文档库 最新最全的文档下载
当前位置:文档库 › 双闭环直流可逆调速系统设计

双闭环直流可逆调速系统设计

双闭环直流可逆调速系统设计
双闭环直流可逆调速系统设计

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:

题目: 逻辑无环流直流可逆调速系统建模与仿真

初始条件:

1.技术数据:

直流电动机:P N=55KW , U N=220V , I N=287A , n N=1500r/min , R a=0.1Ω

最大允许电流I dbl=1.5I N, (GD2=46.57N.m2)

三相全控整流装置:K s=40,

电枢回路总电阻R=0.15Ω,

系统主电路:T m=0.12s ,T l=0.03s

滤波时间常数:T oi=0.002s , T on=0.012s,

其他参数:U nm*=8V ,U im*=8V , U cm=8V

2.技术指标

稳态指标:无静差(静差率s≤2, 调速范围D≥10)

动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算)要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.技术要求:

(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作

(2) 系统静特性良好,无静差(静差率s≤2)

(3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s

(4) 系统在5%负载以上变化的运行范围内电流连续

(5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容:

(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

(2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作用,

(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB来进行调节器的参数调节。

(4) 绘制V-M双闭环直流可逆调速系统的电气原理总图(要求计算机绘图)

(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书

时间安排:

查阅资料12月21-12月23

任务设计12月24-12月30

校正打印12月31

指导教师签名:年月日

系主任(或责任教师)签名:年月日

晶闸管反并联的电枢可逆线路是可逆调速系统的典型线路之一。这种线路有能实现可逆运行、回馈制动等优点,但也会产生环流。为保证系统安全,必须消除其中的环流。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还是交一交变频的基础。本文采用Matlab的Simulink和Power System工具箱,介绍如何实现逻辑无环流可逆调速系统的建模与仿真。

逻辑无环流可逆直流调速系统省去了环流电抗器,没有了附加的环流损耗,节省变压器和晶闸管装置的附加设备容量。和有环流系统相比,因换流失败造成的事故率大为降低。本文对逻辑无环流可逆直流调速系统进行了仿真研究,对DLC(逻辑控制器)、ACR 和ASR 的参数进行了设计,给出了仿真结果和分析。

关键词:无环流可逆直流调速系统逻辑控制器Matlab Simulink Power System

1设计任务与方案 (1)

2 逻辑无环流可逆直流调速系统分析 (2)

2.1 可逆V-M直流调速系统的环流问题 (2)

2.2 移相方法α = β配合控制 (2)

2.3 逻辑无环流可逆直流调速系统的组成与工作原理 (4)

2.4 无环流逻辑控制器 (5)

3逻辑无环流可逆直流调速系统设计 (6)

3.1 主要参数计算 (6)

3.2 主电路设计 (7)

3.3 DLC(逻辑控制器)设计 (7)

3.4 电流调节器设计 (10)

3.4.1电流环结构框图的化简 (10)

3.4.2 确定时间常数 (11)

3.4.3 选择电流调节器结构 (11)

3.4.4计算电流调节器参数 (11)

3.4.5 校验近似条件 (12)

3.4.6 计算调节器电阻电容 (12)

3.5 转速调节器设计 (12)

3.5.1 确定时间常数 (13)

3.5.2选择转速调节器结构 (13)

3.5.3 计算转速调节器参数 (13)

3.5.4 检验近似条件 (13)

3.5.5 计算调节器电阻和电容 (14)

3.5.6 校核转速超调量 (14)

4 系统建模与仿真 (15)

4.1 逻辑控制器的建模 (15)

4.2 总系统建模 (16)

4.2.1 各部分的传递函数 (16)

4.2.2 传递函数建模 (17)

4.2.3 利用PowerSystem 工具箱的物理模型建模 (19)

4.3 仿真结果 (21)

4.3.1 逻辑控制器(DLC)仿真 (21)

4.3.2 电机正反转仿真 (22)

4.4 仿真结果分析 (22)

5 总结 (24)

5.1 心得体会 (24)

5.2 改进意见及展望 (24)

参考文献 (25)

附录电气原理图 (26)

逻辑无环流直流可逆调速系统建模与仿

1设计任务与方案

在可逆调速系统中,往往采用既没有直流平均环流,又没有脉动环流的无环流可逆系统,无环流可逆系统省去了环流电抗器,没有了附加的环流损耗,节省变压器和晶闸管装置的附加设备容量。和有环流系统相比,因换流失败造成的事故率大为降低。因此,逻辑无环流可逆调速系统在生产中被广泛运用。

本文通过对逻辑无环流可逆直流调速系统仿真分析,研究了逻辑无环流可逆直流调速系统各个重要环节的设计,仿真结果证明了设计的正确性。在两组反并联供电的直流电动机可逆调速系统中,如果在一组整流器工作时,封锁状态另一组整流器,即切断这组整流器的触发脉冲,使这组整流器不工作,这样两组整流器之间就没有环流通道,既不会产生直流环流也不会产生脉动环流。这种系统一般由逻辑控制器来判断在正反转或制动过程中那组整流器应该工作(包括整流和逆变两种状态),那组整流器应该封锁,故称为逻辑控制无环流可逆调速系统。逻辑无环流可逆系统的思路简洁,并且由于不存在环流和没有环流带来的损耗,整流器的容量可以减少,也不需要限制环流的电抗器,是目前晶闸管—直流电动机可逆调速系统常用的控制方案。

设计要求逻辑无环流直流可逆调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作;系统静特性良好,无静(静差率s≤2);动态性能指标要求转速超调量δn<10%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s;系统在5%负载以上变化的运行范围内电流连续;调速系统中设置有过电压、过电流等保护,并且有制动措施。

本设计采用MATLAB进行建模与仿真,文中将采用传递函数和PowerSystem 工具箱分别进行建模和仿真。控制系统传统的计算机仿真是用传递函数方法来完成的,各环节的传递函数是将实际模型经过一定的简化而得到的,较容易实现,但是很多重要细节会被忽略。而利用PowerSystem 工具箱提供了利用物理模型仿真的可能,其仿真建模方法与构建实际电路相似,仿真结果非常接近于实际,但是仿真难度较大。

2 逻辑无环流可逆直流调速系统分析

2.1 可逆V-M 直流调速系统的环流问题

采用两组晶闸管反并联的可逆V-M 系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流。

一般地说,这样的环流对负载无益,徒然加重晶闸管和变压器的负担,消耗功率,环流太大时会导致晶闸管损坏,因此应该予以抑制或消除。

只要合理的对环流进行控制,保证晶闸管的安全工作,可以利用环流作为流过晶闸管的基本负载电流,使电动机在空载或轻载时可工作在晶闸管装置的电流连续区,以避免电流断续引起的非线性对系统性能的影响。

在不同情况下,会出现下列不同性质的环流。第一种是静态环流,它是两组可逆线路在一定控制角下稳定工作时出现的环流,其中它又可以分为两类:

1)直流平均环流——由晶闸管装置输出的直流平均电压所产生的环流称作直流平均环流。2)瞬时脉动环流——两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。

其中直流平均环流可以采用α = β 配合控制来消除,瞬时脉动环流可以使用电抗器来抑制。

第二种是动态环流——仅在可逆V-M 系统处于过渡过程中出现的环流。

2.2 移相方法α = β 配合控制

在两组晶闸管反并联的可逆V-M 系统中,如果让正组VF 和反组VR 都处于整流状态,两组的直流平均电压正负相连,必然产生较大的直流平均环流。为了防止直流平均环流的产生,需要采取必要的措施,比如:采用封锁触发脉冲的方法,在任何时候,只允许一组晶闸管装置工作;采用配合控制的策略,使一组晶闸管装置工作在整流状态,另一组则工作在逆变状态。

为了防止产生直流平均环流,应该当正组处于整流状态时,强迫让反组处于逆变状态,且控制其幅值与之相等,用逆变电压把整流电压顶住,则直流平均环流为零。于是

00 d r d f U U =-

由于,

00max cos d f d f U U a = 00max cos d r d r U U a =

其中f α和r α分别为VF 和VR 的控制角。由于两组晶闸管装置相同,两组的最大输出电压d0max U 是一样的,因此,当直流平均环流为零时,应有

cos cos r f a a =-

或 0

180r f a a +=

如果反组的控制用逆变角r β表示,则

f r αβ=

由此可见,按上式来控制就可以消除直流平均环流,这称作αβ=配合控制。为了更可靠地消除直流平均环流,可采用

f r αβ≥

为了实现αβ=配合控制控制,可将两组晶闸管装置的触发脉冲零位都定在90o ,即当控制电压0c U =时,使00090o f r r αβα===,此时000d f d r U U ==,电机处于停止状态。增大控制电压移相时,只要使两组触发装置的控制电压大小相等符号相反就可以了。

αβ=配合控制系统的移相控制特性如图2-1所示。

图2-1 αβ=配合控制系统的移相控制特性

为了防止晶闸管装置在逆变状态工作中逆变角太小而导致换流失败,出现“逆变颠覆”现象,必须在控制电路中采用限幅作用,形成最小逆变角min β保护。与此同时,对α角也实施 min α保护,以免出现00d f d r U U >而产生直流平均环流。通常取min min 30o αβ=。

2.3 逻辑无环流可逆直流调速系统的组成与工作原理

逻辑无环流可逆直流调速系统的电气原理图如图2-2所示。

系统主电路也采用两组整流器反并联方案,由于没有环流,不用设置环流电抗器,但为了保证稳定运行时电流波形连续,仍应保留平波电抗器d L 。控制系统采用典型的转速、电流双闭环系统,由转速调节器、电流调节器、逻辑控制器等组成。

为了得到不反映极性的电流检测方法,在图2-2中画出了交流互感器和整流器,可以为正反向电流分别各设一个电流调节器,1ACR 用来控制正组触发装置GTF ,2ACR 用来控制正组触发装置GTR ,1ACR 的给定信号*Ui 经反号器AR 作为2ACR 的给定信号*Ui 。

为了不出现环流,设置无环流逻辑控制器DLC ,这是系统中的关键环节,它按照系统的工作状态指挥正反组的自动切换。其输出信号blf U 用来控制正组触发脉冲的封锁或开放,

blr U 用来控制反组触发脉冲的封锁或开放。

在任何情况下,两个信号必须是相反的,决不允许两组晶闸管同时开放脉冲,以确保主电路没有出现环流的可能。但是,和自然无环流系统一样,触发脉冲的零位仍整定在

0090o f r αα==,移相方法仍采用αβ=配合控制。

图2-2 逻辑无环流可逆直流调速系统的电气原理图

2.4 无环流逻辑控制器

无环流逻辑控制环节是逻辑无环流控制系统的关键环节,无环流逻辑控制器的任务是当需要正组晶闸管工作时,则封锁反组晶闸管,当需要反组晶闸管工作时,则封锁正组晶闸管。采用数字逻辑电路、PLC 、微机等,可以使其数字输出信号 0和 1来执行封锁与开放晶闸管的功能,为了确保正反组不会同时开放,应使两者不能同时为 1。

逻辑控制器的切换动作应该根据电流环给定信号*i U 来指挥。因为当系统在反转时当然应该开放反组晶闸管封锁正组晶闸管;但当系统正转运动中要制动或减速时,也要用反组晶闸管的逆变状态来实现回馈制动。在这两种情况下都要开放反组,封锁正组。由此可以发现,ASR 的输出信号*i U 满足这项工作,反转运行和正转制动都需要电动机产生负的转矩;反之,正转运行和反转制动都需要电动机产生正的转矩,*i U 的极性恰好放映了电机电磁转矩方向的变化。

但是,仅用ACR 给定信号*i U 去控制 DLC 还是不够。因为,当*i U 的极性改变时,实际电流方向不能立即变化,此时逻辑控制器不能进行切换动作;只有在实际电流降到零的时候,才应该给DLC 发出命令。所以,在*i U 改变极性后,还有等待“零电流检测”信号io U ,才能发出正反组切换。逻辑切换指令发出后还不能马上执行,还要经过关断等待延时和触发等待延时,确保可靠工作。

另外,逻辑控制器应具有逻辑连锁保护功能,以保证在任何情况下,两个信号必须是相反的,决不容许两组晶闸管同时开放脉冲,确保主电路没有出现环流的可能。

那么,根据以上分析逻辑控制器应具有以下结构,如图2-3所示。

图2-3 逻辑控制器结构图

3逻辑无环流可逆直流调速系统设计

设计课题给出的技术数据如下:直流电动机:P N =55KW , U N =220V , I N =287A , n N =1500r/min , R a =0.1Ω;最大允许电流 I dbl =1.5I N , (GD 2=46.57N.m 2);三相全控整流装置:K s =40 ;电枢回路总电阻 R=0.15Ω ;系统主电路:T m =0.12s ;滤波时间常数:T oi =0.002s , T on =0.012s ;其他参数:U nm *=8V , U im *=8V , U cm =8V 。

要求的技术指标为:稳态指标:无静差(静差率s≤2, 调速范围 D≥10 );动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算)。

3.1 主要参数计算

由电力电子技术知识可知,三相桥式整流电路带阻感负载时输出电压平均值为

22.34cos d U U α=

可知此设计的负载为电机负载,则在额定负载运行时

220d N U U V ==,取0o α=

则有整流变压器二次侧相电压2/2.34cos 220/2.3494.02d U U V V α=== 系统要求在5%负载以上变化的运行范围内电流连续,则min 5%d N I I = 平波电抗器2min 94.02

0.693

0.693 4.542875%

d U L mH I ==?=?,取4.5mH ; 电枢回路电磁时间常数 4.50.030.15

l L mH

T s R === 电动势系数2202870.10.1275min/1500

N N a e N U I R C V r n --?=

==?

转速反馈系数*max 8

0.00533min/1500nm U V r n α===?

电流反馈系数**8

0.0186/1.5 1.5287

im im dbl N U U V A I I β====?

还有,系统要求调速范围10D ≥,静差率2%s ≤ 则闭环系统的稳态速降15002%

/min 3.06/min (1)10(12%)

N cl n s n r r D s ??=

≤=-?-

系统的开环额定速降2870.15

/min 337.65/min 0.1275

N op e I R n r r C ??=

==

闭环系统的开环放大系数应满足337.65

11109.343.06

op cl

n K n ?=

-≥

-=? 3.2 主电路设计

晶闸管-电动机调速系统(V-M 系统)主电路原理图如图3-1所示。图中由晶闸管组成三相全控桥式整流电路,同时设有过电压和过电流保护电路。通过调节触发装置的控制电压c U 来移动脉冲的相位,即可改变平均整流电压d U ,从而实现平滑调速。

图3-1 V-M 双闭环直流可逆调速系统主电路原理图

3.3 DLC (逻辑控制器)设计

逻辑无环流可逆调速系统通常采用典型的转速电流双闭环系统结构,关键是设置了一套无环流逻辑切换装置(DLC )。DLC 装置的任务:在正组晶闸管整流桥工作时开放正组脉冲,封锁反组脉冲;在反组晶闸管整流桥工作时开放反组脉冲,封锁正组脉冲。

DLC 的工作要求包括:

(1)DLC 根据转矩极性信号*i U 和零电流检测信号io U ,经逻辑运算后发出逻辑切换指令。当*i U 改变极性,且零电流检测器发出零电流信号io U 时,允许封锁原工作组,开放另一组。

(2)DLC 发出切换指令后需经过封锁延时时间dbl T 后才能封锁原导通组脉冲,再经开放延时时间dt T 后才能开放另一组脉冲。通常3dbl T ms =,7dt T ms =。

(3)在任何情况下,两组晶闸管不允许同时加触发脉冲。

根据分析,可逆调速系统各种运行状态时逻辑控制器输入与输出各量之间的关系见表3-1。在表3-1中归纳合并重复项后,可以得到逻辑判断的真值表,见表3-2。

表3-1 逻辑控制器输入与输出各量之间的关系

根据表3-2可以得到逻辑控制器输入和输出的逻辑关系表达式为(用与非门实现)

()F R T I U U U U =

[()]R F T I I U U U U U =

逻辑判断由与非门组成,其输入为转矩极性和零电流信号T U 、I U ;输出为逻辑切换信号F U 、R U 。

延时电路的设计:

前面的逻辑运算电路保证零电流切换,但仅仅采用零电流切换是不够的。因为零电流检测装置的灵敏度总是有限的,零电流检测装置变成“0”态的瞬间,不一定原来开放组的晶闸管已经断流。因此必须在切换过程中设置两段延时即封锁延时和开放延时,避免由于正反组整流装置同时导通而造成短路。根据这个要求,逻辑装置在逻辑电路后面接有延时电路。

逻辑保护电路的设计:

逻辑电路正常工作时,两个输出端总是一个高电位,一个低电位,确保任何时候两组整流一组导通,另一组则封锁。但是当逻辑电路本身发生故障,一旦两个输出端均出现低电位时,两组整流装置就会同时导通而造成短路事故。为了避免这种事故,设计有逻辑保护环节。

逻辑保护环节截取了逻辑运算电路经延时电路后的两个输入信号作为一个或非门的输入信号。当正常工作时,两个输入信号总是一个是高电位,另一个是低电位。或非门输出总是低电位,它不影响脉冲封锁信号的正常输出,但一旦两个输入信号均为低电位时,它输出一个高电位,同时加到两个触发器上,将正反两组整流装置的触发脉冲全部封锁了,使系统停止工作,起到可靠的保护作用。

设计中采用单片机实现逻辑控制器的功能,设计的逻辑控制器如图3-2所示。

图3-2 逻辑控制器电气原理图

3.4 电流调节器设计

含给定滤波与反馈滤波的PI 型电流调节器如图3-3所示:

图3-3 含给定滤波与反馈滤波的PI 型电流调节器

其中*i U 为电流给定电压,d I β-为电流负反馈电压,c U 为电力电子变换器的控制电压。

3.4.1电流环结构框图的化简

在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即E ?≈0。这时,电流环如下图3-4所示。忽略反电动势对电流环作用的近似条件是

ci ω≥ (3-1)

图3-4 忽略反电动势的电流环动态结构框图

如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成

*()/i U s β,则电流环便等效成单位负反馈系统,如图3-5所示:

图3-5 等效成单位负反馈的电流环动态结构框图

最后,由于s T 和 oi T 一般都比l T 小得多,可以当作小惯性群而近似地看作是一个惯

性环节,其时间常数为

i s oi T T T ∑=+ (3-2) 则电流结构框图最终简化成图3-6。简化的近似条件为

13

ci ω=

(3-3)

图3-6 小惯性环节近似处理的电流环动态结构框图

3.4.2 确定时间常数

1)整流装置滞后时间常数s T 。查表可知,三相桥式电路的平均失控时间0.0017s T s =。 2)电流滤波时间常数oi T 。三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波头,应有(1~2) 3.33oi T ms =,因此取20.002oi T ms s ==。

3)电流环小时间常数之和i T ∑。按小时间常数近似处理,取0.0037i s oi T T T s ∑=+=。

3.4.3 选择电流调节器结构

根据设计要求5%i σ<,并保证稳态电流无差,可按典型I 型系统设计电流调节器。电

流环控制对象是双惯性型的,因此可用PI 型电流调节器,其传递函数为

(1)

()i i ACR i K s W s s

ττ+=

检查对电源电压的抗扰性能:0.038.100.0037l i T s

T s

∑==,查找典型I 型系统动态抗扰性能与

参数的关系表,各项指标都是可以接受的。

3.4.4计算电流调节器参数

电流调节器超前时间常数:0.03i l T s τ==。

电流环开环增益:要求5%i σ<时,查表可知,应取0.5I i K T ∑=,因此

10.50.5

135.10.0037I i K s T s

-∑=

== 于是,ACR 的比例系数为

135.10.030.15

0.817400.0186

I i i s K R K K τβ??=

==?

3.4.5 校验近似条件

电流环截止频率:1135.1ci I K s ω-==

(1)晶闸管整流装置传递函数的近似条件

111196.1330.0017

ci s s T ω-==>? (2)忽略反电动势变化对电流环动态影响的条件

1350ci s ω-==<

(3)电流环小时间常数近似处理条件

11180.83ci s ω-==>

满足近似条件。

3.4.6 计算调节器电阻电容

按运算放大器取040R K =Ω,各电阻和电容值为

00.8174032.68i i R K R K K ==?Ω=Ω,取33K Ω

3

0.03

0.913310

i

i i

C F F R τμ=

=

=?,取0.9F μ 3

0440.002

0.24010oi oi T C F F R μ?=

==?,取0.2F μ 按照上述参数,电流环可达到的动态跟随性能指标为 4.3%5%i σ=<,满足设计要求。

3.5 转速调节器设计

含给定滤波与反馈滤波的PI 型转速调节器如图3-7所示:

图3-7 含给定滤波与反馈滤波的PI 型转速调节器

其中*

n U 为转速给定电压,n α-为转速负反馈电压,*i U :调节器的输出是电流调节器

的给定电压。

3.5.1 确定时间常数

1)电流环等效时间常数1

I

K ,可知0.5I i K T ∑=,则

1

220.00370.0074i I

T s s K ∑==?= 2)转速滤波时间常数on T 。根据所用测速发电机纹波情况,取0.012on T s =。 3)转速环小时间常数n T ∑。按小时间常数近似处理,取

1

0.00740.0120.0194n on I

T T s s s K ∑=

+=+= 3.5.2选择转速调节器结构

按照设计要求,选用PI 调节器,其传递函数为

(1)

()n n ASR n K s W s s

ττ+=

3.5.3 计算转速调节器参数

按跟随和抗扰性能都较好的原则,取5h =,则ASR 的超前时间常数为

50.01940.097n n hT s s τ∑==?=

可求得转速环开环增益

222222

16

318.8109.342250.0194

N n h K s s h T --∑+=

==>?? 满足系统的调速范围和静差率要求。 于是可得ASR 的比例系数为

(1)60.01860.12750.12

11.072250.00530.150.0194

e m n n h C T K h RT βα∑+???=

==????

3.5.4 检验近似条件

由式1c K ωω=得转速环截止频率为

111

318.80.09730.92N

cn N n K K s s ωτω--=

==?=

1)电流环传递函数简化条件

1

163.7cn s ω--==>,满足简化条件。

2)转速环小时间常数近似处理条件

1

135.37cn s ω--==>,满足近似条件。

3.5.5 计算调节器电阻和电容

按运算放大器取040R K =Ω,各电阻和电容值为

011.0740442.8n n R K R K K ==?Ω=Ω,取450K Ω

3

0.097

0.2245010n

n n

C F F R τμ=

=

=?,取0.22F μ

30440.012

1.24010

on on T C F F R μ?=

==?,取1.2F μ 3.5.6 校核转速超调量

当5h =时,查表可得,37.6%n σ=,不能满足设计要求。实际上,由于该表是按线性系统计算的,而突加阶跃给定时,ASR 饱和,不符合线性系统的前提,应该按ASR 退饱和的情况重新计算超调量。

按退饱和超调量的计算方法计算调速系统空载起动到额定转速时的转速超调量,并校验它是否满足设计要求。

max max **(

)2()()2870.1

0.0194

0.1275281.2% 1.5 5.91%8%

15000.12

n

b N n b b m

T

C n C n z C n C n T σλ∑????==-?=????=<,满足设计要求。

4 系统建模与仿真

4.1 逻辑控制器的建模

(1)电平检测器建模。电平检测的功能是将模拟量换成数字量供后续电路使用。它包含电流极性鉴别器和零电流鉴别器。在用Matlab 建模时,可用Simulink 的非线性模块组中的继电器模块Relay 来实现。

(2)逻辑判断电路建模。逻辑判断电路的功能是根据转矩极性鉴别器和零电流检测器输出信号T U 和I U 的状态,正确发出切换信号R U 和F U 封锁原来的脉冲, 开放另一组脉冲。

(3)延时电路建模。在逻辑判断电路发出切换指令后, 必须经过封锁延时和开放延时才能封锁原导通组脉冲和开放另一组脉冲。通过对数字逻辑电路的DLC 装置发现,当逻辑电路的输出由“0”变为“1”时,延时电路产生延时,当由“1”变成“0”或状态不变时,不产生延时根据这一特点。利用Simulink 工具箱中数学模块组中的传递延时模块Transport Delay 、逻辑模块Logical Operator 、及数据转换模块Data Type Conversion 实现此功能。

(4)联锁保护电路建模。逻辑电路的两个输出总是一个为“1”态,另一个为“0”态,但是一旦电路发生故障,两个输出同时为“1”态,将造成两组晶闸管同时开放而导致电源短路。为了避免这种事故,在无环流逻辑控制器的最后部分设置了多“1”联锁保护电路。可利用Simulink 工具箱的逻辑运算模块Logical Operator 实现联锁保护功能。设计的DLC 仿真模型,如图4-1所示。

图4-1 DLC 仿真模块

其中延时电路的模块如下图4-2所示。

图4-2 延时模块

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

任务书 题 目 转速电流双闭环的数字式可逆直流调速系统的仿真与设计 时 间安排 2013年下学期17,18周 目 的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 要 求:电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。 总体方案实现:主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 指导教师评语: 评分等级:( ) 指导教师签名:

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

α_=_β__配合控制的直流可逆调速系统的工作原理

目录 1α= β配合控制的直流可逆调速系统的工作原理 2 α =β配合控制的有环流直流可逆调速 系统的仿真模型及参数 3 仿真结果及分析 4 心得体会 5 参考文献

摘要: 针对面向系统传递函数结构图仿真方法的不足,提出了一种基于MATLAB的Simulink和 Power System工具箱、面向系统电气原理结构图的仿真新方法,实现了转速与电流双闭环α= β 配合控制的直流可逆调速系统的建模与仿真。分别介绍了同步脉冲触发器、移相器控制器和PI调节器的建模,给出了直流可逆调速系统的仿真模型和仿真结果,仿真结果表明了仿真算法可信度较高。 关键词: α= β 配合控制;直流电机;MATLAB仿真;移项控制器 Abstract: Anovelmethod ofconstruction& simulation was put forward forthe modelofα =βmoderating controlDC SR system basedon Matlab Simulink &Power SystemBlockset,beca use it was shortagefor facing system transferfunction construction drawingto simulate.Themodel of synchronized6-pulsegenerator, shifter and PI controller were introduced, andthe simulationresults&models for theα= βmoderating cont rol DC SRsystem were provided. Simulation results show that simulation methodis correct withhighcredibility. Key words:α =β moderating control; DC motor; MATLAB simulation;shifter 引言 晶闸管反并联的电枢可逆线路是可逆调速系统的典型线路之一。这种线路有能实现可逆运行、回馈制动等优点,同时正转制动和反转启动完全衔接起来,没有间断或死区,这是有环流调速系统的优点,特别是用于要求快速正反转的中小容量的系统。为保证系统安全,必须增加环流电抗器以消除其中的环流[1-2]。本文采用MATLAB的Simulink和PowerS ystem工具箱,介绍如何实现α=β配合控制的直流可逆调速系统的建模与仿真。 α= β配合控制的直流可逆调速系统的建模 控制系统传统的计算机仿真是用传递函数方法来完成的,各环节的传递函数是将实际模型经过一定的简化而得到的,很多重要细节会被忽略[3]。PowerSystem 工具箱提供了利用物理模型仿真的可能,其仿真建模方法与构建实际电路相似,仿真结果非常接近于实际。 1 α =β 配合控制的直流可逆调速系统的工作原理 α=β配合控制的有环流直流可逆调速系统的电气原理图如图1所示。图中,主电路由两组三相桥式晶闸管全控型整流器反并联组成,并共用同一路三相电惊。由于采用α= 卢配合控制方式,在两组整流器之间没有直流环流,但还存在脉动环流,为了限制脉动环流的大小,在主电路中串入了四个均衡电抗器Lc1-Lc4,用于限制脉动环流。平波电抗器L d 用于减小电动机电枢电流的脉动,减小电枢电流的断续区,改善电动机的机械特性。系统的控制部分采用F 转速和电流的双闭环控制。由于可逆调速电流的反馈信号不仅要反映电枢电流的大小还需要反映电枢电流的方向,因此电流反馈一般用直流电流互感器或霍尔电流检测器,在电枢端取电流信号。为了确保两组整流器的工作状态相反,电流调节器的输出分两路,一路经正组桥触发器GTF 控制正组桥 整流器,另一路经倒相器AR 、反组桥触发器GTR 控制反组桥整流器。

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

逻辑无环流直流可逆调速系统设计

; 课程设计任务书 学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院 题目: 逻辑无环流直流可逆调速系统设计 初始条件: 1.技术数据: 晶闸管整流装置:R rec=Ω,K s=40。 / 负载电机额定数据:P N=,U N=230V,I N=37A,n N=1450r/min,R a=Ω,I fn=1.14A, GD2= 系统主电路:T m=,T l= 2.技术指标 稳态指标:无静差(静差率s≤2, 调速范围D≥10) 动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算) 要求完成的主要任务: ? 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统静特性良好,无静差(静差率s≤2) (3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s (4) 系统在5%负载以上变化的运行范围内电流连续 (5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容: ! (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等) (3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求 (4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书 时间安排: 课程设计时间为一周半,共分为三个阶段: (1): (2)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (3)根据技术指标及技术要求,完成设计计算。约占总时间的40% (4)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日 系主任(或责任教师)签名:年月日 】

课程设计:直流PWM-M可逆调速系统的设计与仿真

直流PWM-M可逆调速系统的设计与仿真 摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。 微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM 调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。 论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:PWM调速、直流电动机、双闭环调速

目录 前言 (1) 第1章直流PWM-M调速系统 (2) 第2章UPE环节的电路波形分析 (4) 第3章电流调节器的设计 (6) 3.1 电流环结构框图的化简 (6) 3.2 电流调节器参数计算 (7) 3.3 参数校验 (8) 3.3.1 检查对电源电压的抗扰性能: (8) 3.3.2 晶闸管整流装置传递函数的近似条件 (9) 3.3.3 忽略反电动势变化对电流环动态影响的条件 (9) 3.3.4 电流环小时间常数近似处理条件 (9) 3.4 计算调节器电阻和电容 (9) 第4章转速调节器的设计 (11) 4.1 电流环的等效闭环传递函数 (11) 4.2 转速环结构的化简和转速调节器结构的选择 (11) 4.3 转速调节器的参数的计算 (14) 4.4 参数校验 (14) 4.4.1 电流环传递函数化简条件 (15) 4.4.2 转速环小时间常数近似处理条件 (15) 4.5 计算调节器电阻和电容 (15) 4.6 调速范围静差率的计算 (16) 第5章系统仿真 (17) 5.1 仿真软件Simulink介绍 (17) 5.2 Simulink仿真步骤 (17) 5.3 双闭环仿真模型 (17) 5.4 双闭环系统仿真波形图 (18) 结论 (19) 参考文献 (20)

逻辑无环流可逆直流调速系统设计与研究——DLC

摘要 在可逆调速系统中,电动机最基本的要素就是能改变旋转方向。而要改变电动机的旋转方 向有两种办法:一种是改变电动机电枢电压的极性,第二种是改变励磁磁通的方向。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。对于大容量的系统,从生产角度出发,往往采用既没有直流平均环流,又没 有瞬时脉动环流的无环流可逆系统,无环流可逆系统省去了环流电抗器,没有了附加的环流损耗,和有环流系统相比,因换流失败造成的事故率大为降低。因此,逻辑无环流可逆调速系统在 生产中被广泛运用。 关键词:逻辑无环流;可逆直流调速系统;DLC;保护电路;触发电路。

目录 1绪论 (1) 1.1无环流调速系统简介 (1) 1.2系统设计 (3) 2系统主电路设计 (4) 3调节器的设计 (5) 3.1电流调节器的设计 (5) 3.2速度调节器的设计 (6) 4 DLC 设计 (7) 4.1逻辑控制器的原理 (7) 4.2速度给定环节设计 (9) 4.3无环流控制系统各种运行状态 (10) 4.3.1 正向起动到稳定运转 (10) 4.3.2 正向减速过程 (10) 4.3.3 正转制动 (11) 4.4.4 停车状态 (13) 5触发电路设计 (14) 6保护电路设计 (15) 6.1过电流保护 (15) 6.2过电压保护 (16) 17总结 .............................................................................................................................................. 18参考文献 ...................................................................................................................................... 19附录一 .......................................................................................................................................... 24附录二 ..........................................................................................................................................

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

数字式PWM可逆直流调速系统

一、设计要求: 1、调速范围D=20,静差率S ≤5%。再整个调速范围内要求转速无极、平滑可调; 2、动态性能指标:电流环超调量 δ≤5%: 空载启动到额定转速时转速超量δ≤10% 直流电动机的参数: 直流电动机 型号(KW ) Z2—32 额定容量(KW ) 2.2 额定电压(V ) 220 额定电流(A ) 12.5 最大电流(A ) 18.75 额定转速(rpm ) 1500 额定励磁(A ) 0.61 GD 2 (kg m 2 ) 0.105 电动机电枢电阻RA () 1.3 电动机电枢电感la (Mh ) 10 名称 数值 整流侧内阻Rn (Ω) 0.037 整流变压器漏感Lt (mH ) 0.24 电抗器直流电阻Rh (Ω) 0.024 电抗器电感Lh (mh ) 3.2 2.1控制系统的整体设计 直流双闭环调速系统的结构图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM 装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。总体方案简化图如图1所示。 ASR ACR U *n + - U U i U * i + - U c TA V M + U d I d UPE L - M

2.2桥式可逆PWM变换器的工作原理 脉宽调制器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而平均输出电压的大小,以调节电机转速。桥式可逆PWM 变换器电路如图2所示。这是电动机M两端电压的极性随开关器件驱动电压的极性变化而变化。 图2 桥式可逆PWM变换器电路

可逆直流调速系统

摘要:根据整流装置的不同,直流可逆调速系统可分为V-M可逆调速系统和PWM 可逆调速系统。讨论了晶闸管直流调速系统可逆运行方案,介绍了有环流控制的可逆V-M系统和无环流控制的可逆V-M系统。除了由晶闸管组成的相控直流电源外,直流电机还可以采用全控器件(IGBT,MOSFET,GTR等)组成的PWM变换器提供直流电源,其特点是开关频率明显高于可控硅,因而由PWM组成的直流调速系统有较高的动态性能和较宽的调速范围。PWM变换器把恒定的直流电源变为大小和极性均可调直流电源,从而可以方便的实现直流电机的平滑调速,以及正反转运行。由全控器件构成的PWM变换器,由于开关特性,因此其电枢的电压和电流都是脉动的,其转速和转矩必然也是脉动的。 关键词:可逆直流调速,PWM变换器,环流。

目录 1.晶闸管直流调速系统可逆运行 (3) 1.1可逆直流调速系统分类 (4) 1.2晶闸管-电动机系统的回馈制动 (6) 2.有环流的可逆调速系统 (8)

2.1可逆系统中的环流 (8) 2.2直流平均环流与配合控制 (9) 2.3瞬时脉动环流及其抑制 (10) 2.4直流可调速系统的制动过程分析 (11) 2.5可控环流可逆调速系统 (13) 3.无环流可逆调速系统 (13) 3.1逻辑控制无环流调速系统 (14) 4.可逆直流脉宽调速系统(PWM可逆系统) (15) 4.1可逆PWM变换器的工作原理 (15) 5.总结 (17) 1.晶闸管直流调速系统可逆运行 有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起

动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。改变电枢电压的极性,或者改变励磁磁通的方向,都能够改变直流电机的旋转方向,这本来是很简单的事。然而当电机采用电力电子装置供电时,由于电力电子器件的单向导电性,问题就变得复杂起来了,需要专用的可逆电力电子装置和自动控制系统。中、小功率的可逆直流调速系统多采用由电力电子功率开关器件组成的桥式可逆PWM 变换器。功率较大的直流调速系统多采用V-M 电源,由于晶闸管的不可控关断特性,其可逆调速系统相对较为复杂。 1.1 可逆直流调速系统分类 在没有外力作用下,要改变直流电机的旋转方向,根据直流电机转矩表达式Te =CMΦIa可知,改变励磁磁通Φ或改变电枢电流Ia均可改变电机转矩方向,从而达到改变转向的目的。与此相应得直流电机可逆调速实现方式有:1、改变电枢电流,通过改变电枢电流的方向,也可改变电磁转矩的方向。2、改变励磁电流,通过改变励磁电流方向,从而改变电磁转矩的方向。 图1-1两组晶闸管装置反并联可逆线路 改变电枢电流可逆线路:电枢反接的可逆线路形式是多种多样的,不同的生产机械可以根据各自的要求去选择。图1.1 是一种最简单的桥式晶闸管可逆线路,该线路中,需要一组晶闸管整流装置,还需要四个晶闸管组成的桥式电路,

相关文档
相关文档 最新文档