文档库 最新最全的文档下载
当前位置:文档库 › 肺炎双球菌转化实验习题.doc

肺炎双球菌转化实验习题.doc

肺炎双球菌转化实验习题.doc
肺炎双球菌转化实验习题.doc

(时间:45分钟满分:100分)

一、选择题(每小题5分,共55分)

1.(2010·江苏生物,4)探索遗传物质的过程是漫长的,直到20世纪初期,人们仍普遍认为蛋白质是遗传物质。当时人们作出判断的理由不包括()

A.不同生物的蛋白质在结构上存在差异

B.蛋白质与生物的性状密切相关

C.蛋白质比DNA具有更高的热稳定性,并且能够自我复制

D.蛋白质中氨基酸的不同排列组合可以贮存大量遗传信息

解析早期人们认为:不同生物的蛋白质在结构上存在一定的差异,这是不同生物差异的直接原因;蛋白质是生命活动的体现者和承担者,与生物性状密切相关;蛋白质的差异性主要体现在氨基酸的种类、数目、排列顺序不同引起了结构的不同,因此不同氨基酸的排列组合可以贮存大量遗传信息。后来发现,蛋白质的热稳定性差,易变性失活,并且不能自我复制,而DNA比蛋白质具有更高的热稳定性,并且能够自我复制。

答案 C

2.(2012·福州质检)格里菲思的肺炎双球菌转化实验如下:

①将无毒的R型活细菌注入小鼠体内,小鼠不死亡;

②将有毒的S型活细菌注入小鼠体内,小鼠患败血症死亡;

③将加热杀死的S型细菌注入小鼠体内,小鼠不死亡;

④将R型活细菌与加热杀死的S型细菌混合后,注入小鼠体内,小鼠患败血症死亡。

根据上述实验,下列说法正确的是()。

A.整个实验证明了DNA是转化因子

B.实验①、实验③可作为实验④的对照

C.实验④中的死亡小鼠体内S型活细菌毒性不能稳定遗传

D.重复做实验①与④,得到同样的结果,说明S型活细菌由R型活细菌突变而来

解析格里菲思的肺炎双球菌体内转化实验说明加热杀死的S型细菌可以使R 型细菌发生转化,但不能证明DNA是转化因子,A错误;在体内转化实验中,每一组既是实验组,又是其他组别的对照组,B正确;R型细菌转变成S型细菌是因为其接受了S型细菌的DNA,属可遗传变异,C错误;该实验所涉及的变异为基因重组,D错误。

答案 B

3.(2012·广东六校联考Ⅱ)艾弗里等人的肺炎双球菌转化实验和赫尔希与蔡斯的噬菌体侵染细菌实验都证明了DNA是遗传物质。这两个实验在设计思路上的共同点是()。

A.重组DNA片段,研究其表型效应

B.诱发DNA突变,研究其表型效应

C.设法把DNA与蛋白质分开,研究各自的效应

D.应用同位素示踪技术,研究DNA在亲代与子代之间的传递

解析噬菌体侵染细菌实验没有重组DNA片段,A错;两实验均没有诱发DNA 突变,B错;肺炎双球菌体外转化实验没有用到同位素示踪技术,D错;两个实验均设法把DNA与蛋白质分开,研究各自的效应,C对。

答案 C

4.(2012·陕西咸阳模考)将加热杀死的S型细菌与R型活细菌相混合后,注射到小鼠体内,在小鼠体内S型和R型细菌含量变化情况如图所示。下列有关叙述中错误的是()。

A.在死亡的小鼠体内可分离出S型和R型两种活细菌

B.曲线ab段下降是因为部分R型细菌被小鼠的免疫系统所消灭

C.曲线bc段上升,与S型细菌使小鼠发病后免疫力降低有关

D.S型细菌数量从0开始增多是由于R型细菌基因突变的结果

解析S型细菌的数量从0开始增多,是因为S型细菌中的转化因子促使R型细菌转化为S型细菌的结果,属于基因重组。

答案 D

5.下列关于遗传物质的说法,错误的是()。

①真核生物的遗传物质是DNA②原核生物的遗传物质是RNA③细胞核的遗传物质是DNA④细胞质的遗传物质是RNA⑤甲型H1N1流感病毒的遗传物质是DNA或RNA

A.①②③B.②③④

C.②④⑤D.③④⑤

解析凡具有细胞结构的生物的遗传物质都是DNA。甲型H1N1流感病毒的遗传物质是RNA。

答案 C

6.如图,病毒甲、乙为两种不同的植物病毒,经重建后形成“杂种病毒丙”,用病毒丙侵染植物细胞,在植物细胞内增殖后产生的新一代病毒是()。

解析杂种病毒丙是由病毒甲的蛋白质外壳和病毒乙的核酸组装而成的。其在侵染植物细胞时注入的是病毒乙的核酸,并由病毒乙的核酸指导合成病毒乙的蛋白质外壳,因而病毒丙在植物细胞内增殖产生的新一代病毒就是病毒乙。

答案 D

7.赫尔希通过T2噬菌体侵染细菌的实验证明DNA是遗传物质,实验包括4个步骤:①培养噬菌体(侵染细菌),②35S和32P标记噬菌体,③放射性检测,④离心分离。实验步骤的先后顺序为()。

A.①②④③B.④②①③

C.②①④③D.②①③④

解析T2噬菌体由蛋白质外壳和DNA组成,用放射性同位素35S和32P分别对其进行标记,然后让其感染细菌(培养噬菌体),再进行离心分离,最后进行放射性检测,发现进入细菌体内的只有DNA,从而得出DNA是遗传物质的结论。答案 C

8.(2012·北京东城区练习)如果用15N、32P、35S共同标记噬菌体后,让其侵染大肠杆菌,在产生的子代噬菌体的组成结构中,能够找到的标记元素为()。A.在外壳中找到15N和35S

B.在DNA中找到15N和32P

C.在外壳中找到15N

D.在DNA中找到15N、32P和35S

解析用15N、32P、35S共同标记噬菌体,15N标记了噬菌体的DNA和蛋白质外壳,32P标记了噬菌体的核酸,35S标记了噬菌体的蛋白质外壳,噬菌体侵染细菌过程中蛋白质外壳留在细菌外面,核酸进入细菌内部,在细菌中以噬菌体DNA 为模板,利用细菌的原料合成子代噬菌体的蛋白质外壳和核酸,又由于DNA复制具有半保留复制的特点,故在子代噬菌体中能找到15N和32P标记的DNA,不能找到35S标记的蛋白质。

答案 B

9.(2012·潍坊抽样监测)在证明DNA是生物遗传物质的实验中,用35S标记的T2噬菌体侵染未标记的大肠杆菌,以下对于沉淀物中含有少量放射性现象的解释,正确的是()。

A.经搅拌与离心后有少量含35S的T2噬菌体吸附在大肠杆菌上

B.离心速度太快,含35S的T2噬菌体有部分留在沉淀物中

C.T2噬菌体的DNA分子上含有少量的35S

D.少量含有35S的蛋白质进入大肠杆菌

解析35S标记的是噬菌体的蛋白质外壳,DNA分子中不含有35S,噬菌体的蛋白质外壳不能进入大肠杆菌内,但能吸附在大肠杆菌表面,造成一定的实验误差;是否留在沉淀物中,与物质的相对分子质量有关,与转速太快无关。

答案 A

10.(2012·杭州一模)在“噬菌体侵染细菌”的实验中,如果对35S标记的噬菌体实验组(甲组)不进行搅拌、32P标记的噬菌体实验组(乙组)保温时间过长,则会出现的异常结果是()。

A.甲组沉淀物中也会出现较强放射性,乙组上清液中也会出现较强放射性B.甲组上清液中也会出现较强放射性,乙组上清液中也会出现较强放射性C.甲组沉淀物中也会出现较强放射性,乙组沉淀物中也会出现较强放射性D.甲组上清液中也会出现较强放射性,乙组沉淀物中也会出现较强放射性

解析依据题干中提供的信息,35S标记的是噬菌体的外壳,侵染细菌时不进入细菌体内;32P标记的是噬菌体的DNA,侵染细菌时进入细菌体内;正常情况下,离心后噬菌体的蛋白质外壳存在于上清液中,而子代噬菌体留在沉淀物中。若甲组不搅拌,则有部分35S还留在沉淀物中,故沉淀物中的放射性会较强;乙组保温时间过长,会使部分子代噬菌体释放到上清液中,故上清液中会有较强的放射性。

答案 A

11.(2012·广东六校联考Ⅱ)在证明DNA是遗传物质的实验中,赫尔希和蔡斯分别用32P和35S标记噬菌体的DNA和蛋白质,在下图中标记元素所在部位依次是()。

A.①④B.②④C.①⑤D.③⑤

解析32P存在于DNA的磷酸基团上,35S存在于组成蛋白质的氨基酸的R基中。答案 A

二、非选择题(共45分)

12.(15分)(2010·宝鸡质检)“肺炎双球菌转化实验”是科学家在对生物遗传物质的探究过程中所做的一个实验。

(1)某人曾重复了“肺炎双球菌转化实验”,步骤如下:

①将一部分S型细菌加热杀死;

②制备符合要求的培养基,并分为若干组,将菌种分别接种到各组培养基上(接种的菌种见图中文字所述);

③将接种后的培养装置放在适宜温度下培养一段时间,观察菌落生长情况,发现在第4组培养装置中有S型菌落。

本实验得出的结论是___________________________________________。

(2)艾弗里等人通过实验证实了在上述细菌转化过程中,起转化作用的是DNA。请利用DNA酶作试剂,选择适当的材料用具,设计实验方案,验证“促进R型细菌转化成S型细菌的物质是DNA”,并预测实验结果,得出实验结论。

材料用具:R型菌、S型菌、DNA酶、蒸馏水、制备培养基所需的原料。

①实验设计方案:

第一步:从S型细菌中提取DNA;

第二步:制备符合要求的培养基,将其均分为三组,标为A、B、C,请将处理方法填写在表格中;

编号 A B C

处理方法不加任何提取物

第三步:将R

第四步:将接种后的培养装置放在适宜温度下培养一段时间,观察菌落生长情况。

②预测实验结果:_____________________________________________。

③得出结论:_________________________________________________。

(3)回答下列问题。

①“肺炎双球菌转化实验”以细菌为实验材料主要是由于细菌具有

________________________________________________________________

等优点。(写出两点)

②艾弗里实验最为关键的设计思路是:_______________________________。

③写出艾弗里实验采用的主要技术手段:______________________。(写出两种) 答案(1)S型细菌中的某种物质(转化因子)能使R型细菌转化成S型细菌(2)①B组:加入提取的S型细菌DNA C组:加入提取的S型细菌DNA和DNA 酶②A、C两组培养装置中未出现S型菌落,B组培养装置中出现S型菌落③使R型细菌转化成S型细菌的物质是DNA

(3)①结构简单、繁殖快②设法把DNA与蛋白质等物质分开单独地、直接地观察它们的作用③细菌的培养技术;物质的提取技术

13.(12分)(2010·杭州四中教育集团月考)已知菠菜的干叶病是干叶病毒导致的,但不清楚干叶病毒的核酸种类,试设计实验探究之。

实验原理:(略)

实验材料:苯酚的水溶液(可以将病毒的蛋白质外壳和核酸分离)、健康生长的菠菜植株、干叶病毒样本、DNA水解酶、其他必需器材。

(1)实验步骤:

①选取生长状况相似的若干菠菜植株平分为两组,编号为甲、乙;

②用苯酚的水溶液处理干叶病毒样本,并设法将其蛋白质和核酸分离,以获得其核酸;

③_________________________________________________________________;

④_________________________________________________________________。

⑤再过一段时间后,观察两组菠菜的生长情况。

(2)实验结果及结论:

①_________________________________________________________________;

②__________________________________________________________________。解析本题实验目的为“探究干叶病毒的核酸种类”,实验原理为:干叶病毒导致菠菜得干叶病;若干叶病毒的核酸为DNA,则用DNA水解酶处理干叶病毒核

酸,DNA被水解,对照组(没有处理)出现干叶,实验组(用DNA水解酶处理)不出现干叶;若干叶病毒的核酸为RNA,则对照组和实验组都表现出干叶。

答案(1)③在适当条件下,用DNA水解酶处理干叶病毒样本的核酸④一段时间后,用处理过的核酸稀释液喷洒甲组植株,用等量未处理的核酸稀释液喷洒乙组植株

(2)①若甲、乙两组都出现干叶,则病毒的核酸是RNA

②若仅乙组植株出现干叶,则病毒的核酸是DNA

14.(18分)(2012·北京海淀区期末)1952年“噬菌体小组”的赫尔希和蔡斯研究了噬菌体的蛋白质和DNA在侵染过程中的功能,请回答下列有关问题。

(1)他们指出“噬菌体在分子生物学的地位就相当于氢原子在玻尔量子力学模型中的地位一样”。这句话指出了噬菌体作实验材料具有________________的特点。

(2)通过________________的方法分别获得被32P或35S标记的噬菌体,用标记的噬菌体侵染细菌,从而追踪在侵染过程中________变化。

(3)侵染一段时间后,用搅拌机搅拌,然后离心得到上清液和沉淀物,检测上清液中的放射性,得到如图所示的实验结果。搅拌的目的是________________,所以搅拌时间少于1 min时,上清液中的放射性________。实验结果表明当搅拌时间足够长以后,上清液中的35S和32P分别占初始标记噬菌体放射性的80%和30%,证明________________。图中“被侵染细菌”的存活率曲线基本保持在100%,本组数据的意义是作为对照组,以证明________________,否则细胞外________放射性会增高。

(4)本实验证明病毒传递和复制遗传特性中________起着重要作用。

解析本题主要考查噬菌体侵染大肠杆菌的实验。(1)噬菌体作为实验材料,是

因为其结构简单,只含有蛋白质和DNA(核酸)。(2)噬菌体是病毒,离开活体细胞不能繁殖,所以要标记噬菌体,首先应用分别含32P和35S的培养基培养大肠杆菌,再让噬菌体侵染标记后的大肠杆菌,即可达到标记噬菌体的目的,进而追踪在侵染过程中蛋白质和DNA的位置变化。(3)噬菌体侵染大肠杆菌的时间要适宜,时间过长,子代噬菌体从大肠杆菌体内释放出来,会使细胞外32P含量增高。图中被侵染细菌的存活率始终保持在100%,说明细菌没有裂解,没有子代噬菌体释放出来。细胞外的35S含量只有80%,原因是在搅拌时侵染细菌的噬菌体外壳没有全部分离;细胞外的32P含量有30%,原因是有部分标记的噬菌体还没有侵染细菌。该实验证明DNA是噬菌体的遗传物质。

答案(1)结构简单,只含有蛋白质和DNA(核酸)(2)用分别含32P和35S的培养基培养大肠杆菌,再用噬菌体分别侵染被32P或35S标记的大肠杆菌DNA和蛋白质的位置

(3)将噬菌体和细菌振脱较低DNA进入细菌,蛋白质没有进入细菌细菌没有裂解,没有子代噬菌体释放出来32P(4)DNA

金属切削用量选择原则

切削用量的选择原则 数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p和进给量f,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。 1. 数控车床切削用量 1)切削深度a p 在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm。 切削深度ap计算公式:a p=2m w d d 式中:d w—待加工表面外圆直径,单位mm d m—已加工表面外圆直径,单位mm. 2)切削速度Vc ①车削光轴切削速度V c光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。 切削速度Vc计算公式: Vc= 式中:d—工件或刀尖的回转直径,单位mm n—工件或刀具的转速,单位r/min 表1 硬质合金外圆车刀切削速度参考表 工件材料热处理状态 a p=0.3~2mm a p=2~6mm a p=6~10mm f=0.08~0.3mm/r f=0.3~0.6mm/r f=0.6~1mm/r Vc/m·min-1Vc/m·min-1Vc/m·min-1 低碳钢易切热轧140~180100~12070~90

钢 热轧130~16090~11060~80中碳钢 调质100~13070~9050~70 热轧100~13070~9050~70合金工具钢 调质80~11050~7040~60工具钢退火90~12060~8050~70 HBS<19090~12060~8050~70灰铸铁 HBS=190~22580~11050~7040~60高锰钢10~20 铜及铜合金200~250120~18090~120 铝及铝合金300~600200~400150~200 铸铝合金100~18080~15060~100注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。 ②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。下列为一般数控车床车螺纹时主轴转速计算公式: n≤–k 式中:p—工件螺纹的螺距或导程,单位mm。 k—保险系数,一般为80。 3)进给速度 进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。

肺炎双球菌转化实验

《肺炎双球菌转化实验》疑难四问解析 曾小军(江西省泰和县第二中学343700) 证明DNA是遗传物质的证据的经典实验,由概念考查向分析说明转移是高考命题的趋势。本文针对一些疑难或误区作进一步的探讨。 疑难1:有荚膜的S型细菌可以使人患肺炎或使小鼠患败血症,而无荚膜的R型细菌不能够引起上述症状,这样说来是荚膜本身有毒性造成的吗? 答:很多学生误认为是荚膜本身有毒性造成的,其实不然。荚膜是某些细菌的细胞壁外的一层较松厚而且较固定的粘液性物质,主要由水、多糖或多肽组成。在防止噬菌体侵袭及吞噬细胞的吞噬和消化起着重要作用。当有荚膜的S型细菌就是被吞噬细胞吞噬后,由于受荚膜的保护,能抵抗吞噬和消化作用,从而迅速繁殖、扩散,能引起肌体发生疾病,严重时引起死亡,这才是S型细菌有毒性的真正原因。 疑难2:在格里菲思的实验中,既然S型细菌被加热杀死了,为什么无毒性的仍能转化为有毒性的S型活细菌?而在艾弗里的实验中,从S型活细菌提取的DNA用DNA酶处理后,就不能使R型细菌发生转化呢? 答:加热到60 ℃,S型细菌解体而死亡,此时S型细菌中的DNA链断裂为100个左右的仍具有活性的游离片断,每个片段至少有20个基因,在某一片段上仍含有控制荚膜形成的基因(即转化因子)。因此加热杀死后的S型细菌尽管已经死亡,但加热杀死后的S 型细菌中的DNA却具有能使R型细菌转化S型细菌的遗传效应。这也就是转化实验中,将无毒性R型活细菌与被加热杀死的S型细菌混合后,注射到小鼠体内,小鼠患败血症死亡的原因。如果用DNA酶处理从S型细菌提取的DNA,使DNA分解为游离的脱氧核苷酸,因而不存在控制荚膜形成的基因,当然就不能使R型细菌发生转化。 疑难3:加热杀死后的S型细菌直接注射到小鼠体内后,能使小鼠的体细胞发生转化吗? 答:从一个细胞分离得到的包括某些基因的DNA片段被另一细胞所吸收,从而使后者具有相应于这些基因的性状,这种基因转移的方式称为转化。转化是细菌中较为普遍的现象。转化与两种细菌的亲缘关系有关。。转化一般只发生在同一物种或近缘物种之间。亲缘关系越近,转化就越容易,反之则不能转化。转化还受受体菌状态的影响,只有处于一个短暂的生长阶段即感受态阶段时的受体菌才能被转化。肺炎双球菌的转化实验,是指同种细菌的不同品系(S型细菌、R型细菌)能够交换遗传物质,导致遗传物质从一个品系(S型细菌)转移到另一个品系(R型细菌),从而使品系的类型发生了转变。但S型肺炎球菌和小鼠不是同种,所以自然条件下彼此的细胞间遗传物质是不会转移的(但现代生物技术中的基因工程可以实现不同物种间的转移)。这就是肺炎双球菌转化实验中将加热杀死后的S型细菌注射到小鼠体内,小鼠不死亡的原因。 疑难4:在转化过程中,加热杀死后的有活性的S型细菌DNA片段或直接从S型活

CNC加工中心刀具的选择与切削用量的确定

CNC加工中心刀具的选择与切削用量 的确定 收藏此信息打印该信息添加:佚名来源:未知 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用C AD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 1.数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。 根据刀具结构可分为: 1)整体式; 2)镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种; 3)特殊型式,如复合式刀具,减震式刀具等。

根据制造刀具所用的材料可分为: 1)高速钢刀具; 2)硬质合金刀具; 3)金刚石刀具; 4)其他材料刀具,如立方氮化硼刀具,陶瓷刀具等 从切削工艺上可分为 : 1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; 2)钻削刀具,包括钻头、铰刀、丝锥等; 3)镗削刀具; 4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: 1)刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; 2)互换性好,便于快速换刀; 3)寿命高,切削性能稳定、可靠; 4)刀具的尺寸便于调整,以减少换刀调整时间; 5)刀具应能可靠地断屑或卷屑,以利于切屑的排除; 6)系列化,标准化,以利于编程和刀具管理。 2.数控加工刀具的选择

肺炎双球菌转化实验

《肺炎双球菌的转化实验》教案 【情境创设】前面我们已经学习了孟德尔遗传规律、细胞有丝分裂、减数分裂和受精作用,在学习过程中,我们知道生物的遗传和变异与细胞中的染色体有关,也逐渐认识到染色体在生物的遗传中具有重要作用。同时也知道了染色体主要是由蛋白质和DNA组成的。那么,这两种物质究竟哪一种是遗传物质呢? 授课:目前,DNA是遗传物质早就众所周知,比如DNA指纹法、亲子鉴定利用的都是DNA是主要的遗传物质。可是在早期,是不是一开始人们都认为DNA是主要的遗传物质?如果不是那之前人们认为的遗传物质是什么呢? 问;20世纪二三十年代,人们当时认为哪种物质是遗传物质?为何会有这样的观点? 答:人们当时对的DNA了解很少,而且构成DNA脱氧核苷酸只有4种,把它和生物多样性很难联系在一起,反而是构成蛋白质的氨基酸种类众多,和生物多样性联系在一起看似容易理解。所以人们就认为遗传物质是蛋白质。 那人们什么时候开始认识到DNA才是遗传物质?当然,这还要从肺炎双球菌转化实验说起。 肺炎双球菌转化实验 (1)1928 体转化实验(格里菲思) 看着这个题目,我们先来看一下什么肺炎双球菌?肺炎双球菌是一种什么样的生物 ? 答:肺炎双球菌称肺炎链球菌 ,属于原核微生物。根据菌落的特征分为两种类型 :光滑型 (S型 )和粗糙型 (R型 ) ,S和R分别是英语单词smooth(光滑 )和rough(粗糙 )的第一个字母。S型细菌的菌体有多糖构成的荚膜 ,菌落光滑 ,当侵染人和动物时能使其患病死亡 ;R型细菌的菌体无多糖构成的荚膜 ,菌落粗糙 ,不会使人和动物机体产生病变。 通过以上讲解,我们知道肺炎双球菌分为S型和R型,那为何S型细菌会致病,而R型细菌不能致病? 答:当细菌进入人或动物体后,由于免疫效应,都要被吞噬细胞吞噬消化,加以消灭。由于S型细菌有荚膜,进入吞噬细胞后,受荚膜的保护,能抵抗吞噬细胞的吞噬和消化,从而能迅速增殖、扩散,引起机体发生疾病。而R型细菌无荚膜,则能被吞噬细胞吞噬、消化,所以不能使机体患病。 了解了肺炎双球菌,让我们来看一下格里菲思是怎样用小鼠来进行实验的? 过程: ①无毒性R型肺炎双球菌感染小鼠,小鼠存活 ②有毒性S型肺炎双球菌感染小鼠,小鼠死亡

数控车削切削用量的选择原则、方法及主要问题

数控车削切削用量的选择原则、方法及主要问题 数控车削加工中的切削用量包括背吃刀量ap、主轴转速n或切削速度vc(用于恒线速度切削)、进给速度vf或进给量f。这些参数均应在机床给定的允许范围内选取。 切削用量的选用原则 (1)切削用量的选用原则 粗车时,应尽量保证较高的金属切除率和必要的刀具耐用度。 选择切削用量时应首先选取尽可能大的背吃刀量ap,其次根据机床动力和刚性的限制条件,选取尽可能大的进给量f,最后根据刀具耐用度要求,确定合适的切削速度vc。增大背吃刀量ap可使走刀次数减少,增大进给量f有利于断屑。 精车时,对加工精度和表面粗糙度要求较高,加工余量不大且较均匀。选择精车的切削用量时,应着重考虑如何保证加工质量,并在此基础土尽量提高生产率。因此,精车时应选用较小(但不能太小)的背吃刀量和进给量,并选用性能高的刀具材料和合理的几何参数,以尽可能提高切削速度。 (2)切削用量的选取方法 ①背吃刀量的选择粗加工时,除留下精加工余量外,一次走刀尽可能切除全部余量。也可分多次走刀。精加工的加工余量一般较小,可一次切除。在中等功率机床上,粗加工的背吃刀量可达8~10mm;半精加工的背吃刀量取0.5~5mm;精加工的背吃刀量取0.2~1.5mm。 ②进给速度(进给量)的确定粗加工时,由于对工件的表面质量没有太高的要求,这时主要根据机床进给机构的强度和刚性、刀杆的强度和刚性、刀具材料、刀杆和工件尺寸以及已选定的背吃刀量等因素来选取进给速度。精加工时,则按表面粗糙度要求、刀具及工件材料等因素来选取进给速度。进给速度νf 可以按公式ν f =f×n计算,式中f表示每转进给量,粗车时一般取0.3~0.8mm /r;精车时常取0.1~0.3mm/r;切断时常取0.05~0.2mm/r。 ③切削速度的确定切削速度vc可根据己经选定的背吃刀量、进给量及刀具耐用度进行选取。实际加工过程中,也可根据生产实践经验和查表的方法来选取。粗加工或工件材料的加工性能较差时,宜选用较低的切削速度。精加工或刀具材料、工件材料的切削性能较好时,宜选用较高的切削速度。切削速度vc确定后,可根据刀具或工件直径(D)按公式n=l000vc/πD 来确定主轴转速n(r/min)。在工厂的实际生产过程中,切削用量一般根据经验并通过查表的方式进行选取。常用硬质合金或涂层硬质合金切削不同材料时的切削用量推荐值见表1表2为常用切削用量推荐表,供参考。

肺炎双球菌转化实验的实质

肺炎双球菌转化实验的实质 遗传转化是指同源或异源的游离DNA分子(质粒或染色体DNA)被细菌的细胞摄取,并得以表达的基因转移过程。遗传转化可以分为自然转化和人工转化,前者是细胞在一定生长阶段出现容易接受外源DNA的生理特性;后者则是通过人为诱导的方法,使细胞具有摄取DNA的能力,或人为地将DNA导入细胞内。 自然转化现象首先是在肺炎双球菌中发现的。近几十年来,已经发现许多细菌属中的某些种类或某些特殊的菌株有自然转化能力。在肺炎双球菌中,自然转化的第一步是R型受体细胞处于感受态,即能从周围环境中吸取DNA的一种生理状态,然后是DNA在细胞表面的结合和进入。进入细胞的DNA分子一般以单链形式整合进宿主的染色体DNA,并获得遗传特性的表达。这一系列的过程涉及细菌染色体上10多个基因编码的功能。 R型细菌在生长到一定阶段时,就会分泌一种小分子的蛋白质,称为感受态因子。这种因子又与细胞表面受体相互作用,诱导感受态特异蛋白质(如自溶素)的表达,它的表达使细胞表面的DNA结合蛋白及核酸酶裸露出来,使其具有与DNA结合的活性。加热灭活的S型细菌遗留下了完整的细菌染色体DNA的各个片段,其中包括控制荚膜形成的基因,即S基因(smooth gene)。这一片段从S细菌中释放出来,并且在后继的培养中被一些R型细菌所摄取,S基因的DNA 以双链的形式在R型细菌细胞的几个位点上结合并被切割。核酸内切酶首先切断DNA双链中的一条链,被切割的链在核酸酶的作用下降解,成为寡核苷酸释放到培养基中,另一条链与R感受态细菌的特异蛋白质结合,以这种形式进入细胞,并通过同源的重组以置换的方式整合进入R细菌的基因组中,使R型细菌转化为S型细菌。

第十一章 切削用量的制定

第十一章切削用量的制定 切削用量的制定直接影响生产效率和加工成本。学习本章后应能够根据具体条件和要求,正确地选择切削用量。 11.1 必备知识和考试要点 1.了解切削用量的制定原则。 2.掌握粗加工时切削用量的选择方法。 3.明确限制选择切削用量的因素和解决办法。 11.2 典型范例和答题技巧 [例11.1] 选择切削用量的原则是什么?从刀具耐用度出发时,按什么顺序选择切削用量?从机床动力出发时,按什么顺序选择切削用量?为什么? [答案] 选择切削用量的原则是:首先选取尽可能大的背吃刀量αp,其次要在机床动力和刚度允许,又能满足加工表面粗糙度的前提下,选取尽可能大的进给量厂,最后根据确定的刀具耐用度选取或计算切削速度v。 以刀具耐用度选择切削用量时,选择的顺序应为αp—f—v。其理由可从刀具耐用度表达式T=C T/v X f Yαp Z中,由于X>Y>Z,即切削速度v对刀具耐用度影响最大,其次是进给量f,背吃刀量αp的影响最小。按这个顺序选择切削用量,得到的生产率最高。如果生产率不变,按这个顺序选择切削用量,刀具耐用度最高。 根据机床动力选择切削用量时,选择的顺序应为.f—v—αp. 其理由从机床功率的计算 公中,由于 1=X Fz>Y Fz>n Fz; 当nF z=0时,影响切削功最小的是f,其次是v与αp;当nF z<0时,通常X,>1十nF,影响切削功率最小的是f,其次是v,最后是αp所以,从机床动力考虑,理论上首先应按影响功率最小的f、其次v、最后αp的顺序选择切削用量。但实际上,考虑αp取小值时,会增加走刀次数,从而增加了辅助工时,因此生产中一般仍按αp—f—v的顺序选择切削用量,即先选择尽可能大的αp,其次选择尽可能大的f, 最后确定v。 [例11.2] 粗加工时进给量选择受哪些因素限制?当进给量受到表面粗糙度限制时,有什么办法增加进给量,而保证表面粗糙度要求? [答案] 粗加工时切削力很大,合理的进给量应是工艺系统所能承受的最大进给量。最大进给量主要受以下因素限制:(1)机床进给机构的强度;(2)车刀刀杆的强度和刚度; (3)工件装夹刚度;(4)硬质合金或陶瓷刀片的强度。 半精加工和精加工时,进给量的选择受到表面粗糙度的限制。此时为减小加工表面粗糙度,可适当增大刀尖圆弧半径γε、减小副偏角κr9,采用修光刃等办法。此外,可增大前角γo,提高刀具刃磨质量,选用有效的切削液等措施,以减小积屑瘤和鳞刺的不利影响。 [例11.3] 如果选定切削用量后发现超过机床功率时,应如何解决? [答案] 理论上影响机床功率大小的因素排列顺序是αp—v—f,所以,选定的切削用量超过机床功率时,也应按上述顺序减小切削用量。但考虑减小αp,会增加走刀次数,增加辅助工时,所以在不希望增加走刀次数的情况下,首先应适当降低v,然后再考虑减小f。 [例11.4] 制定切削用量时,影响切削速度的因素有哪些?解释其原因。 [答案] 制定切削用量时,依次选择背吃刀量αp和进给量f后,可用计算或查表来选择切削速度v。从公式和表格中可以看出影响切削速度的因素有:(1)背吃刀量αp、进给量f与速度v成反比例关系,即粗加工时,由于αp和f均较大,故应选择较低的v;精加工时,αp 和f均较小,故应选择较高的v。(2)工件材料的性能影响切削速度v。 工件材料强度、硬度较高时,应选较低的v,反之则选较高的v;工件材料加工性愈差,则v也选得愈低。(3)刀具材料的性能影响切削速度v。刀具材料切削性能愈好,v可选得愈

数控加工中切削用量的合理选择

数控加工中切削用量的合理选择 【摘要】文章介绍了切削用量的三要素,并对数控机床加工时切削用量的合理选择进行了详细阐述,为数控机床编程与操作人员提供参考。 【关键词】切削用量;加工质量;刀具耐用度;选择原则。 前言:数控加工中切削用量的原则是,粗加工时,一般以提高生产率为主, 但也应考虑经济和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。切削用量是表示机床主运动和进给运动大小的重要参数。切削用量的确定是数控加工工艺中的重要内容,切削用量的大小对加工效率、加工质量、刀具磨损和加工成本均有显著影响 一、切削用量的选择原则 数控加工中选择切削用量,就是在保证加工质量和刀具耐用度的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高,加工成本最低。 (一) 加工质量:加工质量分为加工精度和加工表面质量。 ⒈加工精度是指零件加工后实际几何参数(尺寸、形状和位置)与理想几何参数相符的程度。符合程度愈高,加工精度愈高。实际值与理想值之差称为加工误差,所谓保证加工精度,即指控制加工误差。 ⑴尺寸精度:加工表面的实际尺寸与设计尺寸的尺寸误差不超过一定的尺寸公差范围。在国标中尺寸公差分20级(IT01、IT0、IT1~IT18)。尺寸精度的获得方法: ①试切法:试切——测量——调整——再试切。用于单件小批生产。 ②调整法:通过预调好的机床、夹具、刀具、工件,在加工中自行获得尺寸精度。用于成批大量生产。 ③尺寸刀具法:用一定形状和尺寸的刀具加工获得。生产率高,但刀具制造复杂。 ④自动控制法:用一定装置,边加工边自动测量控制加工。切削测量补偿调整。 ⑵几何形状精度:加工表面的实际几何要素对理想几何要素的变动量不超过一定公差范围。在国标中形状公差有六项:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。几何形状精度的获得方法: 成形运动法 ①轨迹法:利用刀具与工件间的相对运动轨迹来获得形状。 ②成形法:利用成形刀具加工获得表面形状。 ③展成法:利用刀具与工件相对运动使工件被刀具切削成一定形状的包络线。 非成形运动法:人工修配、样板加工、划线加工等。 ⑶相互位置精度:加工表面的实际几何要素对由基准确定方向或位置的理想几何要素的变动量。在国标中位置公差有八项:平行度、垂直度、倾斜度、同轴度、对称度、位置度、圆跳动、全跳动。相互位置精度的获得主要由机床精度、

夹具、刀具的选择及切削用量的确定

夹具、刀具的选择及切削用量的确定 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、夹具的选择、工件装夹方法的确定 1.夹具的选择 数控加工对夹具主要有两大要求:一是夹具应具有足够的精度和刚度;二是夹具应有可靠的定位基准。选用夹具时,通常考虑以下几点: 1)尽量选用可调整夹具、组合夹具及其它通用夹具,避免采用专用夹具,以缩短生产准备时间。 2)在成批生产时才考虑采用专用夹具,并力求结构简单。 3)装卸工件要迅速方便,以减少机床的停机时间。 4)夹具在机床上安装要准确可靠,以保证工件在正确的位置上加工。 2.夹具的类型 数控车床上的夹具主要有两类:一类用于盘类或短轴类零件,工件毛坯装夹在带可调卡爪的卡盘(三爪、四爪)中,由卡盘传动旋转;另一类用于轴类零件,毛坯装在主轴顶尖和尾架顶尖间,工件由主轴上的拨动卡盘传动旋转。 数控铣床上的夹具,一般安装在工作台上,其形式根据被加工工件的特点可多种多样。如:通用台虎钳、数控分度转台等。

3.零件的安装品质新空间 数控机床上零件的安装方法与普通机床一样,要合理选择定位基准和夹紧方案,注意以下两点: 1)力求设计、工艺与编程计算的基准统一,这样有利于编程时数值计算的简便性和精确性。2)尽量减少装夹次数,尽可能在一次定位装夹后,加工出全部待加工表面。 二、刀具的选择及对刀点、换刀点的设置 1.刀具的选择 与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要刚性好、精度高,而且要求尺寸稳定,耐用度高,断屑和排屑性能好;同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。(1)车削用刀具及其选择数控车削常用的车刀一般分尖形车刀、圆弧形车刀以及成型车刀三类。 1)尖形车刀尖形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如90°内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。 尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑,并应兼顾刀尖本身的强度。2)圆弧形车刀圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该圆弧的圆心上。 圆弧形车刀可以用于车削内外表面,特别适合于车削各种光滑连接(凹形)的成型面。选择车刀圆弧半径时应考虑两点:一是车刀切削刃的圆弧半径应小于或等于零件凹形轮廓上

肺炎双球菌

.从微生物学角度 (1)肺炎双球菌的结构肺炎双球菌是一种细菌,属原核生物。由于核区中的DNA分子不与蛋白质结合,因此,用它作实验材料易于单独观察DNA在遗传中的作用。 (2)何为荚膜?其作用怎样? 荚膜是细菌细胞壁外围绕一层较厚的粘性、胶冻样物质。其化学成分随细菌种类不同而有差异,多数细菌的荚膜成分为多糖,如肺炎双球菌。荚膜的形成受遗传物质(基因)控制。 荚膜与细菌的致病性有关,同时荚膜还能储留水分能抗干燥,对保护细菌有作用。荚膜本身无毒性,但在机体内保护细菌抵抗吞噬细胞的吞噬及消化,并能抑制体内杀菌物质(如溶菌酶)的杀菌作用,使细菌易在体内大量繁殖致病。细菌若失去荚膜,致病力也随之减弱或消失。 (3)何为菌落?菌落是单个或少数细菌在固体培养基上大量繁殖时,形成的一种肉眼可见的、具有一定形态结构的子细胞群。每种细菌在一定条件下所形成的菌落,可以作为菌种鉴定的重要依据。 2.从分类学角度 肺炎双球菌有两种类型:一种是R型细菌,无多糖类的荚膜,是无毒性的;另一种是S型细菌,具有多糖类的荚膜,是有毒性的。R型实际上是S型肺炎双球菌的突变类型,二者属于同一个物种。 3.从免疫学角度 (1)为何S型细菌会致病,而R型细菌不能致病? 当细菌进入人或动物体后,由于免疫效应,都要被吞噬细胞吞噬消化,加以消灭。由于S型细菌有荚膜,进入吞噬细胞后,受荚膜的保护,能抵抗吞噬细胞的吞噬和消化,从而能迅速增殖、扩散,引起机体发生疾病。而R型细菌无荚膜,则能被吞噬细胞吞噬、消化,所以不能使机体患病。 (2)同是一种S型的肺炎双球菌,为何使人患肺炎,而小鼠患白血病? 肺炎双球菌都会使人或小鼠患肺炎,由于小鼠抵抗力差而细菌毒力较强,可并发败血症。 (3)何谓加热杀“死”?

格里菲斯肺炎双球菌转化实验

★★首先,DNA分子有变性和复性的特点.变性通俗点说就是性质改变,跟蛋白质的变性意思差不多.但是DNA不同,它又可以复性,就是恢复原本性质. 而变性复性主要通过加热,使双链解开,再温度恢复,使原本解开的双链又重新聚合. 所以,你看书上说," 加热杀死的S型细菌".当然细菌的其他成分比如蛋白质就不可逆地变性了.但是DNA也通过将双链解开变性. 再将其和R型细菌混合,那么,在细菌进行裂殖时,R型细菌的DNA也会解开, 那么,再降温的时候,就有可能R型细菌和S型细菌的DNA聚合,这样的话,形成的新的子代细菌就会表示出双链DNA就会有一条链是S型的,另一条链是R型的. 因此新的子代细菌就会表达出致病基因. 是的,可以发生。如S型菌是获得了R型菌的DNA,并且整合到了自己的DNA 上,这就是一个重组的过程啊。不要以为重组就只是减数分裂时发生的。 无荚膜的R型细菌有非常重要的“感受态因子”位点,保证了S型细菌的DNA 可以进入。S型细菌有荚膜,无“感受态因子”位点,不能作为受体菌直接培养而发生转化。那么S型细菌有可能变成R型细菌吗?当然有! 转化之所以会发生: 一、因为R型与S型的DNA可以同源区段配对,形成杂合细菌,通过分裂生殖形成R型和S型两种后代,不象许多人认为的(R型直接变成S型); 二、无荚膜的R型有非常重要的感受态,保证了S型的DNA可以进入。反之则不会发生:S型有荚膜,无感受态,不能作为受体菌,若人为除去荚膜,培养出无荚膜的后代,它就同时丧失了毒性,变成R型,当然就会有了感受态。 三、真核生物的细胞膜表面结构与原核生物的大不相同,不会发生转化(转化本身只发生在同种菌株间或近缘菌株间)。我们可以放心去吃想吃的东西,包括被加热杀死的S型肺炎双球菌。 四、S型可以变成R型吗?当然可以!产荚膜细菌由于有黏液物质,菌落表面湿润、有光泽、黏液状,称光滑型—S型(smooth);无荚膜细菌由于无黏液物质,菌落表面干燥、粗糙,称粗糙型—R型(rough)。自然状态下通过基因

切削用量的合理选择

切削用量的合理选择 切削用量不仅是在机床调整前必须确定的重要参数,而且其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响。在确定了刀具几何参数后,还需选定合理的切削用量参数才能进行切削加工。所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、转矩),在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。选择合理的切削用量时,必须考虑合理的刀具寿命。 切削用量的选择原则 切削用量与刀具使用寿命有密切关系。在制定切削用量时,应首先选择合理的刀具使用寿命,而合理的刀具使用寿命则应根据优化的目标而定。一般分最高生产率刀具使用寿命和最低成本刀具使用寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 粗车切削用量的选择 对于粗加工,在保证刀具一定使用寿命前提下,要尽可能提高在单位时间内的金属切除量。在切削加工中,金属切除率与切削用量三要素绝保持线性关系,即其中任一参数增大一倍。都可使生产率提高一倍。然而由于刀具使用寿命的制约,当任一参数增大时,其他二参数必须减少。因此,在制定切削用量时,三要素的最佳组合,此时的高生产率才是合理的。由刀具寿命经验公式知,切削用量各因素对刀具使用寿命的影响程度不同,切削速度对使用寿命的影响最大,进给量次之,被吃刀量影响最小。所以在选择粗加工切削用量时,当确定刀具使用寿命合理数值后,应首先考虑增大被吃刀量,其次增大进给量,然后根据使用寿命、被吃刀量和进给量的值计算出切削速度,这样既能保持刀具使用寿命,发挥刀具切削性能,又能减少切削时间,提高生产率。被吃刀量应根据加工余量和加工系统的刚性确定。 精加工切削用量的选择 选择精加工或半精加工切削用量的原则是在保证加工质量的前提下,兼顾必要的生产率。进给量根据工件表面粗糙度的要求来确定。精加工时的切削速度应避开积屑瘤区,一般硬质合金车刀采用高速切削。 大件精加工时,为保证至少完成一次走刀,避免在切削时中途换刀,刀具使用寿命应按零件精度和表面粗糙度来确定。 切削用量制定 目前许多工厂是通过切削用量手册、

第10讲 肺炎双球菌的转化实验

第10讲肺炎双球菌的转化实验 本讲的考纲要求: 1.人类对遗传物质的探索历程(Ⅱ) 肺炎球菌是一种可以引起人类肺炎和小鼠败血症的病原微生物。 1928年,格里菲思以小鼠为实验材料,研究肺炎双球菌是如何使人患肺炎 的,同时想研制出抗肺炎双球菌的疫苗。他选用了两种肺炎双球菌进行实验。 这两种肺炎双球菌的菌落不同。 菌落是在固体培养基上(内)以微生物母细胞为中心的一团肉眼可见的、 有一定形态、构造等特征的子细胞的集团。菌落特征与微生物的菌体形态结构 特征密切相关。可用于微生物的鉴别分类和计数。 一种细菌的菌落的表面smooth(光滑),用显微镜观察菌体有多糖类的荚膜, 荚膜是一种胶状的物质,称为S型细菌。另一种没有荚膜,菌落表面rough(粗 糙),称为R型。 格里菲思就用这两种细菌做了四组实验: 请分析这四组实验结果,得出实验结论,并加以分析。 第一组:R型活菌注入到小鼠体内,小鼠没有患败血症而死亡,说明R型菌是无毒的。 第一组:R型活菌注入到小鼠体内,小鼠患败血症而死亡,从死鼠的体内可分离出活的S型菌,说明S 型菌是有毒的,并能在小鼠内繁殖。 为什么S型菌会使小鼠死亡,而R型菌不会呢? S型菌有荚膜,可使它不被小鼠吞噬细胞吞噬,逃过了免疫系统,使小鼠感染得败血症而亡。而R型没有荚膜保护,被小鼠的免疫系统消失了。 第三组:加热杀死的S型菌不能使小鼠死亡,说明加热杀死的S型菌是无毒的。 第四组:无毒的活的R型菌与加热杀死的S型菌混合注射,小鼠得败血症而死亡,并从其体内能分离出活的S型菌。 难道S型菌死而复活了? 这不可能。

格里菲思认为S型菌是活的R型菌转化而来的,并给出了这样的推论:加热杀死的S型菌中,必然含有某种促成这一转化的活性物质——“转化因子”。 由于转化发生在小鼠体内,所以把这一实验称为肺炎双球菌的体内转化实验。 这种转化因子究竟是S型菌体内的哪种物质呢? 艾弗里及其同事,将S型菌的组成物质进行分离提纯,进行了如下的实验: 这一实验转化发生在培养基中,称为肺炎双球菌的体外转化实验。 转化发生要有两个条件:1.S型菌的DNA,2.感受态的活R型菌。所以发现转化的R型菌是少数。 根据这个实验可以得出什么结论? 说明转化因子是DNA。而且通过进一步实验发现DNA纯度越高,转化效果越好。 把转化得到的S型菌培养,其后代还是S型菌,说明肺炎双球菌的遗传物质是DNA。 这里用到了探究生物的遗传物质的实验方法中的分离提纯法。(见参考 可见肺炎双球菌的转化实验不仅证明了生物的遗传物质是DNA,还证明了DNA可以从一种生物个体转移到另一种生物个体,这可以说是基因工程的先导。 肺炎双球菌转化的实质: 感受态的R型菌,从环境中吸收到S型菌有荚膜基因的DNA片段,并整合到了DNA上,表现出了有荚膜这一性状。 如下图所示: 转化是某一基因型的细胞从周围介质中吸收来自另一基因型的细胞的DNA而使它的基因型和表型发生相应变化的现象。是原核生物基因重组的一种方式。 请写出转化过程中遗传信息传递的规律:

数控铣床切削用量的选择 如何选择切削用量

数控铣床切削用量的选择如何选择切削用量 在数控机床上加工零件时,切削用量都预先编入程序中,在正常加工情况下,人工不予改变。只有在试加工或出现异常情况时.才通过速率调节旋钮或电手轮调整切削用量。因此程序中选用的切削用量应是最佳的、合理的切削用量。只有这样才能提高数控机床的加工精度、刀具寿命和生产率,降低加工成本。 影响切削用量的因素有: 机床切削用量的选择必须在机床主传动功率、进给传动功率以及主轴转速范围、进给速度范围之内。机床—刀具—工件系统的刚性是限制切削用量的重要因素。切削用量的选择应使机床—刀具—工件系统不发生较大的“振颤”。如果机床的热稳定性好,热变形小,可适当加大切削用量。 刀具刀具材料是影响切削用量的重要因素。表6-2是常用刀具材料的性能比较。 数控机床所用的刀具多采用可转位刀片(机夹刀片)并具有一定的寿命。机夹刀片的材料和形状尺寸必须与程序中的切削速度和进给量相适应并存入刀具参数中去。标准刀片的参数请参阅有关手册及产品样本。 表6-2 常用刀具材料的性能比较 刀具材料切削速度耐磨性硬度硬度随温度变化高速钢最低最差最低最大 硬质合金低差低大 陶瓷刀片中中中中 金刚石高好高小 工件不同的工件材料要采用与之适应的刀具材料、刀片类型,要注意到可切削性。可切削性良好的标志是,在高速切削下有效地形成切屑,同时具有较小的刀具磨损和较好的表面加工质量。较高的切削速度、较小的背吃刀量和进给量,可以获得较好的表面粗糙度。合理的恒切削速度、较小的背吃刀量和进给量可以得到较高的加工精度。 冷却液冷却液同时具有冷却和润滑作用。带走切削过程产生的切削热,降低工件、刀具、夹具和机床的温升,减少刀具与工件的摩擦和磨损,提高刀具寿命和工件表面加工质量。使用冷却液后,通常可以提高切削用量。冷却液必须定期更换,以防因其老化而腐蚀机床导轨或其他零件,特别是水溶性冷却液。 以上讲述了机床、刀具、工件、冷却液对切削用量的影响。切削用量的选择原则参考2.3.3和4.2.2的内容,下面主要论述铣削加工的切削用量选择原则。 铣削加工的切削用量包括:切削速度、进给速度、背吃刀量和侧吃刀量。从刀具耐用度出发,切削用量的选择方法是:先选择背吃刀量或侧吃刀量,其次选择进给速度,最后确定切削速度。 1.背吃刀量a p或侧吃刀量a e 背吃刀量a p为平行于铣刀轴线测量的切削层尺寸,单位为㎜。端铣时,a p为切削层深度;而圆周铣削时,为被加工表面的宽度。侧吃刀量a e为垂直于铣刀轴线测量的切削层尺寸,单位为㎜。端铣时,a e为被加工表面宽度;而圆周铣削时,a e为切削层深度,见图6-29。 图6-29 铣削加工的切削用量

数控车床切削用量的选择

切削用量(a p、f、v)选择是否合理,对于能否充分发挥机床潜力与刀具切削性能,实现优质、高产、低成本和安全操作具有很重要的作用。在2.3.3中对于切削用量选择的总体原则进行了介绍,在这里主要针对车削用量的选择原则进行论述:粗车时,首先考虑选择一个尽可能大的背吃刀量a p,其次选择一个较大的进给量f,最后确定一个合适的切削速度v。增大背吃刀量a p可使走刀次数减少,增大进给量f有利于断屑,因此根据以上原则选择粗车切削用量对于提高生产效率,减少刀具消耗,降低加工成本是有利的。精车时,加工精度和表面粗糙度要求较高,加工余量不大且较均匀,因此选择精车切削用量时,应着重考虑如何保证加工质量,并在此基础上尽量提高生产率。因此精车时应选用较小(但不太小)的背吃刀量a p和进给量f,并选用切削性能高的刀具材料和合理的几何参数,以尽可能提高切削速度v。 1.背吃刀量a p的确定在工艺系统刚度和机床功率允许的情况下,尽可能选取较大的背吃刀量,以减少进给次数。当零件精度要求较高时,则应考虑留出精车余量,其所留的精车余量一般比普通车削时所留余量小,常取0.1~0.5㎜。 2.进给量f(有些数控机床用进给速度V f)进给量f的选取应该与背吃刀量和主轴转速相适应。在保证工件加工质量的前提下,可以选择较高的进给速度(2000㎜/min以下)。在切断、车削深孔或精车时,应选择较低的进给速度。当刀具空行程特别是远距离“回零”时,可以设定尽量高的进给速度。粗车时,一般取f=0.3~0.8㎜/r,精车时常取f=0.1~0.3㎜/r,切断时f=0.05~0.2㎜/r。 3.主轴转速的确定(1)光车外圆时主轴转速光车外圆时主轴转速应根据零件上被加工部位的直径,并按零件和刀具材料以及加工性质等条件所允许的切削速度来确定。切削速度除了计算和查表选取外,还可以根据实践经验确定。需要注意的是,交流变频调速的数控车床低速输出力矩小,因而切削速度不能太低。切削速度确定后,用公式n =1000 v c/πd 计算主轴转速n(r/min)。表5-9为硬质合金外圆车刀切削速度的参考值。如何确定加工时的切削速度,除了可参考表5-6列出的数值外,主要根据实践经验进行确定。表5-6硬质合金外圆车刀切削速度的参考值

切削用量选择例题.doc

[例2-2] 按图2-43所示工序图的要求,在CA6140型车床上车外圆。已知毛坯直径为mm,工件材料为45钢,;采用牌号为YT15的焊接式硬质合金外圆车刀加工,刀杆截面尺寸为;车刀切削部分几何参数为:,,,,,,,。试为该车削工序选取切削用量。 图2-43 工序草图 解为达到图2-43规定的加工要求,此工序需安排粗车和半精车两次走刀,粗车时将mm外圆车至mm,半精车时将mm外圆车至mm。 1.确定粗车切削用量 (1)背吃刀量。 (2)进给量根据已知条件,从表2-5中查得,根据所用CA6140车床的技术参数,实际取。 (3)切削速度切削速度可由式(2-29)计算,也可查表确定,本例采用查表法确定。从表2-7查得,由可推算出机床主轴转速n

r/min 根据所用CA6140型车床的主轴转速数列,取r/min,故实际切削速度为 m/min (4)校核机床功率本章第四节[例2-1]已为本例计算出了切削功率。查阅机床说明书知,CA6140车床电动机功率,取机床传动效率,则 < 校核结果表明,机床功率是足够的。 (5)校核机床进给机构强度 [例2-1] 已为本例计算出了切削力,,。考虑到在机床导轨和溜板之间由和所产生的摩擦力,设摩擦系数,则机床进给机构承受的力为 查机床说明书,CA6140车床纵向进给机构允许作用的最大力为3500N,它大于机床进给机构承受的力。校核结果表明机床进给机构的强度是足够的。 2.确定半精车切削用量 (1)背吃刀量。 (2)进给量根据图2-43提供的加工表面粗糙度Ra=3.2μm的要求,由表2-6查得,按CA6140车床进给量数列取。 (3)切削速度查表2-7知,由推算机床主轴转速 r/min

肺炎双球菌转化

细菌转化 [适应对象]生物工程专业 [实验学时] 6学时 一、实验目的 把外源DNA或体外重组的DNA或是某种质粒引入受体细胞中去,使受体菌具有新的遗传性,并从中选择出转化子。 二、实验原理 本实验是以大肠杆菌质粒PBR325作为外源DNA,将它从大肠杆菌HB101中抽提出来,此PBR325质粒上代有3个抗性标记,即Apr、Tcr、Cmr。以大肠杆菌C600作为受体菌,大肠杆菌C600对Amp、Tc、Cm是敏感的,若将PBR325质粒转化到C600中后即能在选择性平板LB+Ap、Tc、Cm上长出转化子来。 本实验抽提质粒PBR325采用碱变性抽提法,碱变性抽提质粒DNA 是基于染色体DNA与质粒DNA变性与复性的差异而达到分离的目的。 三、仪器设备及实验材料 (一)仪器设备:无菌离心管,PA瓶、三角瓶、试管、培养皿等。 (二)实验材料: 1、菌种:大肠杆菌HB101(PBR325);大肠杆菌C600(受体) 2、培养基:LB液体;LB固体 3、抗菌素:氨苄青霉素(Amp);氨霉素(cm);四环素(Tc)。 4、试剂 (1)溶液(I): 200mM葡萄糖25毫升 250mM EDTA 4毫升 1M Tris-HCL(Ph8.0)25毫升 加Dh2O至200毫升 (2)溶液(II):10M NaOH 4毫升 20% SDS 10毫升 加dh2O至200毫升 (3)溶液(Ⅲ):3M NaAc(Ph4.8)溶液

(4)ph4.8 Tris-HCL饱和的苯酚 (5)酚/氯仿(1:1) (6)TE溶液 10mM Tris-HCL(Ph4.8) 1 mM EDTA (7)冷乙醇(无水或95%) (8)0.1 M CaCL2 (9)0.1 M MgCL2 四、相关知识点 重组DNA质粒转化不同细菌有不同的转化效率。转化率的高低与受体菌感受态有关,只有具备感受态的细菌才能摄取外来的DAN 分子。而且,细菌的感受态是在短暂时间内发生的,一般出在长期生长对数期的后期。 五、实验步骤 (一)抽提质粒PBR325 1、将斜面K12HB101挑取一环于5毫升LB溶液中(含Tc15微克/毫升,Amp100微克/毫升,Cm100微克/毫升)于37℃过夜。 2、将长好的菌液倒入7毫升无菌离心管中,以8000rpm离心10分钟。 3、弃上清,打匀沉淀,加500微升溶液I在冰上放30分钟。 4、再加入1000微升的溶液Ⅱ(现配制)在温室下放置5-8分钟(反复轻轻转动几次)。 5、再加入750微升的溶液Ⅲ,在冰上放20-30分钟(轻轻转动几次)。 6、以15000rpm离心10分钟。 7、转上清液于另一支无菌管中。 8、用等体的饱和苯酚抽提一次(即:混匀、摇动后以12000rpm 离心10分钟)。 9、上清液转入另一支离心管,加等体积的苯酚/氯仿(1:1)以12000rpm离心10分钟,再抽提一次。 10、上清液转入另一支离心管加2倍体积的冷的乙醇于-20℃沉淀3—4小时。 11、将离心管取出,12000rpm离心10分钟。

肺炎双球菌转化实验习题集

(时间:45分钟满分:100分) 一、选择题( 1.(2010·江苏生物,4)探索遗传物质的过程是漫长的,直到20世纪初期,人们仍普遍认为蛋白质是遗传物质。当时人们作出判断的理由不包括( ) A.不同生物的蛋白质在结构上存在差异 B.蛋白质与生物的性状密切相关 C.蛋白质比DNA具有更高的热稳定性,并且能够自我复制 D.蛋白质中氨基酸的不同排列组合可以贮存大量遗传信息 解析早期人们认为:不同生物的蛋白质在结构上存在一定的差异,这是不同生物差异的直接原因;蛋白质是生命活动的体现者和承担者,与生物性状密切相关;蛋白质的差异性主要体现在氨基酸的种类、数目、排列顺序不同引起了结构的不同,因此不同氨基酸的排列组合可以贮存大量遗传信息。后来发现,蛋白质的热稳定性差,易变性失活,并且不能自我复制,而DNA比蛋白质具有更高的热稳定性,并且能够自我复制。 答案 C 2.(2012·福州质检)格里菲思的肺炎双球菌转化实验如下: ①将无毒的R型活细菌注入小鼠体内,小鼠不死亡;

②将有毒的S型活细菌注入小鼠体内,小鼠患败血症死亡; ③将加热杀死的S型细菌注入小鼠体内,小鼠不死亡; ④将R型活细菌与加热杀死的S型细菌混合后,注入小鼠体内,小鼠患败血症死亡。 根据上述实验,下列说法正确的是( )。 A.整个实验证明了DNA是转化因子 B.实验①、实验③可作为实验④的对照 C.实验④中的死亡小鼠体内S型活细菌毒性不能稳定遗传 D.重复做实验①与④,得到同样的结果,说明S型活细菌由R型活细菌突变而来 解析格里菲思的肺炎双球菌体内转化实验说明加热杀死的S型细菌可以使R 型细菌发生转化,但不能证明DNA是转化因子,A错误;在体内转化实验中,每一组既是实验组,又是其他组别的对照组,B正确;R型细菌转变成S型细菌是因为其接受了S型细菌的DNA,属可遗传变异,C错误;该实验所涉及的变异为基因重组,D错误。 答案 B 3.(2012·广东六校联考Ⅱ)艾弗里等人的肺炎双球菌转化实验和赫尔希与蔡斯的噬菌体侵染细菌实验都证明了DNA是遗传物质。这两个实验在设计思路上的共同点是( )。 A.重组DNA片段,研究其表型效应 B.诱发DNA突变,研究其表型效应 C.设法把DNA与蛋白质分开,研究各自的效应

相关文档
相关文档 最新文档