认为计算出的一元回归方程,反映了11至18岁男运动员年龄和立定三级跳远成绩的线性关系。决定用一元回归方程来制定各年龄组的标准。 第二步,用一元回归方程:Y=2.5836+0.3392 X 推算出各年龄的立定三级跳远回归值,作为各年龄组的第2等标准。 第三步,用45人的立定三级跳远数据计算出标准差为:0.8271。由于在正态分布下,如把平均数作为标准约有50%的人可达到标准,用平均数-0.25标准差制定标准则约有60%的人可达到,用平均数+0.25、+0.52、+0.84标准差制定标准约有40%、30%、20%的人可达到标准。本例用各年龄组回归值-0.25标准差、+0.25标准差、+0.52标准差、+0.84标准差计算出1至5等标准如表2、图2。

(新)台达数控定子绕线机伺服系统应用实例_

台达数控定子绕线机伺服系统应用实例 利用中达CNC数控系统强大的轴控功能和台达伺服系统快速精准的运动响应,使绕线机的工作效率得到了很大的提高。 本文主要介绍了数控定子绕线机功能的需求,以及系统操作界面和I/O的规划。 一、前言 图1 数控定子绕线机外观 目前绕线机的市场可谓庞大,品种繁多,有平行绕线机、环型绕线机、定转子绕线机、纺织绕线机等。本文主要介绍的是利用中达CNC数控系统和伺服产品构建出的设备:数控定子绕线机。他的最大特点是可以自动变换绕线方向,所绕的线圈整齐且圈数准确。操作简便,节省人工,提高产量,产品品质好,其绕线、排线、停车、换槽,完全按程序自动执行。排线宽幅可调,圈数准确。生产速度快,并大量节省线材。下面概述如何利用中达的数控和台达的伺服整合此方案。 二、技术和精度要求 客户原用PLC+伺服控制整台设备,因其加工出来的产品的合格率较低,且一些功能无法实现,满足不了市场上需求,故提出开发数控定子绕线机,并且需要控制系统和伺服满足如下条件: 1.伺服运动轴 在机械上,需要三轴的控制坐标系。其中,排线X轴采用伺服电机直接驱动螺距为4mm 的滚珠丝杠,在连接工作台做直线运动;飞叉Y轴采用伺服电机驱动1:2的齿轮箱间接传动,做360度的圆周运动;分度Z轴采用伺服电机驱动1:9的齿轮箱间接传动,做360度的圆周运动。这3个轴要求能够联动。 此外,对于飞叉轴来说,由于在运动过程中,机械负载惯量会因为绕线的速度的不同而发生较大的变化,这就要求伺服系统具有优异的稳定性、相应性和对负载变化自适应能力。 2.精度要求 机械回零精度:排线轴0.005mm 飞叉轴+/-1度分度轴+/-1度 定位精度:0.02mm +/-1度 要求控制系统和伺服系统能够具有检测反馈,来保证机械运动精度。 3.CNC控制系统 因定子绕线机不仅讲究绕的匝数要准确,而且排线出来的密度要均匀,即最少需要两轴之间做插补运算,实现联动;画面可以自由规划;要给客户方便传输加工程序,并且可以对NC程序编辑和存储;控制系统要提供一个D/A口,实现恒张力控制功能。 另外,客户希望数控系统再开放一个轴,以备后用。

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

伺服电机计算选择应用实例

伺服电机计算选择应用实例 1.选择电机时的计算条件本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的W :运动部件(工作台及工件)的重量(kgf)=1000 kgf 机械规格μ:滑动表面的摩擦系数=0.05 π:驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf)=50 kgf Fc :由切削力引起的反推力(kgf)=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf) =30kgf Z1/Z2:变速比=1/1 例:进给丝杠的(滚珠Db :轴径=32 mm 丝杠)的规格Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格Ta :加速力矩(kgf.cm) Vm :快速移动时的电机速度(mm-1)=3000 mm-1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec2) Jl :负载惯量(kgf.cm.sec2) ks :伺服的位置回路增益(sec-1)=30 sec-1 1.1 负载力矩和惯量的计算 计算负载力矩加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

回归分析的基本思想及其初步应用

第一章:统计案例 回归分析的基本思想及其初步应用实例 为172cm的女大学生的体重. 解:由于问题中要求根据身高预报体重,因此选自变量x,为因变量. (1)做散点图: 从散点图可以看出和有比较好的 相关关系. (2) = = 所以 于是得到回归直线的方程为 (3)身高为172cm的女大学生,由回归方程可以预报其体重为 新知:用相关系数r可衡量两个变量之间关系.计算公式为 r = r>0, 相关, r<0 相关; 相关系数的绝对值越接近于1,两个变量的线性相关关系,它们的散点图越接近; ,两个变量有关系. x y 8 1 i i i x y = = ∑ 8 2 1 i i x = = ∑ 8 1 82 2 1 8 8 i i i i i x y x y b x x = = - == - ∑ ∑ a y bx =-≈ y= r>

例1某班5名学生的数学和物理成绩如下表: (2) 求物理成绩y 对数学成绩x 的回归直线方程; (3) 该班某学生数学成绩为96,试预测其物理成绩; 练习1:下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗 (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值) x y y x y bx a =+3 2.543546 4.566.5?+?+?+?=

多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用 在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。这里主要讲的是多元线性回归分析法。 1. 多元线性回归的定义 说到多元线性回归分析前,首先介绍下医院回归线性分析,一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。 一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。 因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。 研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。 多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。 2. 多元回归线性分析的运用 具体地说,多元线性回归分析主要解决以下几方面的问题。 (1)、确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它

菱MRJB伺服放大器应用实例

菱M R J B伺服放大器 应用实例 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

三菱MR-J3-40B伺服放大器应用实例 本人设计一套空间曲线自动焊接设备时用到了三菱MR-J3-40B伺服放大器,现将设计与使用心德与大家分享如下。 本空间曲线焊接设备控制系统包括三菱Q系列CPU、输入模块、输出模块、QD75MH4定位模块、人机界面和3个MR-J3-40B伺服放大器及电机。三菱MR-J3-40B伺服放大器使用主要包括电气接线、外围开关设定和参数程序设定调试等三部分。 1 电气接线 三菱MR-J3-40B伺服放大器及电机电气连接图如图1所示。 图1 MR-J3-40B伺服放大器及电机电气连接图三个伺服放大器主电路为AC220V供电,控制电路用SSCNETIII光纤通信总线电缆菊花型连接。通过SSCNETIII电缆可以最大限度地节省配线,两站之间的最大连接距离可达50米。MR-J3-40B伺服放大器与HF-KP43伺服电机之间接

线如图2所示,伺服电机HF-KP43与伺服放大器MR-J3-40B编码器接口针脚号及接线方式如图3所示。 图2 伺服与电机之间动力线接线图 图3 伺服与电机之间编码器接线图 根据上述方法连接好伺服放大器及电机的线缆后伺服放大器如图4所示。

图4 接好线后的伺服放大器 2 外围开关设置 MR-J3-40B伺服放大器外围开关设定:正常运行时,拔码开关SW2均需拔在Down。根据伺服放大器所处位置及位置模块的定义,SW1选择伺服放大器所对应的轴:SW1=0时对应第一轴,SW1=1时对应第二轴,以此类推,SW1=15时对应第十六轴。本实例中回转伺服SW1=0,升降伺服SW1=1,伸缩伺服SW1=2。如图5所示。 本系统采用绝对位置定位,所以伺服放大器需配绝对位置记忆的电池,伺服放大器的CN4接口接电池,电池如图6所示。

回归分析应用实例讲解

影响成品钢材量的多元回归分析 故当原油产量为16225.86万吨,生铁产量为12044.54万吨,原煤产量为13.87万吨以及发电量为12334.89亿千瓦时时,成品钢材量预测值为10727.33875万吨;当原油产量为17453万吨,生铁产量为12445.96万吨,原煤产量为14.54万吨以及发电量为13457亿千瓦时时,成品钢材量预测值为10727.33875万吨。 钢材的需求量设为y,作为被解释变量,而原油产量、生铁产量x1、原煤产量、发电量作为解释变量,通过建立这些经济变量的xxx432线性模型来研究影响成品钢材需求量的原因。能源转换技术等因素。在此,收集的数据选择与其相关的四个因素:原油产量、生铁产量、原煤产量、发电量,1980—1997的有关数据如下表。理论上成品钢材的需求量的影响因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、 原始数据(中国统计年鉴)

将中国成品 一、模型的设定 设因变量y与自变量、、、的一般线性回归模型为: xxxx4321y = + ???????x?xxx??421330241是随机变量,通常满足;Var()= 2????0?()?二参数估计

再用spss做回归线性,根据系数表得出回归方程为: 1x0?180..?45x1?.0?201y?7.87x04.5x783894123再做回归预测,得出如下截图: 故当原油产量为16225.86万吨,生铁产量为12044.54万吨,原煤产量为13.87万吨以及发电量为12334.89亿千瓦时时,成品钢材量预测值为10727.33875万吨;当原油产量为17453万吨,生铁产量为12445.96万吨,原煤产量为14.54万吨以及发电量为13457亿千瓦时时,成品钢材量预测值为10727.33875万吨。 三回归方程检验

伺服系统应用于哪儿_伺服系统应用实例

伺服系统应用于哪儿_伺服系统应用实例 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。本文首先介绍了伺服系统的组成,其次介绍了伺服系统的特点、作用及分类,最后阐述了伺服系统应用领域、应用趋势及实例,具体的跟随小编一起来了解一下。 伺服系统组成系统主要由触摸屏、PLC、伺服驱动器、永磁同步伺服电机组成,其中伺服电机是运动的执行机构,对其进行位置、速度和电流三环控制,从而达到用户的功能要求。 伺服系统的特点、作用及分类特点 1、精确的检测装置:以组成速度和位置闭环控制; 2、有多种反馈比较原理与方法:根据检测装置实现信息反馈的原理不同,伺服系统反馈比较的方法也不相同。常用的有脉冲比较、相位比较和幅值比较3种; 3、高性能的伺服电动机(简称伺服电机):用于高效和复杂型面加工的数控机床,伺服系统将经常处于频繁的启动和制动过程中。要求电机的输出力矩与转动惯量的比值大,以产生足够大的加速或制动力矩。要求伺服电机在低速时有足够大的输出力矩且运转平稳,以便在与机械运动部分连接中尽量减少中间环节; 4、宽调速范围的速度调节系统,即速度伺服系统:从系统的控制结构看,数控机床的位置闭环系统可看作是位置调节为外环、速度调节为内环的双闭环自动控制系统,其内部的实际工作过程是把位置控制输入转换成相应的速度给定信号后,再通过调速系统驱动伺服电机,实现实际位移。数控机床的主运动要求调速性能也比较高,因此要求伺服系统为高性能的宽调速系统。 主要作用

应用回归分析试题

1、对于一元线性回归01(1,2,...,)i i i y x i n ββε=++=,()0i E ε=,2 var()i εσ=, cov(,)0()i j i j εε=≠,下列说法错误的是 (A)0β,1β的最小二乘估计0?β,1 ?β 都是无偏估计; (B)0β,1β的最小二乘估计0?β,1?β对1y ,2y ,...,n y 是线性的; 2、在回归分析中若诊断出异方差,常通过方差稳定化变化对因变量进行变换. 如果误差方差与因变量y 的期望成正比,则可通过下列哪种变换将方差常数化 (A) 1 y ; (B) (C) ln(1)y +;(D)ln y . 3、下列说法错误的是 (A)强影响点不一定是异常值; (B)在多元回归中,回归系数显着性的t 检验与回归方程显着性的F 检验是等价的; (C)一般情况下,一个定性变量有k 类可能的取值时,需要引入k-1个0-1型自变量; (D)异常值的识别与特定的模型有关. 4、下面给出了4个残差图,哪个图形表示误差序列是自相关的 (A) (B) (C) (D) 5、下列哪个岭迹图表示在某一具体实例中最小二乘估计是适用的 应用回归分析试题(一) 一、选择题.(每题3分,共15分) (C)0β,1β的最小二乘估计0?β,1 ?β之间是相关的; (D)若误差服从正态分布,0β,1β的最小二乘估计和极大似然估计是不一样的.

(A) (B) (C) (D) 二、填空题(每空2分,共20分) 1、考虑模型y X βε=+,2var()n I εσ=,其中:X n p '?,秩为p ',2 0σ>不一定 已知,则?β =__________________, ?var()β=___________,若ε服从正态分布,则 22 ?()n p σ σ'-:___________,其中2?σ 是2σ的无偏估计. 2、下表给出了四变量模型的回归结果: 则残差平方和=_________,总的观察值个数=_________,回归平方和的自由度=________. 3、已知因变量y 与自变量1x ,2x ,3x ,4x ,下表给出了所有可能回归模型的AIC 值,则最优子集是_____________________. 4、在诊断自相关现象时,若0.66DW =,则误差序列的自相关系数ρ的估计值=_____ ,若存在自相关现象,常用的处理方法有迭代法、_____________、科克伦-奥克特迭代法. 5、设因变量y 与自变量x 的观察值分别为12,,...,n y y y 和12,,...,n x x x ,则以* x 为折点的

工控商务网:交流伺服系统的应用案例

工控商务网:交流伺服系统的应用案例 文章来自:中国工控网 摘要:为了解决目前剑杆织机电子送经控制系统存在的问题,采用交流伺服系统取代故障率频繁、维修价值昂贵的电子送经控制系统,结果表明,该系统具有适用范围广,控制灵活及位置精度高等特点。 关键词:交流伺服系统;送经控制;自整定 1 前言 我厂于20世纪90年代初引进113台西班牙剑杆织机,该机采用PC单板机控制。分为主控单元,松经/紧经控制单元、松经/紧经控制部分采用直流晶体桥式,驱动器驱动一种惯性特别小的线绕盘式无铁芯直流电动机。使用至今,已有一半以上电动机出现了转子盘扎间短路、断路、测速微转子线圈断路磨损坏等问题。为了保证设备正常运行,我们对原松经/紧经电气控制部分进行了以交流伺服控制取代直流控制的技术改造。 2 硬件系统配置(见图1) 2.1 操作控制部分 为了保证挡车工操作适应性,该部分控制基本不变,即模拟信号输入部分。主要包括:车上开启/停止、手动松经/紧经、复位等。 2.2 松经/紧经驱动部分 送经电动机选用日本SANYO DENKI公司的“P50B0 80775HXS00”交流单相伺服电动机并带有INC—E编码器(P),转速4500 r/min;伺服驱动器选用该公司“QSIA 03AA”驱动器,

带有5位数7段LED显示,进行参数编辑,运行监控,报警记录。 2.3 张力检测部分 张力检测使用原装张力传感器。从振动后梁上取回模拟电压信号,经PC板上多级运放LM 324对信号放大整形与程序存储值作比较和记忆处理,最后由PC板给出开车运行时所需的一10 V~+10 VDC模拟量速度指令信号。 2.4 电动机数据检测部分 主要由省配线增量式编码器INC—Z(2000 P/R),双效屏蔽电缆组成。功能为自动跟踪电动机实际工作状态,检测松经、紧经过程中的各种数据,保证全车织物张力保持一致。 3 软件开发系统 3.1 参数设定显示部分 主要依据驱动器配置完成参数设定显示菜单,共计7种模式: 状态显示:显示伺服驱动器的状态功能; 监控模式Ob:显示多种监控方式; 测试调整Ad:测试操作和驱动器调节如手动操作; 基本参数模式bA:设定16种用户参数; 报警记录AL:显示最后7次和当前报警及CPU形式; 编辑参数PA:设定用户参数; 系统参数编辑ru:设置系统参数。 3.2 自动调整测试过程 伺服系统在运行之前应当先执行伺服驱动器的自动调整测试操作依次为:报警复位、编码器清除和自整定陷波滤波等,使测试软件自动安装完毕,并将必要数据存储记忆。流程图见图2。

多元线性回归分析实例分析

龙源期刊网 https://www.wendangku.net/doc/00361105.html, 多元线性回归分析实例分析 作者:王华丽 来源:《科技资讯》2014年第29期 摘要:多元线性回归是简单线性回归的推广,研究的是一个变量与多个变量之间的依赖 关系。作为质量统计软件领域的领导者,MINITAB是一个精确的、强大的、使用方便的统计软件。多元回归分析预测法,是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。该文通过一个具体实例介绍如何运用MINITAB软件,建立儿子身高与父母身高、年锻炼次数的多元线性回归模型,并对MINITAB的输出结果进行分析,得出方程效果良好的结论。 关键词:MINITAB软件多元线性回归显著性实例分析 中图分类号:O212 文献标识码:A 文章编号:1672-3791(2014)10(b)-0022-02 回归分析是数据分析中使用很多的一种方法。回归分析是定量的给出变量间的变化规律,它不仅提供变量间的回归方程,而且可以判断所建立回归方程的有效性。在方程有效性的前提下,可以用方程做预测和控制,并了解预测和控制的精度。多元回归分析预测法,是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 MINITAB软件是现代质量管理统计的领导者,全球六西格玛实施的共同语言,它以无可比拟的强大功能和简易的可视化操作获得了广大质量学者和统计专家的青睐。MINITAB软件是为质量改善、教育和研究应用领域提供统计软件和服务,是质量管理和六西格玛实施软件工具,更是持续质量改进的良好工具软件。 1 多元线性回归分析的一般模型 多元线性回归分析的一般模型为:设是个自变量(解释变量),是因变量,多元线性回归模型的理论假设是 其中,是个未知参数,称为回归常数,称为回归系数,为随机误差。 2 MINITAB软件建立模型 下面通过一个实例来详细讲解,如何运用MINITAB软件进行多元线性回归。现抽取20 个家庭调查资料的部分变量,数据见表1,试对父母身高与儿子身高进行回归分析。

最新MR-J3伺服应用例子参数

汉坤1.3 伺服放大器的使用 1.3.1伺服放大器的参数设置 伺服放大器参数

注:以上参数仅供参考,详细细节请查阅伺服放大器说明书 1.3.2 伺服电机的控制 伺服电机正常运行必须具备的条件: 1、LSP、LSN必须处于常闭状态 2、ALM、EMG处于常闭 3、SON为1时电机才能运动,此时电机处于制动状态,推不动,SON为0,可以推动电机。 4、CN1A、CN1B、编码器插头必须正确插入到伺服放大器上。 注:LSP、LSN、SON如果硬件条件不满足,可以在伺服控制器内部设置成1。但是在系统

正常运行后,必须采用外部硬件来满足,不可采用内部置1。 伺服放大器电子齿轮比的设定:即NO3,NO4的设定,该系统中,NO4设定为1, NO3=131072/NO27. 1.3.3 伺服电机常见的问题 ●伺服放大器的的参数NO.2一般设置为0201即自动调整模式,此时相应 NO.6,NO35,NO36,NO37,NO38的参数自动调整,如果在运动过程中电机发出嗡嗡的响声,可能是伺服放大器的参数设置不当所致。可把伺服放大器的参数NO.2该为0301手动模式,手动调整各个参数。 ●由于伺服电机是靠脉冲控制,所以要尽量避免变频器干扰。变频器选型时可考虑增加虑 波器。 ●调试过程中如果发现小车运动的反向与实际反向不符时,即电机正向,实际为反向,电 机反向实际为正向,此时修改伺服放大器的NO.54 改变伺服电机的旋转反向。 注:其他报警请参阅伺服放大器说明书。说明书已经很详尽的将所有可能出现的报警列出以及其排除故障。 1.3.4伺服电机的接线 定位模块FM353实现伺服电机的定位。其引脚定义如下。 伺服放大器CN1A接线颜色定义

回归分析方法及其应用实例

回归分析方法及其应用实例 环境与规划学院 2012级地理科学 2014年11月

回归分析方法及其应用实例 摘要:回归分析方法,就是研究要素之间具体数量关系的一种强有力的工具,运用这种方法能够建立反应地理要素之间具体数量关系的数学模型,即回归模型。 本文首先给出回归分析方法的主要内容及解决问题的一般步骤,简单的介绍了回归分析建模的一般过程,进而引出了基本的一元线性回归分析方法的数学模型。其次,叙述了多元线性回归理论模型,列举了多元线性回归模型应遵从的假定条件,探讨了多元线性回归模型中未知参数的估计方法及其参数的检验问题。最后通过具体的案例来总结了多元回归分析的应用。 关键词:多元线性回归模型;模型检验;SPSS;实例应用。 引言:用回归分析建模的一般过程:(1)画散点图(2)设定模型(3)最小二乘估计模型中的参数并写出回归方程(4)拟合优度的测量(5)回归参数的显著性检验及其置信区间(6)残差分析(回归分析的前提假定)(7)预测(点、区间) 在利用回归分析解决问题时,首先要建立模型,即函数关系式,其自变量称为回归变量,因变量称为应变量或响应变量。如果模型中只含有一个回归变量,称为一元回归模型,否则称为多元回归模型(实际中所见到的大都是线性回归模型,非线性的一般可以化为线性的来处理)。 一、一元线性回归模型 有一元线性回归模型(统计模型)如下:Y t =β0+β1 x t + u t上

式表示变量y t和x t之间的真实关系。其中yt称被解释变量(因变量),xt称解释变量(自变量),ut称随机误差项,β0称常数项,β1称回归系数(通常未知)。上模型可以分为两部分。(1)回归函数部分,E(y t) =β0+ β1 x t,(2)随机部分,u t(包含了所有没有考虑在内的影响因素对因变量的影响,越小越好) 二、多元线性回归模型 2.1 当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归。 设可预测的随机变量为y,它受到k个非随机因素X1,X2,X3``````X k 和不可预测的随机因素ε的影响。多元线性回归数学模型为: 回归方程: 2.2假定条件: 与一元线性回归模型的基本假定相似,为保证得到最优估计量,多元线性回归模型应满足以下假定条件:(1)随机误差项t满足均值为零,其方差相同且为有限值。(2)随机误差项之间相互独立,无自相关。(3)解释变量X nj,j=1,2,3`````k之间线性无关,否则称解释变量之间存在多重共线性。(4)解释变量Xnj,,j=1,2,3`````k是确定性变量,与误差项彼此之间相互独立。(5)解释变量是非随机变量。(6)随机误差项服从正态分布。(7)回归模型是正确设计的。

PLC触摸屏控制伺服电机程序实例

PLC触摸屏控制伺服电机程序设计 摘要:以三菱公司的FX3U-48MT-ES-A作为控制元件, GT1155-QFBD-C作为操作元件直接控制三菱伺服电机的具体程序设计。 关键词:PLC; 触摸屏; 伺服电机 伺服电机又称执行电机,它是控制电机的一种。它是一种用电脉冲信号进行控制的,并将脉冲信号转变成相应的角位移或直线位移和角速度的执行元件。根据控制对象的不同,由伺服电机组成的伺服系统一般有三种基本控制方式,即位置控制、速度控制、力矩控制。本系统我们采用位置控制。 PLC在自动化控制领域中,应用十分广泛。尤其是近几年PLC在处理速度,指令及容量、单轴控制方面得到飞速的发展,使得PLC在控制伺服电机方面也变得简单易行。 1控制系统中元件的选型 1.1PLC的选型 因为伺服电机的位移量与输入脉冲个数成正比,伺服电机的转速与脉冲频率成正比,所以我们需要对电机的脉冲个数和脉冲频率进行精确控制。且由于伺服电机具有无累计误差、跟踪性能好的优点,伺

服电机的控制主要采用开环数字控制系统,通常在使用时要搭配伺服驱动器进行控制,而伺服电机驱动器采用了大规模集成电路,具有高抗干扰性及快速的响应性。在使用伺服驱动器时,往往需要较高频率的脉冲,所以就要求所使用的PLC能产生高频率脉冲。三菱公司的FX3U晶体管输出的PLC可以进行6点同时100 kHz高速计数及3轴独立100 kHz的定位功能,并且可以通过基本指令0.065 μs、PCMIX 值实现了以4.5倍的高速度,完全满足了我们控制伺服电机的要求,所以我们选用FX3U-48MT-ES-A型PLC。 1.2伺服电机的选型 在选择伺服电机和驱动器时,只需要知道电机驱动负载的转距要求及安装方式即可,我们选择额定转距为2.4 N·m,额定转速为3 000 r/min,每转为131 072 p/rev分辨率的三菱公司HF-KE73W1-S100伺服电机,与之配套使用的驱动器我们选用MR-E-70A-KH003伺服驱动器。三菱的此款伺服系统具有500 Hz的高响应性,高精度定位,高水平的自动调节,能轻易实现增益设置,且采用自适应振动抑止控制,有位置、速度和转距三种控制功能,完全满足要求。 同时我们采用三菱GT1155-QFBD-C型触摸屏,对伺服电机进行自动操作控制。 2 PLC控制系统设计

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open; 2. Opening excel data source——OK.

第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.

3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue. 4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.

相关文档