文档库 最新最全的文档下载
当前位置:文档库 › 板式精馏塔筛板的流体力学验算

板式精馏塔筛板的流体力学验算

板式精馏塔筛板的流体力学验算
板式精馏塔筛板的流体力学验算

.筛板的流体力学验算

(一) 气体通过筛板压降相当的液柱高度p

h

1、根据 p

c l h

h h h σ

=++

干板压降相当的液柱高度c h 2、根据0/5/4 1.25d δ

==,查干筛孔的流量系数图00.89

c =

①精馏段由下式得

c h =2

2

0015.16 3.780.0510.0510.03010.891394.3v l u m

C ρρ????????

== ? ? ? ?????????

②提馏段由下式得

2

2

0015.16 5.140.0510.0510.04830.891574.8v c l u h m

C ρρ????????

'=== ? ? ? ?????????

3、①精馏段气流穿过板上液层压降相当的液柱高度l h

1.040.20/1.3270.1062

s

v u m

s

A A α=

=

=--

0.389F u α===

由图充气系数0ε与a F 的关联图查取板上液层充气系数0

ε为0.57 则l h =0

εL

h =0ε()0.570.070.0399w ow h h m +=?=

②提馏段气流穿过板上液层压降相当的液柱高度l h '

0.956

0.783/1.3270.1062

s

t

v u m

s

A A α'=

=

=--

1.775a F u α'===

由图充气系数0ε与a F 的关联图查取板上液层充气系数0

ε为0.58

则l h '=0

εL

h =0ε()0.580.070.0406w ow h h m +=?=

3、①精馏段克服液体表面张力压降相当的液柱高度h σ

由 h σ=3

4426.0610

0.001521384.39.810.005

L m

gd σ

ρ-??=

=??

②提馏段克服液体表面张力压降相当的液柱高度h σ'

由 h σ'=3

4422.09100.001441574.89.810.005

L m

gd σ

ρ-??=

=??

故①精馏段 p

h

=0.0301+0.0399+0.00152=0.07152m

单板压降

p L P h g

ρ?==0.071521394.39.819710.971( 1.0)pa kpa kpa ??==<(设计允许值)

故②提馏段 0.00483+0.0406+0.00144=0.0903m

p

h

'=

单板压降

p L P h g

ρ'?==0.09031574.89.819890.989( 1.0)pa kpa kpa ??==<(设计允许值)

(二)①精馏段雾沫夹带量v e 的验算

由式v e = 3.2

6

5.710T

f u H h ασ-?

?? ? ?-?? = 3.2635.7100.226.06100.4 2.50.07--???

??-???

=4

1.510-?kg 液/kg 气<0.1kg

液/kg 气

故在设计负荷下不会发生过量雾沫夹带 ②提馏段雾沫夹带量v e 的验算

由式v e = 3.2

6

5.710T f u H h α

σ-??? ? ?-??

= 3.2635.7100.78322.09100.4 2.50.07--???

??-???

=0.0239kg 液/kg 气<0.1kg

液/kg 气

故在设计负荷下不会发生过量雾沫夹带

(三)①精馏段漏液的验算

4.4ow

u

C =

= 4.4x =8.6 /m s 筛板的稳定性系数 015.16 1.76( 1.5)

8.9

ow

u k u =

==>

故在设计负荷下不会产生过量漏液

②提馏段漏液的验算

4.4ow

u

C =

4.4=?

=8.6 /m s 筛板的稳定性系数 015.16 1.92( 1.5)

7.89

ow

u k u =

==>

故在设计负荷下不会产生过量漏液

(四)①精馏段液泛验算

为防止降液管液泛的发生,应使降液管中清液层高度

()d T w H H h ≤Φ+

由d

p L d H

h h h =++计算 d H 22

03

0.00230.1530.1530.910.0251.56100.00156S d w L h l h m -????

== ? ??????

?=

d H =0.082+0.06+0.00098=0.143m

取Φ=0.5,则()

T

w H h Φ+=0.5(0.4+0.057)=0.229m

故d

H ()T w H h ≤Φ+,在设计负荷下不会发生液泛

②提馏段液泛验算

为防止降液管液泛的发生,应使降液管中清液层高度

()d T w H H h ≤Φ+

由d

p L d H

h h h =++计算 d H 22

03

0.002770.1530.1530.910.03041.534100.00153S d w L h l h m -????

== ? ??????

?=

=0.0903+0.07+0.00153=0.162m

d

H = 取Φ=0.5,则()=0.5(0.4+0.0554)=0.2272m

T w H h Φ+? 故

d H ()T w H h ≤Φ+,在设计负荷下不会发生液泛

八.塔板负荷性能图 ①提馏段

(一) 雾沫夹带线(1) v

e 3.2

6

5.710

T f u x H h

α

σ

-??=

? ?-??

式中0.8191.3270.1062s

s

s T f

v v u v A A α

=

=

=-- (a ) f h =()2/3

336002.5 2.5 2.8410s

w ow w w L h h h E l -??????+=+? ???????

近似取E ≈1.0,w h =0.057m ,w l =0.91m

故f h =2/3

336002.50.057 2.84100.91S L x -????+?? ??????

?

=0.1425+1.7762/3

S

L

(b )

取雾沫夹带极限值v e 为0.1Kg 液/Kg 气,已知σ=20.06/m N m , T H =0.4m ,并将(a ),(b )式代入 3.2

6

5.710

v

T

f u e H h α

σ

-???=

? ?

-??

得 3.2

63

2/30.8195.710

1.026.0610

0.40.1425 1.776s

S v L --???=

??--??

整理得 s v =2/32.13214.70S

L - (1)

此为雾沫夹带线的关系式,在操作控制范围内去几个Ls,计算出

相应的Vs 值。列于表4中 表 4

(二)液泛线 令()d T w H H h ?=+ d p L d H h h h =++ p

c L h

h h h σ

=++

L

w ow h h h =+

联立得 ()T

w p w ow d

H

h h h h h Φ+=+++

近似的取E=1.0, 0.91w

l

=

3

2/3

32/336002.8410(

)

36002.8410()0.91s

ow w

s l h l l --=?=?

整理得2/3

0.7104ow s h l = (c) 220000

2

20.51()()0.51()()3.780.51(

)(

)

0.890.0686

1394.3

0.0371v s v c l l s

s

u V h C C A V V ρρρρ===?=

取0

0.6

ε=,近似的有 2/3

02/3

()0.6(0.0570.7104)

0.30420.426c w ow s s

h h h L L ε=+=?+=+

0.00152

h σ=

故: 22/3

0.30710.30420.4260.00152

p s s

h V L =+++ (d)

由式2

2

0.153(

)0.153(

)

0.910.025

s s

d

w L L h l h ==-?

2

296.6s

L = (e)

将0.4,0.057,0.5

T

H

m hw ==Φ=,及(c),(d),(e)代入得

2

2/3

2/3

2

0.5(0.40.057)0.03570.03710.4260.057

0.7104296.6s s

s

s

V L L L +=+++++

整理得:

2

2/3

2

3.660.7104779

4.6s s

S V L L =--

此为液泛线的关系式,在操作控制范围内去几个Ls,计算出相应的Vs 值。列于表5中 表 5

(三)液相负荷上限线 以5s θ

=作为液体在降液管中停留时间的下限5f T s

A H L θ=

=

则 .max

0.40.1062

0.0084965

5

f T

s A H L

?=

=

=3

/m s

据此可作出与气体流量无关的垂直液相负荷上限 (四)漏液线(气相负荷下限线) 由,m in

o u

=4.4o

C ,m in

o u =

,m in

s o

V A L h =w h -ow h ow h =2

3

2.84

1000h w L E l ?? ?

??

2

00.686A m

=得

,m in

4.40.686

s V =? 整理

得:,min

s V

=此为液相负荷上限线的关系式,在操作控制范围内去几个Ls,计算出相应的Vs 值。列于表6 表 6

(五)液相负荷下限线

S V .m ax

S V 3

3

10/S L m s

-?图3 精馏段负荷性能图

对于平直堰,取堰上液层告诉ow h =0.006m ,化为最小液体负荷标准, 取E ≈1.0。由

ow h =2/3

36002.84

0.0061000s w

L E l ??

= ?

?? 即:0.006=2/3,min 36002.840.00610000.91s L ??

= ???

则4

3

,min 7.7610

s L m

s

-=?

据此可作出与气体流量无关的垂直液相负荷下限线

可知设计供板上限有雾沫夹带线控制,下限由漏夜线控制 精馏段操作弹性=,m ax

,m in

1.243

2.372

0.524

s s V V =

=

②提馏段

(一) 雾沫夹带线(1)

v e 3.2

6

5.710T

f u x H h ασ-??= ? ?-??

式中0.8121.3270.1062

s s

s T f v v u v A A α=

==-- (a )

f h =()2/3

3

36002.5 2.5 2.8410s w ow w w L h h h E l -??????+=+? ??????? 近似取E ≈1.0,w h =0.057m ,w l =0.91m 故f h =2/3

336002.50.0544 2.84100.91S

L -????+???

???????

=0.136+1.7762/3

S

L

(b )

取雾沫夹带极限值

v

e 为0.1Kg 液/Kg 气,已知

σ

=22.09/m N m ,

T H =0.4m ,并将(a ),(b )式代入 3.2

6

5.710

v

T

f u e H h ασ

-???=

? ?

-??

得 3.2

63

2/30.8125.710

1.02

2.0910

0.40.136 1.776s

S v L --???=

??--??

整理得 s v =2/34.30328.94S

L - (1)

此为雾沫夹带线的关系式,在操作控制范围内去几个Ls,计算出

相应的Vs 值。列于表8中。 表 8 Ls. 3

/m s

-3

0.610

?

-3

1.510

?

-3

3.010

?

-3

4.510

?

Vs. 3

/m

s

4.097 3.924 3.701 3.514

(二)液泛线 令()d T w H H h ?=+ d p L d H h h h =++ p

c L h

h h h σ

=++

L

w ow h h h =+

联立得 ()T

w p w ow d

H

h h h h h Φ+=+++

近似的取E=1.0, 0.91w

l

=

3

2/3

32/336002.8410(

)

36002.8410()0.91s

ow w

s l h l l --=?=?

整理得2/3

0.7104ow s h l = (c) 2200

002

20.51()()0.51()()5.140.51(

)(

)

0.890.0686

1574.8

0.0501v s v c l l s

s

u V h C C A V V ρρρρ===?=

取0

0.6ε=,近似的有

2/3

02/3

()0.6(0.05540.7104)

0.03320.426l w ow s s

h h h L L ε=+=?+=+

0.00141

h σ=

故: 22/3

0.05010.03320.4260.00144

p s s

h V L =+++ (d)

由式2

2

0.153(

)0.153(

)

0.910.0304

s s

d

w L L h l h ==-?

2

1999.9s

L = (e)

将0.4,0.057,0.5

T

H

m hw ==Φ=,及(c),(d),(e)代入得

2

2/3

2/3

2

0.5(0.40.0554)0.03460.05010.4260.0544

0.7104199.9s s

s

s

V L L L +=+++++

整理得:

2

2/3

2

2.7522.683990.0s s

S

V L L =--

此为液泛线的关系式,在操作控制范围内去几个Ls,计算出相应的Vs 值。列表9 表 9

(三)液相负荷上限线 以5s θ

=作为液体在降液管中停留时间的下限5f T s

A H L θ=

=

则 .max

0.40.1062

0.0084965

5

f T

s A H L

?=

=

=3

/m s

据此可作出与气体流量无关的垂直液相负荷上限 (四)漏液线(气相负荷下限线) 由,m in

o u

=4.4o

C ,m in

o u =

,m

in

s o

V A L h =w h -ow h ow h =2

32.84

1000h w L E l ?? ???

2

00.686A m

=

,min

4.40.686

s V =? 整理

得:,min

s V

=此为液相负荷上限线的关系式,在操作控制范围内去几个Ls,计算出相应的Vs 值。列表10中。 表 10

(五)液相负荷下限线

对于平直堰,取堰上液层告诉ow h =0.006m ,化为最小液体负荷标准, 取E ≈1.0。

由ow h =2/3

36002.84

0.0061000s w

L E l ??

= ?

??

即:2/3

,min 36002.840.00610000.91s L ??

= ???

则4

3

,min

7.7610

s L m

s

-=?

据此可作出与气体流量无关的垂直液相负荷下限线

可知设计供板上限有雾沫夹带线控制,下限由漏夜线控制 精馏段操作弹性=,m ax

,m in

1.252

2.385

0.525

s s V V =

=

图4 提馏段负荷性能图

.m i n

S V .m in

S V 3

3

10

/S L m

s

-??

筛板精馏塔设计示例

3.5筛板精馏塔设计示例 3.5.1 化工原理课程设计任务书 设计题目:分离苯-甲苯混合液的筛板精馏塔 在一常压操作的连续精馏塔内分离苯-甲苯混合液。已知原料液的处理量为4000kg/h,组成为0.41(苯的质量分率),要求塔顶馏出液的组成为0.96,塔底釜液的组成为0.01。 设计条件如下:表3-18 操作压力 进料热状态回流比单板压降全塔效率建厂地址 4kPa(塔顶常压)自选自选w0.7kPa ET=52%天津地区 试根据上述工艺条件作岀筛板塔的设计计算。 3.5.2 设计计算1设计方案的确定 本设计任务为分离苯一甲苯混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料, 将原料液通过预热器加热至泡点后送人精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 2精馏塔的物料衡算 (1)原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量—~':'■- 甲苯的摩尔质量匚丁 0.41/78. H 0.41/78J1 +0.59/92.13 (2)原料液及塔顶、塔底产品的平均摩尔质量 二0.450X7E.11 + (l-0 450)x9213 =託尾如畑H ^=0.966x78 1U(1-0.9 13 few? ^ = 0.012x73.11 + (1-0.012)x92.13 = 91.9^/^? (3 )物料衡算 F = = 46.6 A 原料处理量二二一 0.450

总物料衡算46.61 = D+ W 苯物料衡算46.6 1X0.45 = 0.966D + 0.012 W 联立解得D = 21.40 kmol / h W=25.21kmol/h 3塔板数的确定 (1)理论板层数NT的求取 苯一甲苯属理想物系,可采用图解法求理论板层数。 ①由手册查得苯一甲苯物系的气液平衡数据,绘出x~y图,见图3-22。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图3-19中对角线上,自点e(0.45,0.45 )作垂线ef即为进料线(q线),该线与平衡线的交点坐标为 y q = 0.667 xq = 0.450 故最小回流比为? 2 1■' 取操作回流比为77■■ ■―■:--' ③求精馏塔的气、液相负荷 L = R^D= 2.76x 21.40 = 7+1)D =(2 76 +l)x 21 40 = 80.46^;^ Z r= L + ^ = 59.06+46,^1 =

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

板式精馏塔设计方案

板式精馏塔设计方案 一、设计方案确定 1.1 精馏流程 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等,为保持塔的操作稳定性,流程中用泵直接送入塔原料,乙醇、水混合原料液经预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后经分配器一部分回流,一部分经过冷却器后送入产品储槽,塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后为冷却水循环利用。 塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业中以错流式为主,常用的错流式塔板有:泡罩塔板,筛孔塔板,浮阀塔板。泡罩塔板是工业上应用最早的塔板,其主要的优点是操作弹性较大,液气比围较大,不易堵塞;但由于生产能力及板效率底,已逐渐被筛孔塔板和浮阀塔板所替代。筛孔塔板优点是结构简单,造价低,板上液面落差小,气体压强底,生产能力大;其缺点是筛孔易堵塞,易产生漏液,导致操作弹性减小,传质效率下降。而浮阀塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了前述两种塔板的优点。浮阀塔板结构简单,制造方便,造价底;塔板开孔率大,故生产能力大;由于阀片可随气量变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,故塔板效率较高。但浮阀塔板也有缺点,即不易处理易结焦、高粘度的物料,而设计的原料是乙醇-水溶液,不属于此类。故总结上述,设计时选择的是浮阀塔板。 1.2设计方案论证及确定 1.2.1 生产时日及处理量的选择:设计要求塔年处理11.5万吨乙醇—水溶液系统,年工作日300d,每天工作24h。 1.2.2 选择用板式塔不用填料塔的原因:因为精馏塔精馏塔对塔设备的要求大致如下: (1)生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。

分离乙醇—水混合液的筛板精馏塔设计

分离乙醇—水混合液的筛 板精馏塔设计 This model paper was revised by the Standardization Office on December 10, 2020

课题名称:化工课程设计任务书 系别:化环学院 专业:化工2班 学号: 姓名: 指导教师: 时间:2011年12月01-16日 附 化工原理—化工设备机械基础课程设计任务书-1专业化工班级 0409402 设计人 一. 设计题目 分离乙醇—水混合液的筛板精馏塔设计 二. 原始数据及条件 生产能力:年处理量8万吨(开工率300天/年),每天工作24小时; 原料:乙醇含量为20%(质量百分比,下同)的常温液体;

分离要求:塔顶,乙醇含量不低于90%, 塔底,乙醇含量不高于 8%; 操作条件: 三. 设计要求: (一)编制一份设计说明书,主要内容包括: 1. 前言 2. 设计方案的确定和流程的说明 3. 塔的工艺计算 4. 塔和塔板主要工艺尺寸的设计 a. 塔高、塔径及塔板结构尺寸的确定 b. 塔板的流体力学验算

c. 塔板的负荷性能图 5. 附属设备的选型和计算 6. 设计结果一览表 7. 注明参考和使用的设计资料 8. 对本设计的评述或有关问题的分析讨论。 (二)绘制一个带控制点的工艺流程图(2#图) (三)绘制精馏塔的工艺条件图(1#图纸) 四. 设计日期:2011年 12月01日至 2011 年12 月16日 五. 指导教师:谭志斗、石新雨 推荐教材及主要参考书: 1.王国胜, 裴世红,孙怀宇. 化工原理课程设计. 大连:大连理工大学出版社,2005 2.贾绍义,柴诚敬.化工原理课程设计. 天津:天津科学技术出版社,2002. 3、马江权,冷一欣. 化工原理课程设计. 北京:中国石化出版社,2009. 4、《化工工艺设计手册》,上、下册; 5、《化学工程设计手册》;上、下册; 6、化工设备设计全书编辑委员会.化工设备设计全书-塔设备;化学工业出版社:北京. 2004,01

板式塔的流体力学性能的测定

板式塔的流体力学性能的测定 一、实验名称:板式塔的流体力学性能的测定 二、实验目的: 1、对板式塔的结构、立体传质塔板有一个初步认识; 2、对塔板上流体流动状态有初步认识; 3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。 4、观察流体在塔板上的流动状态。 三、实验原理与流程: 实验流程见图1,来自储槽的水经过转子流量计自塔顶送入板式塔,由鼓风机送来的气体,经过孔板流量计送入塔的底部。塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状态。 四、实验步骤: 1、测定干板压降 将液封管内充满水,启动风机,根据孔板流量计连接的压差计调节气流流量大小,测定塔的干板压降,气体流量由小至大调节。由《化工原理》查询孔流系数,并计算气体流量。测定的压降值与干板压降计算公式进行验证,并计算误差。 干板压降经验式:?d=0.051w0 C02γ v γL (1?φ2) φ-----开孔率(开孔面积/开孔区域,此处取0.2);γv-----气相密度;γL-----液相密度;

?d-----干板压降,米液柱;C0-----孔流系数;w0-----空气速;(单位如不说明均为国际单位制)(假设矩形孔和导向孔气速一致) 2、测定湿板压降和夹带、漏液 调节气体流量为一定值,打开转子流量计。固定液体流量,将气体流量由小至大调节,每次增加200Pa,直到1600Pa。每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常的操作范围。 3、观察塔板上气液接触状态 随着气速的增大,塔板之上的气液接触状态由鼓泡状态,改为泡沫状态,最终达到喷射状态。塔板之上的清液层逐渐减小,泡沫层逐渐升高,甚至达到液泛状态。如不及时打开回流泵,由于塔釜容量有限,将出现降液管液泛,并波及塔内正常操作。观察漏液过程中周期性漏液。观察泡沫层上升和夹带量的关系。 四、数据处理 计算所需参数:孔板流量计计算公式:q v=C0A02?P ρ ,气体管径d1=200mm; 孔板孔径d2=125mm;孔板流量系数C0查询《化工原理》;孔流系数C0=0.76; 立体喷射式塔板:气体为连续相,液体为分散相;矩形帽罩结构,喷射区有圆形喷射孔,上部装有填料板波纹250Y。 开孔区域面积A=0.14㎡;矩形开孔180*60mm(3个);导向孔24*3mm(78个);底隙25mm;堰高50mm;堰长350mm;塔径476mm。 数据表格: 干板压降表格 液体流量L=4m3/h 流体力学记录表格

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

板式精馏塔课程设计

《化工原理》课程设计报告 苯-氯苯分离过程板式精馏塔设计 学院 专业 班级 学号 姓名 合作者 指导教师

化工原理设计任务书 一、设计题目: 苯-氯苯分离过程板式精馏塔设计 二、设计任务 1)进精馏塔的原料液中含氯苯为38%(质量百分比,下同),其余为苯。 2)塔顶馏出液中含氯苯不高于2%。 3)生产能力为日产纯度为99.8%的氯苯Z吨产品。年工作日300天,每天24小时连续运行。(设计任务量为3.5吨/小时) 三、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力0.5MPa; 5.单板压降不大于0.7kPa; 6. 设备型式:自选 7.厂址天津地区 四、设计内容 1.精馏塔的物料衡算; 2.塔板数的确定; 3.精馏塔的工艺条件及有关五行数据的计算; 4.精馏塔的塔体工艺尺寸计算; 5.塔板的主要工艺尺寸计算; 6.塔板的流体力学计算; 7.塔板负荷性能图; 8.精馏塔接管尺寸计算; 9.绘制生产工艺流程图; 10.绘制精馏塔设计条件图; 11.绘制塔板施工图; 12.对设计过程的评述和有关问题的讨论

五、基础数据 1.组分的饱和蒸汽压 i p (mmHg ) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 氯苯 t B 111.11127-= ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。 纯组分的汽化潜热与温度的关系可用下式表示: 38 .01212??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。

北京化工大学实验报告——板式塔的流体力学性能的测定

实验五板式塔的流体力学性能的测定 一、实验名称:板式塔的流体力学性能的测定 二、实验目的: 1、对板式塔的结构、普通筛板、导向筛板有一个初步认识; 2、对塔板上流体流动状态有初步认识; 3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。 4、观察流体在塔板上的流动状态。 三、实验原理与流程: 实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。 图1 实验装置流程图 四、实验步骤: 1、测定干板压降

将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定 塔的干板压降,气体流量由小至大调节。 孔板流量计计算公式: 0v q C A =由《化工原理》查询孔流系数,并计算气体流量。测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。 干板压降经验式:()220' 00.051( )1v d L w h C ρ?ρ=- ?-----开孔率;v ρ-----气相密度;L ρ-----液相密度;d h -----干板压降,米液柱; '0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制) 2、测定湿板压降和夹带、漏液 调节气体流量为一定值,打开转子流量计。固定液体流量,将气体流量由小至大调节, 每次增加200Pa ,至到2000Pa 。每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。 3.观察塔板上气液接触状态 随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射 状态。塔板之上的清液层逐渐消失,泡沫层逐渐升高,甚至达到液泛状态。如不及时打开回流泵,由于塔釜容量有限,将出现降液管液泛,并波及塔内正常操作。观察漏液过程中周期性漏液。观察泡沫层上升和夹带量的关系。 四、数据处理 计算所需参数:孔板流量计计算公式: 0v q C A = 气体管径 1200d mm =;孔板孔径 0137.6d mm =;孔板孔流系数0C 查询《化工原理》,按 阻力平方区取值 ;筛孔孔流系数' 00.76C =;开孔区域面积20.14A m =; 孔径 7mm ;孔间距 15mm ; 底隙 25mm ; 堰高 50mm ;堰长 350mm ;塔径 476mm ;孔数 625 个;干板压降矫正系数0.95,矫正筛板和导向筛板干板压降的差别,乘到压降公式中即可。

板式精馏塔设计书.doc

板式精馏塔设计任务书4-3 一、设计题目: 苯―甲苯精馏分离板式塔设计 二、设计任务及操作条件 1、设计任务:生产能力(进料量) 6万吨/年 操作周期 7200 小时/年 进料组成 48.0%(质量分率,下同) 塔顶产品组成 98.0% 塔底产品组成 3.0% 2、操作条件 操作压力常压 进料热状态泡点进料 冷却水 20℃ 加热蒸汽 0.19MPa 3、设备型式筛板塔 4、厂址安徽省合肥市 三、设计内容: 1、概述 2、设计方案的选择及流程说明 3、塔板数的计算(板式塔) ( 1 ) 物料衡算; ( 2 ) 平衡数据和物料数据的计算或查阅; ( 3 ) 回流比的选择; ( 4 ) 理论板数和实际板数的计算; 4、主要设备工艺尺寸设计 ( 1 ) 塔内气液负荷的计算; ( 2 ) 塔径的计算; ( 3 ) 塔板结构图设计和计算; ( 4 )流体力学校核; ( 5 )塔板负荷性能计算; ( 6 )塔接管尺寸计算; ( 7 )总塔高、总压降及接管尺寸的确定。 5、辅助设备选型与计算 6、设计结果汇总 7、工艺流程图及精馏塔装配图 8、设计评述

目录 1、概述 (3) 1.1 精馏单元操作的简介 (3) 1.2 精馏塔简介 (3) 1.3 苯-甲苯混合物简介 (3) 1.4设计依据 (3) 1.5 技术来源 (3) 1.6 设计任务和要求 (4) 2、设计计算 (4) 2.1确定设计方案的原则 (4) 2.2操作条件的确定 (4) 2.2.1操作压力 (4) 2.2.2进料状态 (5) 2.2.3加热方式的选择 (5) 2.3设计方案的选定及基础数据的搜集 (5) 2.4板式精馏塔的简图 (6) 2.5常用数据表: (6) 3、计算过程 (8) 3.1 相关工艺的计算 (9) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (9) 3.1.2原料液及塔顶、塔底产品的平均摩尔质量 (9) 3.1.3 物料衡算 (9) 3.1.4 最小回流比及操作回流比的确定 (9) 3.1.5精馏塔的气、液相负荷和操作线方程 (10) 3.1.6逐板法求理论塔板数 (10) 3.1.7精馏塔效率的估算 (12) 3.1.8实际板数的求取 (12) 3.2精馏塔的工艺条件及有关物性数据的计算 (12) 3.2.1操作压力计算 (12) 3.2.2操作温度计算 (13) 3.2.3平均摩尔质量计算 (13) 3.2.4平均密度计算 (14) 3.2.5液体平均表面张力计算 (15) 3.2.6液体平均粘度计算 (16) 3.3 精馏塔的主要工艺尺寸的计算 (17) 3.3.1 塔内气液负荷的计算 (17) 3.3.2 塔径的计算 (17) 3.3.3 精馏塔有效高度的计算 (19) 3.4 塔板结构尺寸的计算 (19) 3.4.1 溢流装置计算- (19) 3.4.2塔板布置 (21) 3.5筛板的流体力学验算 (23) 3.5.1 塔板压降相当的液柱高度计算 (23) 3.5.2液面落差 (24)

苯氯苯板式精馏塔的工艺设计工艺计算书

苯氯苯板式精馏塔的工艺设计工艺计 算书 1

2

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 化学与环境工程学院 化工与材料系 5月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 1 2020年5月29日

2 2020年5月29日 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 1.组分的饱和蒸汽压οi p (mmHg) 2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14. 1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m)

3 2020年5月29日 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01 238 .012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其它物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 苯-氯苯板式精馏塔的工艺计算书(精馏段部分) 一、设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。流程图略。

化工原理课程设计--- 乙醇——水筛板精馏塔工艺设计

化工原理课程设计任务书 专业:班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 。 6.操作回流比R=(1.1——2.0)R min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间 1设计任务

1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于

苯-甲苯筛板精馏塔的设计

淮阴工学院 课程设计说明书 作者:学号: 系 (院): 专业: 题目:苯-甲苯筛板精馏塔的设计 指导者: 2010年6月

化工原理课程设计说明书中文摘要 精馏是利用混合液中组分挥发度的差异,实现组分高纯度分离的多级蒸馏操作,即同时实现多次部分汽化和部分冷凝的过程。实现精馏操作的主体设备是精馏塔。 塔设备是能够实现蒸馏的气液传质设备,广泛应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。 我国石油工业具有一定的水平,但还是一个发展中的国家,摆在我们石油工作者面前的任务是繁重的。因此必须坚持独立自主、自力更生,革新挖潜,全面提高,综合利用,大搞化工原料,赶超世界先进水平。 关键词:精馏塔塔板苯—甲苯塔板负荷

淮阴工学院 化工原理课程设计任务书 设计条件: 设计内容: 1、精馏塔的物料衡算; 2、塔板数、压降的计算; 3、精馏塔的工艺条件及有关物性数据的计算; 4、精馏塔的相关工艺尺寸计算; 5、绘制精馏塔设计条件图。 指导教师:胡涛 2010年 6 月

目录 1. 引言 (6) 1.1 塔设备的分类 (6) 1.2 塔设备在化工生产中的作用和地位 (6) 1.3 设计条件 (6) 1.4 问题研究 (6) 2. 板式塔的设计 (6) 2.1 工业生产对塔板的要求 (6) 2.2 设计方案的确定 (7) 2.2.2 操作压力的选择 (7) 2.2.3 进料热状况的选择 (7) 2.2.4 加热方式的选择 (7) 2.2.5 回流比的选择 (7) 3 工艺流程图 (7) 4. 工艺计算及主体设备的计算 (8) 4.1 精馏塔的物料衡算 (8) 4.1.1 原料液及塔顶、塔底产品的摩尔分率 (8) 4.1.2 原料液及塔顶、塔底产品的平均摩尔质量 (8) 4.1. 3 物料衡算 (8) 4.2 塔板数的确定 (9) 4.2.1 理论板层数NT的求取 (9) 4.2.2 实际板层数的求解 (9) 4.3 精馏塔的工艺条件及有关物性数据计算 (9) 4.3.1 操作压力的计算 (10) 4.3.2 操作温度计算 (11) 4.3.3 平衡摩尔质量的计算 (11) 4.3.4 平均密度的计算 (12) 4.3.5 液体平均表面张力计算 (13) 4.3.6 液体平均粘度计算 (13) 4.4 精馏塔的塔体工艺尺寸计算 (14) 4.4.1 塔径计算 (14) 4.4.2 精馏塔有效高度的计算 (15) 4.5. 塔板主要工艺尺寸的计算 (15) 4.5.1 溢流装置计算 (15) 4.5.2 塔板布置 (16)

板式精馏塔实验报告

板式精馏塔实验报告 学院:广州大学生命科学学院 班级:生物工程121班 分组:第一组 姓名: 其他组员: 学号:

指导老师:尚小琴吴俊荣 实验时间2014.11.15 摘要:此次实验是对筛板精馏塔的性能进行全面的测试,实验主要对乙醇正丙醇精馏过 程中的研究不同条件下改变参量时的实验结果,根据实验数据计算得出塔釜浓度、回流比、进料位置等与全塔效率的关系,确定该筛板精塔的最优实验操作条件。 关键词:精馏;回流比;全塔效率;塔釜浓度 Abstract:The sieve plate distillation column performance comprehensive testing, mainly on ethanol isopropyl alcohol distillation process in the different experimental conditions were discussed, the reactor concentration, reflux ratio, feed location and the entire towerThe relationship between the efficiency of sieve plate tower, determine the optimal experimental conditions of fine. Key words: Distillation;reflux ratio;the tower efficiency 引言:精馏是利用混合液中两种液体的沸点差异来分离两种液体的过程。精馏装置有精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。精馏过程的节能措施一直是人们普遍关注的问题。精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要章节[2]。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题[4]。本研究从塔釜浓度、回流比、进料位置、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察[1],得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义通过本实验我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义[3]。 1.实验部分

筛板精馏塔课程设计

化工原理课程设计说明书 筛板式精馏塔设计 系别:化学工程系 班级:水净化1001

学号:0903100108 姓名:泽于 指导老师;黄秋颖

目录 第一部分概述 (4) 一、设计目标 (4) 二、设计任务 (4) 三、设计条件 (4) 四、设计容 (4) 五、工艺流程图 (5) 第二部分工艺设计计算 (6) 一、设计方案的确定 (6) 二、精馏塔的物料衡算 (6) 1.原料液及塔顶、塔底产品的摩尔分数 (6) 2.原料液及塔顶、塔底产品的平均摩尔质量和质量分数 (6) 3.物料衡算原料处理量 (6) 三、塔板数的确定 (7) 1.理论板层数T N的求取 (7) 2.全塔效率T E (8) 3.实际板层数的求取 (8) 四、精馏塔的工艺条件及有关物性数据的计算 (8) 1.操作压强计算 (9) 2.操作温度计算 (9) 3.平均摩尔质量计算 (9)

5.液相平均表面力计算 (10) 6.液相平均粘度计算 (11) 五、精馏塔的塔体工艺尺寸计算 (11) 1.塔径的计算 (11) 2.精馏塔的有效高度的计算 (12) 六、塔板主要工艺尺寸的计算 (13) 1.溢流装置计算 (13) 2.塔板布置 (14) 3.筛孔数n与开孔率 (15) 七、筛板的流体力学验算 (15) 1.气体通过筛板压降相当的液柱高度P h (15) 2.雾沫夹带量V e的验算 (16) 3.漏液的验算 (17) 4.液泛验算 (17) 八、塔板负荷性能图 (17) 1.漏液线 (17) 2.雾沫夹带线 (18) 3.液相负荷下限线 (19) 4.液相负荷上限线 (19) 5.液泛线 (20) 6. 操作线 (21)

板式塔流体力学性能测定

实验八、板式塔流体力学性能测定 一、实验目的 1.观察塔板上气、液两相流动状况。 2.测定气体通过塔板的压力降与空塔气速的关系、雾沫夹带率与空塔气速的关系、泄漏率和空塔气速的关系。 3.研究板式塔负荷性能图的影响因素并做出筛板塔的负荷性能图。 二、实验原理 板式塔为逐级接触的气~液传质设备,当液体从上层塔板经溢流管流经塔板与气体形成错流通过塔板,由于塔板上装有一定高度的堰,使塔板上保持一定的液层,然后越过堰从降液管流到下层塔板。气体从下层塔板经筛孔或浮阀、泡罩齿缝等,上升穿过液层进行气液两相接触,然后与液体分开继续上升到上一层塔板。塔板传质的好坏很大程度取决于塔板上的流体力学状况。 1.塔板上的气液两相接触状况及不正常的流动现象。 (1)气液两相在塔板上接触的三种状态: 1)当气体的速度较低时,气液两相呈鼓泡接触状态。塔板上存在明显的清液层,气体以气泡形态分散在清液层中间,气液两相在气泡表面进行传质。 2)当气体速度较高时,气液两相呈泡沫接触状态,此时塔板上清液层明显变薄,只有在塔板表面处才能看到清液,清液层随气速增加而减少,塔板上存在大量泡沫,液体主要以不断更新的液膜形态存在于十分密集的泡沫之间,气液两相以液膜表面进行传质。 3)当气体速度很高时,气液两相呈喷射接触状态,液体以不断更新的液滴形态分散在气相中间,气液两相以液滴表面进行传质。 (2)塔板上不正常的流动现象 1)漏液 当上升的气体速度很低时,气体通过塔板升气孔的动压不足阻止塔板上液层的重力,液体将从塔板的开孔处往下漏而出现漏液现象。 2)雾沫夹带 当上升的气体穿过塔板液层时,将板上的液滴挟裹到上一层塔板引起浓度返混的现象称为雾沫夹带。 3)液泛 当塔板上液体量很大,上升气体速度很高,塔板压降很大时,液体不能顺利地从降液管流下,于是液体在塔板上不断积累,液层不断上升,使塔内整个塔板间都充满积液的现象称为液泛。 2.流体力学性能测定 (1)压降 在塔板的上面和下面气液分离空间中各设置一个测压口,分别连在U型压差计的两端,可以测定气体通过塔板的压降。 压降通常包括干板压降和液层压降两部分。干板压降是指塔内不通液体,只有气体穿过塔板时测得的塔板压降,这部分压降主要是通过筛孔时克服阻力而产生的压降,液层压降是指气体通过塔板的清液层和泡沫层克服阻力而产生的压降。 (2)雾沫夹带率

精馏塔计算方法

目录 1 设计任务书 (1) 1.1 设计题目……………………………………………………………………………………………………………………………………………………………………… 1.2 已知条件……………………………………………………………………………………………………………………………………………………………………… 1.3设计要求………………………………………………………………………………………………………………………………………………………………………… 2 精馏设计方案选定 (1) 2.1 精馏方式选择………………………………………………………………………………………………………………………………………………………………… 2.2 操作压力的选择………………………………………………………………………………………………………………………………………………………………… 2.4 加料方式和加热状态的选择…………………………………………………………………………………………………………………………………………………… 2.3 塔板形式的选择………………………………………………………………………………………………………………………………………………………………… 2.5 再沸器、冷凝器等附属设备的安排…………………………………………………………………………………………………………………………………………… 2.6 精馏流程示意图………………………………………………………………………………………………………………………………………………………………… 3 精馏塔工艺计算 (2) 3.1 物料衡算………………………………………………………………………………………………………………………………………………………………………… 3.2 精馏工艺条件计算……………………………………………………………………………………………………………………………………………………………… 3.3热量衡算………………………………………………………………………………………………………………………………………………………………………… 4 塔板工艺尺寸设计 (4) 4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………

丙烯—丙烷板式精馏塔设计1讲解

过程工艺与设备课程设计 丙烯——丙烷精馏塔设计 课程名称:化工原理课程设计 班级: 姓名: 学号: 指导老师: 完成时间:

前言 本设计说明书包括概述、流程简介、精馏塔、再沸器、辅助设备、管路设计和控制方案共7章。 说明中对精馏塔的设计计算做了详细的阐述,对于再沸器、辅助设备和管路的设计也做了正确的说明。 鉴于设计者经验有限,本设计中还存在许多错误,希望各位老师给予指正 感谢老师的指导和参阅!

目录 第一节:标题 丙烯—丙烷板式精馏塔设计 第二节:丙烯—丙烷板式精馏塔设计任务书 第三节:精馏方案简介 第四节:精馏工艺流程草图及说明 第五节:精馏工艺计算及主体设备设计 第六节:辅助设备的计算及选型 第七节:设计结果一览表 第八节:对本设计的评述 第九节:工艺流程简图 第十节:参考文献 第一章 任务书 设计条件 1、 工艺条件: 饱和液体进料 进料丙烯含量%65x F (摩尔百分数)。

塔顶丙烯含量% x 98 ≥ D 釜液丙烯含量% ≤ x 2 W 总板效率为0.6 2、操作条件: 塔顶操作压力1.62MPa(表压) 加热剂及加热方法:加热剂——热水 加热方法——间壁换热冷却剂:循环冷却水 回流比系数:R/Rmin=1.2 3、塔板形式:浮阀 4、处理量:F=50kml/h 5、安装地点:烟台 6、塔板设计位置:塔顶 安装地点:烟台。 处理量:64kmol/h 产品质量:进料65% 塔顶产品98% 塔底产品<2% 1、工艺条件:丙烯—丙烷 饱和液体进料 进料丙烯含量65% (摩尔百分数) 塔顶丙烯含量98% 釜液丙烯含量<2% 总板效率为0.6 2、操作条件: 塔顶操作压力1.62MPa(表压)

苯--甲苯板式精馏塔塔的设计

《化工原理》课程设计 ------苯--甲苯板式精馏塔塔的设计 专业:化学工程与工艺 班级:1014101 学号:101410122 姓名:陈延超 指导教师:赵海鹏

日期 2013-01-09 序言 化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录 一、化工原理课程设计任书 (3) 二、设计计算 (4) 1.设计方案的确定 (4) 2.精馏塔的物料衡算 (7) 3.塔板数的确定 (7) 4.精馏塔的工艺条件及有关物性数据的计算 (11) 5.精馏塔的塔体工艺尺寸计算 (16) 6.塔板主要工艺尺寸的计算 (17) 7.筛板的流体力学验算 (21) 8.塔板负荷性能图 (23) 9.接管尺寸确定 (29) 三、个人总结 (31) 四、参考书目 (31)

相关文档
相关文档 最新文档