文档库 最新最全的文档下载
当前位置:文档库 › CPU的技术参数的意思

CPU的技术参数的意思

CPU的技术参数的意思
CPU的技术参数的意思

CPU的技术参数的意思1

CPU(Central Processing Unit) 也就是我们常说的中央处理器,就一般的用户来说,它不是装机配件中最昂贵的,但它是电脑当中最核心的配件,一台电脑的性能如何跟CPU的性能有着最直接的关系.而且CPU的选择也同时关系到主板和内存的搭配问题!!

为了让大家更清晰地了解CPU,我们先来了解CPU的一些基本的概念.

CPU重要参数介绍:

1)前端总线:英文名称叫Front Side Bus,一般简写为FSB.前端总线是CPU跟外界沟通的唯一通道,处理器必须通过它才能获得数据,也只能通过它来将运算结果传送出其他对应设备.前端总线的速度越快,CPU的数据传输就越迅速.前端总线的速度主要是用频率来衡量,前端总线的频率有两个概念:一就是总线的物理工作频率(即我们所说的外频),二就是有效工作频率(即我们所说的FSB频率).由于INTEL跟AMD采用了不同的技术,所以他们之间FSB频率跟外频的关系式也就不同了.现时的Inter是:FSB频率=外频X4;而AMD的就是:FSB频率=外频X2.举个例子:P4 2.8C的FSB频率是800MHZ,由那公式可以知道该型号的外频是200MHZ了;又如BARTON核心的Athlon XP2500+ ,它的外频是166MHZ,根据公式,我们知道它的FSB频率就是333MHZ了.目前的前端总线频率,这一点Intel还是有优势的.

2)二级缓存:也就是L2 Cache,我们平时简称L2.主要功能是作为后备数据和指令的存储.L2容量的大小对处理器的性能影响很大.因为L2需要占用大量的晶体管,是CPU晶体管总数中占得最多的一个部分,高容量的L2成本相当高!!所以INTEL和AMD都是以L2容量的差异来作为高端和低端产品的分界标准!

3)制造工艺:我们经常说的0.18微米、0.13微米制程,就是指制造工艺.制造工艺直接关系到CPU的电气性能.而0.18微米、0.13微米这个尺度就是指的是CPU核心中线路的宽度.线宽越小,CPU的功耗和发热量就越低,并可以工作在更高的频率上了.所以0.18微米的CPU 能够达到的最高频率比0.13微米CPU能够达到的最高频率低,同时发热量更大都是这个道理.

4)流水线:流水线也是一个比较重要的概念.CPU的流水线指的就是处理器内核中运算器的设计.这好比我们现实生活中工厂的生产流水线.处理器的流水线的结构就是把一个复杂的运算分解成很多个简单的基本运算,然后由专门设计好的单元完成运算.CPU流水线长度越长,运算工作就越简单,CPU的工作频率就越高,不过CPU的效能就越差,所以说流水线长度并不是越长越好的.由于CPU的流水线长度很大程度上决定了CPU所能达到的最高频率,所以现在INTEL为了提高CPU的频率,而设计了超长的流水线设计.Willamette和Northwood核心的流水线长度是20工位,而如今上市不久的Prescott 核心的P4则达到了让人咋舌的30(如果算上前端处理,那就是31)工位.而现在AMD的Clawhammer K8,流水线长度仅为11工位,当然

处理器能上到的最高频率也会比P4相对低一点,但是处理效率并不低!

5)超线程技术(Hyper-Threading,简写为HT):这是Intel针对Pentium4指令效能比较低这个问题而开发的.超线程是一种同步多线程执行技术,采用此技术的CPU内部集成了两个逻辑处理器单元,相当于两个处理器实体,可以同时处理两个独立的线程.通俗一点就是,超线程实际上把一个CPU虚拟成两个,相当于两个CPU同时运作,从而达到了加快运算速度的目的.

参考资料:

https://www.wendangku.net/doc/07762137.html,/index20060602/index_99_174562.html

CPU的技术参数的意思2

CPU的技术参数

一、CPU的内部结构与工作原理

CPU是Central Processing

Unit—中央处理器的缩写,它由运算器和控制器组成,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。

CPU的工作原理就像一个工厂对产品的加工过程:进入工厂的原料(指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储器)中,最后等着拿到市场上去卖(交由应用程序使用)。

二、CPU的相关技术参数

1.主频

主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU 的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU 运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU 内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。

当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

2.外频

外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

3.前端总线(FSB)频率

前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz 外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是

100MHz×64bit÷8Byte/bit=800MB/s。

4.倍频系数

倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。

5.缓存

缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。L1 Cache(一级缓存)是CPU第一层高速缓存。

内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般L1缓存的容量通常在32—256KB.

L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达1MB-3MB。

6.CPU扩展指令集

CPU扩展指令集指的是CPU增加的多媒体或者是3D处理指令,这些扩展指令可以提高CPU处理多媒体和3D图形的能力。著名的有MMX(多媒体扩展指令)、SSE(因特网数据流单指令扩展)和3DNow!指令集。

7.CPU内核和I/O工作电压

从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~3V。低电压能解决耗电过大和发热过高的问题。

8.制造工艺

指在硅材料上生产CPU时内部各元器材的连接线宽度,一般用微米表示。微米值越小制作工艺越先进,CPU可以达到的频率越高,集成的晶体管就可以更多。目前Intel的P4和AMD的XP都已经达到了0.13微米的制造工艺,明年将达到0.09微米的制作工艺。

第一部分为处理器的类型,其中Processor(处理器)为AMD Athlon XP CPU;Platform(封装)是Scoket

462插脚;Vendor String(厂商)为AMD;Family、Model、Stepping ID组成系列号,可以用来识别CPU的型号;Name String(名称)为AMD的Athlon系列CPU。

第二部分为处理器的频率参数。其中Internal

Clock即CPU的主频,可以看到这款CPU的主频为2079.54MHz,即2.0G;System

Bus即前端总线,这款为332.73,并非标准的前端总线,因此是超了外频的CPU;System

Clock即外频,即为166.36MHz,是超了外频的CPU;Multiplier 即倍频,这款CPU的倍频为12.5。

第三部分为处理器的缓存情况。L1 I-Cache:L1 I-缓存,这款CPU 为64k;L1 D-Cache:L1

D-缓存,同样为64K;L2 Cache:L2 缓存,这款CPU的L2 缓存达到256K;L2 Speed:L2

速度,和CPU的主频一样。

第四部分为处理器所支持的多媒体扩展指令集,可以看到这款CPU 所支持的指令集有MMX、MMX+、SSE、3DNOW!、3DNOW!+,但是不支持SSE2指令。

9.指令集

(1)X86指令集

要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是

X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。

虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的Pentium

4(以下简为P4)系列,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel

X86系列及其兼容CPU都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。

(2)RISC指令集

RISC指令集是以后高性能CPU的发展方向。它与传统的CISC(复

杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。而且RISC 指令集还兼容原来的X86指令集。

10.字长

电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。当前的CPU都是32位的CPU,但是字长的最佳是CPU

发展的一个趋势。AMD未来将推出64位的CPU-Atlon64。未来必然是64位CPU的天下。

11.IA-32、IA-64架构

IA是Intel

Architecture(英特尔体系结构)的英语缩写,IA-32或IA-64是指符合英特尔结构字长为32或64位的CPU,其他公司所生产的与Intel

产品相兼容的CPU也包括在这一范畴。当前市场上所有的X86系列CPU仍属IA-32架构。AMD即将推出Athlon64是IA-64架构的CPU。

12.流水线与超流水线

流水线(pipeline)是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功

能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。

超流水线(superpiplined)是指某型CPU内部的流水线超过通常的5—6步以上,例如Pentium

pro的流水线就长达14步。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD

1.2G的速龙甚至奔腾III。

13.封装形式

CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU 的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot

x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid

Array)、OLGA(Organic Land Grid

Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。

参考资料:

https://www.wendangku.net/doc/07762137.html,/Article/ShowArticle.asp?ArticleID=393

cpu主要包括

CPU包括运算逻辑部件、寄存器部件,运算器和控制部件等。 一、运算逻辑部件: 运算逻辑部件可以执行定点或浮点算术运算,移位运算和逻辑运算,以及地址运算和转换。 二、寄存器部件: 寄存器部件,包括通用寄存器,专用寄存器和控制寄存器。 通用寄存器可以分为定点数和浮点数。它们用于在指令中存储寄存器操作数和运算结果。 通用寄存器是中央处理器的重要组成部分,大多数指令必须访问通用寄存器。通用寄存器的宽度决定了计算机内部数据路径的宽度,其端口数通常会影响内部操作的并行性。 专用寄存器是执行某些特殊操作所需的寄存器。 控制寄存器通常用于指示机器执行状态或保留一些指针。有处理状态寄存器,地址转换目录的基地址寄存器,特权状态寄存器,条件代码寄存器,异常处理寄存器和错误检测寄存器。 有时,中央处理单元中有一些缓存,用于临时存储一些数据指令。缓存越大,CPU的计算速度越快。目前,市场上的中高端中央处理单元具有大约2M的二级缓存。高端中央处理单元具有大约4M的辅助缓存。 三、控制部件: 控制部件主要负责解码指令并发出控制信号以完成要为每个指令执行的每个操作。

有两种结构:一种是以微存储为核心的微程序控制模式;另一种是微程序控制模式。另一种是基于逻辑硬连线结构的控制模式。 微代码存储在微存储器中,每个微代码对应一个基本的微操作,也称为微指令。每个指令由不同的微代码序列组成,这些序列构成一个微程序。中央处理单元对指令进行解码后,发出一定的时序控制信号,并以给定的顺序以微周期为节拍执行由这些微代码确定的许多微操作,以完成拍子的执行。一定的指示。 简单的指令由(3到5个)微操作组成,而复杂的指令由数十个微操作甚至数百个微操作组成。

cpu主要包括

CPU是计算机的核心,是电脑的心脏,叫做中央处理器。负责处理、运算计算机内部的所有数据,主要由运算器、控制器、寄存器组和内部总线等构成。CPU是整个微机系统的核心,它往往是各种档次微机的代名词,CPU的性能大致上反映出微机的性能,因此它的性能指标十分重要。 CPU包括运算逻辑部件、寄存器部件、控制部件。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字和特征码。有的指令中也直接包含操作数本身。 运算逻辑部件 运算逻辑部件,可以执行定点或浮点的算术运算操作、移位操作以及逻辑操作,也可执行地址的运算和转换。 寄存器部件 寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。 32位CPU的寄存器 通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通

用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中央处理器都有2M左右的二级缓存。 控制部件 控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。逻辑硬布线控制器则完全是由随机逻辑组成。指令译码后,控制器

cpu包括

Cpu 的组成: CPU的内部由寄存器、控制器、运算器和时钟四个部分组成,各个部分之间由电流信号相互连通。 寄存器中的种类和作用包括: 1.数据寄存器 数据寄存器(Data Register,DR)又称数据缓冲寄存器,其主要功能是作为CPU和主存、外设之间信息传输的中转站,用以弥补CPU 和主存、外设之间操作速度上的差异。 数据寄存器用来暂时存放由主存储器读出的一条指令或一个数据字;反之,当向主存存入一条指令或一个数据字时,也将它们暂时存放在数据寄存器中。 数据寄存器的作用是: (1)作为CPU和主存、外围设备之间信息传送的中转站;

(2)弥补CPU和主存、外围设备之间在操作速度上的差异; (3)在单累加器结构的运算器中,数据寄存器还可兼作操作数寄存器。 2.指令寄存器 指令寄存器(Instruction Register,IR)用来保存当前正在执行的一条指令。 当执行一条指令时,首先把该指令从主存读取到数据寄存器中,然后再传送至指令寄存器。 指令包括操作码和地址码两个字段,为了执行指令,必须对操作码进行测试,识别出所要求的操作,指令译码器(Instruction Decoder,ID)就是完成这项工作的。指令译码器对指令寄存器的操作码部分进行译码,以产生指令所要求操作的控制电位,并将其送到微操作控制线路上,在时序部件定时信号的作用下,产生具体的操作控制信号。 指令寄存器中操作码字段的输出就是指令译码器的输入。操作码一经译码,即可向操作控制器发出具体操作的特定信号。 3.程序计数器 程序计数器(Program Counter,PC)用来指出下一条指令在主存储器中的地址。 在程序执行之前,首先必须将程序的首地址,即程序第一条指令

cpu主要包括

CPU主要包括两个部分,即控制器、运算器,其中还包括高速缓冲存储器及实现它们之间联系的数据、控制的总线。 中央处理器(CPU),是电子计算机的主要设备之一,电脑中的核心配件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。电子计算机三大核心部件就是CPU、内部存储器、输入/输出设备。中央处理器的功效主要为处理指令、执行操作、控制时间、处理数据。 主要功能 一、处理指令 英文Processing instructions;这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。 二、执行操作 英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 三、控制时间 英文Control time;时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。

四、处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU 具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。

cpu包括以下部件

CPU组成结构 CPU包括运算逻辑部件、寄存器部件,运算器和控制部件等。 运算逻辑部件 运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 寄存器部件 寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。 通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。 通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。 专用寄存器是为了执行一些特殊操作所需用的寄存器。 控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。 有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中

央处理器都有2M左右的二级缓存,高端中央处理器有4M左右的二级缓存。 控制部件 控制部件,主要负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。

cpu主要包括

一、cpu基本组成 CPU由运算器、控制器和寄存器组,是计算机的核心,对计算机的整体性能有着决定性的影响。CPU是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。它的功能主要是解释计算机指令以及处理计算机软件中的数据。运算器主要对计算机传输过来的信息进行算术或者逻辑运算。控制器则负责计算机CPU中指令的执行。 二、物理结构 运算逻辑部件:运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 寄存器部件:通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。专用寄存器是为了执行一些特殊操作所需用的寄存器。 控制部件:控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 三、CPU主要技术性能指标有 1、主频,这是CPU的内部时钟的频率。计算机要运行的话,主频是需要进行运算时的。是一种工作频率。主频的越高就表明,在一

个时钟的周期里,所需要完成的指令数是非常多的。是正比例的。主频越高,运算的速度就越快; 2、外频指的是系统总线,外频和主频不一样,主频是负责运算时的,而外频是负责CPU周边的设备的数据传输频率的。外频的主要任务就是负责CPU到芯片组之间的总线速度; 3、倍频,原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频=外频×倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高; 4、缓存,在CPU、GPU内部由于需要在高速运算时读写数据,因此一般会设计有多级的缓存,空间小但速度快,在日常运算中很多数据都是从缓存里面调动出来的。缓存可以说是CPU运算的一个重要环节,在整个运行的过程中,起到一个存储的作用,缓存可以有效的提高整个数据的传输速度; 四、CPU 主要功能 1、处理指令 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。

CPU主要性能指标

CPU的性能指标: 1.主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。 当然,主频和实际的运算速度是有关的,但是目前还没有一个确定的公式能够实现两者之间的数值关系,而且CPU的运算速度还要看CPU的流水线的各方面的性能指标。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 2.外频 外频是CPU的基准频率,单位也是MHz。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。 3.前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。 4.倍频系数 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU 与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 5.缓存 缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。L1 Cache(一级缓存)是CPU第一层高速缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般L1缓存的容量通常在32—256KB. L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达1MB-3MB。 6.CPU扩展指令集 CPU扩展指令集指的是CPU增加的多媒体或者是3D处理指令,这些扩展指令可以提高CPU 处理多媒体和3D图形的能力。著名的有MMX(多媒体扩展指令)、SSE(因特网数据流单指令扩展)和3DNow!指令集。 7.CPU内核和I/O工作电压 从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~3V。

cpu包括部件介绍

CPU包括部件介绍 CPU全称叫中央处理器,CPU包括运算逻辑部件、寄存器部件和控制部件等。 1、逻辑部件 英文Logic components;运算逻辑部件。可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 2、寄存器 寄存器部件,包括寄存器、专用寄存器和控制寄存器。通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。通用寄存器是中央处理器的重要部件之一。 3、控制部件 英文Control unit;控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。

其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。 中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 扩展资料 cpu主要功能 1、处理指令 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。

2、执行操作 一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 3、控制时间 时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。 4、处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU 控制,CPU的性能指标直接决定了微机系统的性能指标。

cpu包括

cpu包括哪些部分 一、概念 CPU全称叫中央处理器,包含有运算器(算术逻辑运算单元,ALU,Arithmetic Logic Unit)和高速缓冲存储器(Cache)及实现它们之间联系的数据(Data)、控制及状态的总线(Bus)三大部件。 它与内部存储器(Memory)和输入/输出(I/O)设备合称为电子计算机三大核心部件。 中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心(Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。 二、CPU包括运算逻辑部件、寄存器部件和控制部件等。 1、逻辑部件 英文Logic components;运算逻辑部件。可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 2、寄存器 寄存器部件,包括寄存器、专用寄存器和控制寄存器。通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。通用寄存器是中央处理器的重要部件之一。 3、控制部件 英文Control unit;控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。

中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。 三、cpu主要功能 1、处理指令 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。 2、执行操作 一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU 要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 3、控制时间 时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。 4、处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。 四、CPU工作流程 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字以及特征码。有的指令中也直接包含操作数本身。

cpu主要包括

CPU主要包括运算逻辑部件、寄存器部件和控制部件等,英文Logic components;运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 一、CPU的概念 CPU(Central Processing Unit)又叫中央处理器,其主要功能是进行运算和逻辑运算,内部结构大概可以分为控制单元、算术逻辑 单元和存储单元等几个部分。按照其处理信息的字长可以分为:八 位微处理器、十六位微处理器、三十二位微处理器以及六十四位微 处理器等等。 二、CPU主要的性能指标 主频:即CPU内部核心工作的时钟频率,单位一般是兆赫兹(MHz)。这是我们平时无论是使用还是购买计算机都最关心的一个参数,我们通常所说的133、166、450等就是指它。对于同种 类的CPU,主频越高,CPU的速度就越快,整机的性能就越高。 外频和倍频数:外频即CPU的外部时钟频率。外频是由电脑主板提供的,CPU的主频与外频的关系是:CPU主频=外频×倍频数。 内部缓存:采用速度极快的SRAM制作,用于暂时存储CPU运算 时的最近的部分指令和数据,存取速度与CPU主频相同,内部缓存的容量一般以KB为单位。当它全速工作时,其容量越大,使用频 率最高的数据和结果就越容易尽快进入CPU进行运算,CPU工作 时与存取速度较慢的外部缓存和内存间交换数据的次数越少,相对 电脑的运算速度可以提高。 地址总线宽度:地址总线宽度决定了CPU可以访问的物理地址空间,简单地说就是CPU到底能够使用多大容量的内存。 具体介绍:

1、逻辑部件 英文Logic components;运算逻辑部件。可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。 2、寄存器 寄存器部件,包括寄存器、专用寄存器和控制寄存器。通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。通用寄存器是中央处理器的重要部件之一。 3、控制部件 英文Control unit;控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。 CPU的主要功能: 1、处理指令 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。 2、执行操作 英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 3、控制时间

相关文档