文档库 最新最全的文档下载
当前位置:文档库 › 酸性矿山废水污灌区水稻土重金属的形态分布及生物有效性

酸性矿山废水污灌区水稻土重金属的形态分布及生物有效性

酸性矿山废水污灌区水稻土重金属的形态分布及生物有效性
酸性矿山废水污灌区水稻土重金属的形态分布及生物有效性

金属矿山酸性废水处理工艺

金属矿山酸性废水处理工艺 矿产资源是人类社会发展进步必不可少的自然资源。人类对金属矿山的大面积开采会破坏周围区域的生态环境,而AMD是全球矿山面临的最严重的环境问题。AMD是硫化矿物在空气、水和微生物的共同作用下发生溶蚀、氧化、水解等一系列物化反应而形成的低pH、高重金属离子浓度的一类难处理废水。而我国金属矿山大部分是原生硫化物矿床,极易形成AMD,例如江西德兴铜矿、武山铜矿、江苏梅山铁矿、浙江遂昌金矿、安徽南山矿、向山铁矿、湖南七宝山铜锌矿等。因此,如何高效、经济地治理AMD显得尤为重要。 1、AMD来源 AMD指在矿山开采活动中经过复杂的物理化学反应作用产生的呈酸性且SO42-和重金属含量超标的有害水体。矿山酸性废水有以下特点: ①呈酸性、金属离子浓度高,例如含Fe3+的矿山废水因水解生成的氢氧化铁呈红褐色,被称为“红龙之灾”; ②废水产生量大且水流持续时间长,常常矿山开采结束后,废水仍继续流出; ③水质、水量不稳定,波动较大。 AMD进入自然水体后使水体酸化,导致水生生物死亡;进入土壤后使土壤板结,毒化土壤,造成功能退化。在1947年,Colmer等首次提出细菌是AMD形成的重要原因。在后续的研究和实际治理过程也进一步的证实了这种论断。如黄铁矿,在有菌存在和无菌存在时,氧化速度相差较大。 黄铁矿氧化产酸过程如下: Fe3+被黄铁矿还原生成Fe2+,而Fe2+很快又被微生物或O2氧化成Fe3+再与黄铁矿反应,如此循环反应,形成了大量的AMD。 2、AMD的治理 AMD现已严重危害到生态环境乃至人类的生存安全,其治理技术也日新月异。目前,效果显著的治理技术主要有中和法、沉淀法、人工湿地、吸附法及生物法等。 2.1 中和法 面对大量的酸性废水,中和法成为了人类在治理AMD时的首要选择。中和法又称为氢氧化物沉淀法,中和法就是在废水中投加大量的碱性物质,如石灰乳、氢氧化钠、石灰石等,来提高废水酸碱度,从而沉淀废水中的金属离子。该方法因原理简单,成本低、效果明显,在实际矿山酸性废水的治理中得到了广泛的应用。如钱士湖等报道的HDS(高浓度泥浆)在安徽某公司酸性废水的实践运用。对实际运行效果进行了分析总结,表明HDS工艺在调节废水pH值和去除Al3+、SO42-离子效果显著。与传统的石灰中和法(LDS)相比,HDS延缓了设备和管道的结垢现象,克服了LDS法的很多缺点,高浓度泥浆法与低浓度泥浆法相比有以下优点:一是降低了石灰用量,减少了处理成本;二是出水水质稳定,符合排放标准。高浓度泥浆法相对于低浓度泥浆法突破性进展是底泥按比例回流,可用于废水处理。但始终无法根除设备和管道结垢、中和渣易造成二次污染的弊端。

沉积物中重金属的生物有效性研究综述

沉积物中重金属的生物有效性研究综述 张学辉1,陈爱华1,宋端阳1 (大连水产学院,大连,116023) xhz19810@https://www.wendangku.net/doc/0a967046.html, 摘要:本文综述了沉积物中重金属的生物有效性的研究,主要包括重金属污染常用评价体系,沉积物中重金属的存在形态,以及生物对重金属的生物利用等方面。同时对沉积物中重金属的生物有效性研究进行了展望。 关键字:沉积物 重金属 生物有效性 近年来,随各种工业废液排入水体,其中重金属的含量越来越高,严重影响着人类及其它生物的健康与生存,如汞、砷、铬能引起神经系统疾病和有致癌作用。海洋沉积物是进入海水中许多化学物质的主要归宿地,海洋沉积物环境质量研究自上世纪8O年代以来已成为国际重要研究领域[1]。在研究以重金属为主要污染物的水体中,通常把沉积物视为探索环境重金属污染的工具。由于沉积物中重金属化学行为和生态效应的复杂性,对积物中重金属生物有效性的研究是当前学术界的热点研究课题[12]。 一、沉积物中重金属污染的评价体系及存在形态 1.1沉积物中重金属污染的评价体系 对于沉积物中重金属污染的研究,近年来出现了许多从沉积学角度提出的污染评价方法,如地累积指数法(Geoaccumulation Index)、污染负荷指数法(The Pollution Load Index)、潜在生态危害指数法(The Potential Ecological Risk Index)及Hilton 等的回归过量分析法(Excess after Regression Analysis).我国学者贾振邦等应用模糊集理论(Theory of Fuzzy Subset)和脸谱法(Face graph)对沉积物中重金属进行了评价。上述评价方法代表了国际上有关沉积物中重金属研究的先进方法。潜在生态危害指数法和地累积指数法是两种比较常用的评价体系。 1.1.1潜在生态风险评价 潜在生态风险指数法是瑞典学者Haknson[3]于1980年提出的,它是划分沉积物污染程度及其水域潜在生态风险的一种相对快速、简便和标准的方法,通过测定沉积物样品中有限数量的污染物含量进行计算。潜在生态风险指数值可反映表层沉积物金属的含量、金属污染物的种类数、金属的毒性水平及水体对金属污染的敏感性。生态风险指数法在我国的应用已较为广泛,不少文献介绍了利用该法进行水域生态风险性分析和评价,并对水域的生态风险性进行定量分析作出了有益的尝试。其计算公式如下: -1-

电镀废水中各种重金属废水处理反应原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 (2) 2.含氰废水 (3) 3.含镍废水 (4) 4.含锌废水 (5) 5.含铜废水 (6) 6.含砷废水 (8) 7.含银废水 (9) 8.含氟废水 (10) 9.含磷废水 (11) 10.含汞废水 (11) 11.氢氟酸回收 (14) 12.研磨废水 (14) 13.晶体硅废水 (15) 14.含铅废水 (17) 15.含镉废水 (17)

1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。 含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件 下,六价铬主要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬 的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv

重金属废水生物制剂法处理与回用技术

技术汇集 智慧互联 全球共享网站首页关于我们登录注册通讯员登录中文English 您现在的位置: 首页> 技术供给> 详情 重金属废水生物制剂法处理与回用技术 所属领域:水污染防治 > 工业废水 [匹配需求] 行 业:有色金属 电镀 化工 钢铁重金属 电子工业 冶金 矿业 地 区:湖南 成 熟 度:推广阶段 关 键 词:生物制剂,重金属废水,深度处理,回用,冶炼,有色金 属,矿山,酸性,电镀,化工,采矿,选矿,尾矿库 合作方式:直接购买 合作开发 其他合作方式 信息来源: 推荐单位: 点 击 数:5227 我要对接 收藏打印返回基本信息 技术概述生物制剂是以硫杆菌为主的复合特异功能菌群在非平衡生长(缺乏氮、氧、磷、硫)条件下大规模培养形成的代谢产物与某种无机化合物复配,形成的一种带有大量羟基、巯基、羧基、氨基等功能基团的聚合物,使用过程无需进行分离纯化,也不需外加营养源。生物制剂在低 pH 条件下呈胶体粒子状态存在,富含的多功能基团,可与Cu2+,Pb2+,Zn2+,Hg2+,Cd2+ 等重金属离子成键形成生物配合体。生物制剂在pH 3-4时开始水解,诱导生物配位体形成的“胶团”长大,并形成溶度积非常小的、含有多种元素的非晶态的化合物,从而使重金属离子高效脱除。同时协同脱钙,调整废水水质,使净化水中钙离子稳定低于50 mg/L,净化水可全面回用于冶炼企业,实现重金属离子(铜、铅、锌、镉、砷、汞等)和钙离子的同时高效净化,净化水中各重金属离子浓度远低于《铅、锌工业污染物排放标准》(GB25466-2010),能够直接回用,水解渣通过压滤机压滤后可以作为冶炼的原来对其中的有价金属进行回收,达到重金属“零排放”的目的。 技术优势①抗重金属冲击负荷强,净化高效,运行稳定,对于浓度波动很大且无规律的废水,经新工艺处理后净化水中重金属低于或接近《生活饮用水水源水质标准》(CJ3020-93); ②废水中钙离子可控脱除,效果明显,可控到50mg/L以下,净化水回用率95%以上; ③净化水COD、SS达到一级排放标准; ④渣水分离效果好,出水清澈,水质稳定; ⑤水解渣量比中和法少,重金属含量高,利于资源化; ⑥对于100-300mg/L重金属废水,生物制剂投加成本0.3-0.8元/m3; ⑦处理设施均为常规设施,占地面积小,投资建设成本低,工艺成熟。对于现有石灰中和法处理系统只需增加生物制剂的贮备槽和药剂投加泵等系 统,改造费用低。微信关注 APP下载 12345

治理酸性矿山废水的方法

治理酸性矿山废水的方法 1 引言 煤矿或各种有色金属矿在开采与废矿石堆放过程中,常使与矿层伴生的硫铁矿暴露于空气中与地下水或地表水中,通过系列化学与生物氧化过程,使得近中性的地下水转变为低pH、高Fe、SO2-4,且多种重(类)金属离子(Cd、Pb、Cu、Zn、As等)并存的酸性矿山废水(acid mine drainage,AMD).此类废水若不经有效处理而任意排放,将严重污染地表水及土地资源,威胁农作物、水生生物与人体健康. 石灰中和法是世界上最常用的AMD治理方法.然而,大多数AMD体系中含有较大量的 Fe2+,由于Fe(OH)2 离子浓度积(1.6×10-14,18 ℃)远大于Fe(OH)3的离子浓度积(1.1×10-36,18 ℃),所以为了在近中性条件下使得Fe离子完全沉淀,在工程应用中,常常在化学中和前段完成Fe2+氧化过程.以AMD为介质,利用氧化亚铁硫杆菌(A. ferrooxidans)生物氧化Fe2+进而合成次生铁矿物(施氏矿物、黄铁矾类物质)不仅可以有效去除AMD中存在一定量的Fe与SO2-4,且此类次生铁矿物在合成过程中亦可通过吸附与共沉淀方式大幅度去除体系中的Cu、Cd、Hg、Pb、As等有毒有害元素.另需要强调的是对于石灰中和法得到的Fe(OH)3絮状凝胶而言,施氏矿物与黄铁矾类物质沉降性能良好,易于沉淀,可以极大降低后续固液分离成本.因此,前期氧化亚铁硫杆菌(A. ferrooxidans)生物氧化Fe2+产生次生铁矿物与后期化学中和相结合的工艺在AMD的治理领域表现出一定的应用潜力. 由于煤矿及其它有色金属矿中常有含镁矿物(白云石富镁碳酸盐矿物、蛇纹石与绿泥石等富镁硅酸盐矿物等)的存在,使得产生的AMD中含有一定量的Mg2+.研究证实,A. ferrooxidans菌体及其胞外多聚物可以作为次生铁矿物合成的晶种.而Mg2+可以在微生物胞外多聚物之间形成架桥使得微生物菌体团聚.那么,这一团聚过程是否会使得矿物较易在反应器壁粘附,进而影响次生铁矿物合成体系总Fe沉淀率及矿物的形貌?另外,高的转速对应高的剪切力.那么,高转速是否会减缓矿物在反应器壁的粘附行为?为了探究此类科研问题,本研究分别在不同培养转速条件下,考察了Mg2+浓度不同对A.ferrooxidans催化合成次生铁矿物体系Fe2+氧化率、总Fe沉淀率、次生铁矿物反应器壁粘附状况及矿物形貌的影响.以期为生物合成次生铁矿物工艺的优化及其在酸性矿山废水治理领域的成功应用提供一些必要的参数. 2 材料与方法 2.1 嗜酸性氧化亚铁硫杆菌(A. ferrooxidans)接种液的制备 在150 mL改进型9K液态培养基(FeSO4 · 7H2O 44.24 g、(NH4)2SO4 3.0 g、KCl 0.10 g、K2HPO4 0.50 g、Ca(NO3)2 · 4H2O 0.01 g、MgSO4 · 7H2O 0.50 g,去离子水1 L)中接种A. ferrooxidans LX5(CGMCC No.0727),体系用H2SO4调节pH至2.5后,置于180 r · min-1往复式振荡器(ZD-85A恒温振荡器)中在28 ℃培养2~3 d至体系Fe2+完全氧化.培养液经定性滤纸过滤以除去沉淀,过滤所得的液体即为嗜酸性氧化亚铁硫杆菌菌液.将所得菌液15 mL接种于135 mL改进型9K液态培养基中重复上述过程.所获菌液即为本研究后续次生铁矿物合成所需的微生物接种菌液,菌密度约为107 cells · mL-1.

重金属废水处理方法

1.3 重金属废水处理方法 现代水处理技术,按原理可分为化学处理法,物理处理法和生物化学处理法3大类[6]。生物法处理无机重金属离子废水的技术正在积极的研究和试用中。 化学法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质(包括悬浮的、溶解的、胶体的等)。主要方法有中和、混凝、电解、氧化还原等。 ⑴中和沉淀法:投加碱中和剂,使废水中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除的方法。碱石灰(CaO)等石灰类中和剂,价格低廉,可去除汞以外的重金属离子,工艺简单,处理成本低[7]。但沉渣量大,含水率高,易二次污染,有些重金属废水处理后难以达到排放标准。 ⑵硫化物沉淀法:硫化物沉淀法的沉淀机理是:废水中的重金属离子与S2-结合生成溶解度很小的盐。操作中应该注意以下几个方面:①硫化物沉淀一般比较细小,易形成胶体,为便于分离应加入高分子絮凝剂协助沉淀沉降;②硫化物沉淀中沉淀剂会在水中部分残留,残留沉淀剂也是一种污染物,会产生恶臭等,而且遇到酸性环境产生有害气体,将会形成二次污染[8]。 ⑶铁氧体沉淀法:FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出。经典铁氧体法能一次脱除多种重金属离子,设备简单,操作方便[9]。但不能单独回收重金属。铁氧体法工艺流程技术关键在于:①Fe3+:Fe2+ =2:1,因此,Fe2+的加入量,应是废水中除铁以外各种重金属离子当量数的2倍或2倍以上;②NaOH或其碱的投入量应等于废水中所含酸根的0.9~1.2倍浓度;③碱化后应立即通蒸汽加热,加热至60~70℃或更高温度;④在一定温度下,通入空气氧化并进行搅拌,待氧化完成后再分离出铁氧体。 铁氧体法处理含重金属离子的废水,能一次脱除废水中的多种金属离子,对脱除Cu, Zn,Cd,Hg,Cr等离子均有很好的效果。 物理法是利用物理作用分离污水中呈悬浮固体状态的污染物质。主要方法有离子交换法,沉淀法,上浮法,气浮法,过滤法和反渗透法等。 ⑴离子交换法:离子交换法是重金属离子与离子交换树脂发生离子交换的过程。螯合树脂具有螯合基团,对特定重金属离子具有选择性。腐植酸树脂是由腐植酸和交联剂交联而成的高分子材料,具有阳离子交换和络合能力。这两类树脂实质上开拓了阴阳离子树脂的应用范围。

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

重金属废水处理原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件下,六价铬主 要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬的还原在酸性条件下反应较 快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚

硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3 沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2.含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu(CN) 2- 以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN) 6 4- 被氧化后仍然以络离 子存在,所以氰离子并不能解离氧化,增加了破氰难度。 氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN?+OCl?+H 2 O==CNCl+2OH??

生物制剂深度处理重金属废水及资源化技术

生物制剂深度处理重金属废水及资源化技术集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

生物制剂深度处理重金属废水及资源化技术 适用范围 应用于选矿尾矿库废水、有色金属冶炼废水、有色金属压延加工废水、矿山酸性重金属废水、电镀废水、化工重金属废水处理。 基本原理 生物制剂是以硫杆菌为主的复合特异功能菌群在非平衡生长(缺乏氮、氧、磷、硫)条件下大规模培养形成的代谢产物与某种无机化合物复配,形成的一种带有大量羟基、巯基、羧基、氨基等功能基团的聚合物,在低pH条件下呈胶体粒子状态存在,可与金属离子Cu2+,Pb2+,Zn2+,Hg2+,Cd2+成键形成生物配合体。然后在pH9~10时水解,诱导生物配位体形成的“胶团”长大,并形成溶度积非常小的、含有多种元素的非晶态的化合物,从而使重金属离子高效脱除。 生物制剂与重金属配合图如下所示: 工艺流程 生物制剂处理常规重金属废水工艺流程图如下所示: 流程说明:重金属废水经收集至调节池进行水质水量调节,然后经提升泵进入配合反应池,在配合反应池中加入生物制剂与废水中的重金属离子发生配合反应,生成重金属配合物,实现重金属离子的深度脱除;在水解反应池中加入石灰乳调节体系pH值进行水解反应,在絮凝反应池中加入PAM絮凝后进入沉淀池实现固液分离,固液分离后的上清液进入清水池,在清水池经硫酸调节pH值至6-9后外排或回用。污泥经脱水后根据需要安全处置或回用。 根据企业水质不同,可调整为不同工艺; 当废水需脱钙回用时,应增加脱钙剂和脱钙反应池,其余流程不变; 当废水为选矿废水,含有CODCr时,应增加氧化剂和氧化反应池,其余流程不变;当废水需要脱铊时,应增加稳定剂和稳定反应池,其余流程不变; 当废水需要脱氟时,应增加脱氟剂和脱氟反应池,其余流程不变。 关键技术或设计特征 该技术经取样分析,经过筛选和分离得到三株细菌:PannonibacterphragmitetusT1,,,这三株细菌能够耐受Pb2+、Cr6+、Mn2+、Zn2+、Cu2+、Ni2+、Cd2+、Co2+、Ag+、Hg2+多种重金属。 在整个系统的运行过程中,无废气产生,节约能源。系统抗污染物冲击负荷强,净化高效,运行稳定。 处理快速高效,反应时间只需10-30min,且工艺稳定,高效处理CODCr的同时,对重金属离子实现同时深度脱除。 设备设施简单,布局紧凑,投资成本低,可结合自控系统减少人工劳动力。 对于常规的重金属废水处理药剂成本很低,且处理后的净化水能够满足回用的要求。 典型规模 生物制剂处理重金属废水处理规模不限,日处理规模可从几立方米到几万立方米。 推广情况 该技术已经被广泛应用于株洲冶炼集团(14400m3/d)、河南豫光金铅集团(5000m3/d)、中金岭南凡口铅锌矿(14400m3/d)、湖南水口山康家湾矿(5500m3/d)、锡矿山闪星锑业(10000m3/d)、江西铜业铅锌金属有限公司(8000m3/d)、紫金铜业有限公司(1500m3/d)、株洲清水塘重金属污水处理厂(10000m 3/d)、永州福嘉(300m3/d)、郴州金贵银业(100m3/d)等50多家大型采选矿、冶炼、化工企业。由该技术处理废水总量占当前我国铅锌总产能水量的60%以上,实现年处理重金属废水量为11000万m 3,废水减排量4000万m3,重金属减排量230t/a。 典型案例 (一)项目概况 水口山康家湾重金属废水生物制剂处理及回用设施设计处理水量5500m3/d,污水来源于选矿废水,2014年3月开工建设,于2015年1月完成调试并建成投产。 (二)技术指标 根据水口山集团康家湾矿、长沙质监站和湖南诚信监理有限公司共同出具的验收报告,项目出水达到《铅锌工业污染物排放标准》(GB25466—2010)。以平均进水铅为L,锌为L,CODCr为99,SS为208计,该污水处理设施每年削减CODCr约吨,重金属离子吨,其中Pb减排吨,Zn减排吨。同时该

最新 土壤中重金属钴的存在形态和生物有效性变化-精品

土壤中的重金属移动性差,滞留性强,难以被微生物降解,通过地下水循环和植物传递而影响生物圈环境的健康发展。一种或几种不同金属的形态对环境的毒性也有所不同。因此,金属形态的存在、分布所产生的毒性程度也影响着重金属在环境中的迁移。重金属在进入土壤后会发生复杂反应。化学作用包括络合、吸附以及淋溶等。 重金属在土壤中的吸附不仅与土壤类型、基本理化性质有关,还与重金属本身的离子特性相关。重金属离子间的相互作用可由土壤的酸碱度、离子强度的影响而改变。其中,酸碱度对金属形态的影响很大。通过室内静态吸附方法和 Tessier连续提取法,对新疆荒漠区某石化污水库周边的农田土壤 pH、外源钴浓度、离子强度进行考察,研究土壤中重金属钴的存在形态和生物有效性变化,从而得出钴在供试土壤中的形态再分配及生物活性变化,得出该区域的环境行为,为新疆荒漠区钴污水影响下农田重金属修复提供试验基础与依据。 1、材料与方法 1. 1 土壤样品的采集。土壤采自新疆荒漠区域某石化污水库附近的油葵种植田。将采来的土壤样品在室内风干,过100 目筛,待用。对照土的基本理化性质为: 土壤碱化度41. 63% ,pH 8. 86,阳离子交换量 7. 68 cmol /kg,钴 9. 00mg /kg,土壤有机碳 443 mg /kg,土壤有机质 760 mg /kg。 1. 2 静态吸附试验。称量 2. 500 0 g 土样于 100 ml 锥形瓶中,按照 4 种条件进行处理,每个处理设置 3 个平行。①对土样施加配制初始浓度为 100 mg/L 钴溶液(pH 为 2 ~13) ;②对土样施加配制考察浓度范围内(100、125、150、200、250、300、400 mg /L) 的硝酸钴溶液; ③将加入 100 mg /L 硝酸钴溶液的土壤进行老化5、10、20、40、70 d; ④对土样施加 pH 为7,离子强度为 0、0.001、0.01、0.1、0.2、0.5、1.0 mg/L,重金属浓度为100 mg/L 的硝酸钴溶液。将以上处理过的试样置于25℃ 恒温振荡2 h,再静置 24 h,以 3 000 r /min 转速离心 15min,均取上清液,用原子吸收光谱仪测定。 1. 3 钴总量及各形态分析方法。土壤残渣态采用 H2SO4-HC104-HCl 电热板法消解。土壤形态分析采取 Tessier 连续提取技术提取。各形态钴溶液用火焰原子吸收仪测定。 式中,K 为生物有效系数;m 为各形态质量; F0是水溶态,mg/kg;F1为可交换态,mg/kg;F2为碳酸盐结合态,mg/kg;F3为水溶态,mg /kg; F4为有机结合态,mg/kg;F5为残渣态,mg/kg。所得数据用 SPSS 软件处理,得出相关性分析与回归分析结果。 2、结果与分析 2. 1 土壤酸度对钴形态的影响及生物有效性分析

酸性煤矿废水处理工艺

酸性煤矿废水处理工艺 煤矿酸性废水是我国煤矿废水污染中对生态环境破坏最大的污染源之一,其对煤矿的排水设施、钢轨及其他机电设备均具有很强的腐蚀性,严重时危害矿工安全,影响井下采煤生产。若直接排放,将污染地表水和地下水资源及土地资源,危害农作物、水生生物和人类健康,还会使矿区地下水资源大面积疏干,造成地下水的浪费。综上所述,煤矿酸性废水因其量大、面广、污染严重、治理程度低而成为制约煤矿可持续发展的一大障碍。 煤矿酸性废水的形成过程非常复杂,是煤层中夹杂的硫铁矿经过一系列氧化、水解等反应后生成的,是一系列物理、化学和生物过程相互作用的结果。其形成机制为:①在氧和水存在的条件下,煤层或岩层中硫铁矿被氧化,生成硫酸和亚铁离子;②在酸性条件下,亚铁离子被进一步氧化为铁离子;③由于铁和锰离子的水解,增加了矿井水的酸度。 1 试验材料和方法 1.1 试验材料 仪器:ZR4—4混凝试验搅拌机,增氧泵(山本8000),电感耦合等离子光谱发生仪(ICP-OES PE2100DV)。 药品:多糖生物絮凝剂,工业用石灰,水样:贵州某酸性矿井废水,水体透明呈淡黄色,长时间暴露空气中后呈红褐色,其水质指标见表1。 1.2 试验方法 铁锰去除率的测定方法:向500mL烧杯中加入200mL待测水样,调节pH,向水样中滴加石灰乳直至水样不再出现绿色,同时曝气。加入多糖生物絮凝剂(15g

/L,下同),用ZR4—4混凝试验搅拌机以150r/min的转速搅拌30s后,静置1min,取水样的上清液,用电感耦合等离子光谱发生仪测定其中的铁和锰含量,其去除率(%)计算式分别见式(1)、式(2)。 铁去除率=[(AFe-BFe)/AFe]×100%(1) AFe——原水水样中的铁含量,mg/L; BFe——处理后上清液中的铁含量,mg/L。 锰去除率=[(AMn-BMn)/AMn]×100%(2) AMn——原水水样中的锰含量,mg/L; BMn——处理后上清液中的锰含量,mg/L。 2 试验结果与讨论 2.1 pH 对铁、锰去除率的影响 取200mL原水,向水样中滴加石灰乳直至水样不再出现绿色,继续添加石灰乳,分别调节pH 为6、7、8、9、10、11、12,水气比1∶15,曝气10min后,加入0.4mL 15g/L多糖生物絮凝剂,以150r/min的转速搅拌30s,静置沉淀1min 后取上清液测定金属含量,并计算出铁、锰的去除率,相关试验结果见图1。 由图1可知,pH 对铁、锰去除率有较大影响,随着pH 的升高,铁、锰去除率逐渐增大,这是由于pH 的增高促进了氢氧化铁、氢氧化锰沉淀的生成及絮凝剂分子链上-OH 和-COO-的水解,使分子链伸展,并通过改变絮凝剂分子和胶体颗粒的表面电荷,从而有效的对氢氧化铁、氢氧化锰颗粒进行吸附架桥。当pH 达到8时,铁的去除率达到最大,为99.99%,此时锰的去除率为87.65%。可

重金属废水的微生物废水处理工艺

重金属废水的微生物废水处理工艺 一、微生物法治理电镀废水技术 1.主要技术内容 (1)基本原理用从电镀污泥中获得的SR系列复合功能菌,高效还原六价铬为三价铬,三价铬、锌、铜、镍和镉等二价金属离子被菌体富集,再经固液分离,废水被净化,污泥中金属再用微生物或化学法回收,固液分离的上清液可以回用。 (2)技术关键本技术的关键是菌体的培养和“菌废比”的合理调控,这是保证处理水质达到排放标准或回用的重要条件。一般采用厌氧技术培养菌体,培养液可以是生活污水,粪便,高浓度有机废水,也可以人工配制。采用中温发酵技术。根据废水中的金属离子的浓度和培养的菌体的浓度决定“菌废比”,具体情况具体决定。 (3)工艺流程微生物治理电镀废水工艺流程见图9-24。 2.主要技术指标 (1)净化能力本技术对废水成分变化的适应性强,各金属离子浓度的范围为:铬1mg/L~1000mg /L,锌1mg/L~1000mg/L,铜1mg/L~1000mg/L,镍1mg/L~500mg/L,镉1mg/L~500mg/L。本技术不仅能处理单一的金属废水,也可处理混合的金属废水。废水的pH值可在4~8范围内变化。每天处理废水量可达1m3~1000m3以上。 (2)特点利用微生物高效快速还原六价铬,无二次污染,能回收菌泥中的金属,因此,使用周期长,管理方便。如果能利用生活污水、食品加工废水等培养微生物,可以实现以废治废。 (3)出水水质处理后排放水中六价铬、总铬、锌、铜、镍、镉等金属低于国家GB8978-1996污水综合排放标准,见表9-15。

3.投资分析对于日处理100t废水的规模而言,1992年价格为总投资30万元,其中土建15万元,设备10万元,其他5万元。 本技术主要设备使用期可达40年,运行费用约为每吨废水0.20元。 4.主要设备微生物法治理电镀废水技术的主要设备有培菌池,生物反应器,调节池,泵房,沉淀池,消毒池,主控室,化验室等。 二、硫酸盐生物还原法处理含锌废水 硫酸盐生物还原法处理含锌废水其原理是利用硫酸盐还原菌SRB在厌氧条件下产生硫化氢,硫化氢和废水中的重金属反应,生成金属硫化物沉淀以去除重金属离子。 1.废水处理工艺流程见图9-25。

矿山酸性废水的环境危害性

矿山酸性废水的环境危害性 所谓酸性废水就是含较低浓度的硫酸、硝酸、盐酸、磷酸、有机酸等酸性物质的废水。酸性废水排放尤其是矿山业酸性废水的排放是环境污染的严重问题之一,具有污染面广、污染持续时间长、危害程度严重等特点。如何有效处理酸性废水,是水污染面临的重要问题。 随着我国矿山建设的迅速发展,矿山环境的污染和破坏越来越严重,而其中矿山废水是矿山环境的主要污染源之一。据统计,我国矿山每年因采矿、选矿而排放的废水量达12~15亿t,占有色金属工业废水总量的30%左右,其中有很大部分是未经处理直接排放的,不仅造成严重的环境污染,而且是一种巨大的水资源浪费。因此,寻求经济实用的矿山废水治理方法,对保护矿山环境和节约水资源有重要意义。 矿山酸性废水的危害 (1)腐蚀管道、水泵、钢轨等设备设施,同时直接威胁拦污、蓄污设施(如污水坝等)的安全与稳定。 (2)含重金属离子的矿山废水排入农田,对大多数植物都具有毒负作用,导致大部分植物枯萎,死亡,严重影响农作物的产量和质量。少部分植物吸收重金属后,通过食物链危害人类健康。 矿山废水直接排入河流、湖泊或渗入地下,导致水质恶化,对鱼类、藻类和人类构成极大威胁。 清污分流,从源头减少酸性水 针对矿区地处多雨区,雨季降雨量大而且集中,以及雨水流经废石即转变为酸性水的特点,采用清污分流措施,将清水河污水分离,清水直接排入河流,避免受污染,污水则进入酸性水库进行处理。以废治废,变废为宝’的方针,走资源开发与生态环境可持续发展之路,按照循环经济理论,回收矿石与酸性水中的铜矿资源。所谓回收,就是在排土(废石)场上建立堆浸厂,将含铜品位0.05%~0.25%的剥离废石集中堆存在一起,形成喷淋场,再利用细菌浸出——萃取——电积新工艺,每年可以从废石中回收电解铜1300多吨,从而减轻了工业废水的处理压力。 创新手段治水,解决多项难题 2004年,德兴铜矿利用电石渣替代石灰处理酸性废水的试验取得成功,从而降低了废水的处理成本,克服了废水处理与选矿生产争石灰的矛盾,确保了酸性水处理的连续稳定运行。 从2007年开始,德兴铜矿利用尾矿库处理酸性水。采矿过程中产生的酸性废水传送到尾矿库,与选矿过程中产生的碱性尾矿混合,并在尾矿库沉淀。这样不但处理了酸性水,还可以把上清液回用于选矿生产。据了解,2011年,德兴铜矿选矿回水复用率达82%以上。

重金属废水处理原理及控制条件(20200831054011)

重金属废水反应原理及控制条件 1. 含铬废水 ......................... 2. 含氰废水 ......................... 3. 含镍废水 ......................... 4. 含锌废水......................... 5. 含铜废水......................... 6. 含砷废水......................... 7. 含银废水......................... 8. 含氟废水......................... 9. 含磷废水......................... 10. 含汞废水 ........................ 11. 氢氟酸回收 ........................ 12. 研磨废水 ........................ 13. 晶体硅废水 ........................ 14. 含铅废水 ........................ 15. 含镉废水 ........................ 1. 含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。

电镀废水中的六价铬主要以CrQ2_和两种形式存在,在酸性条件下,六价铬主要以CwQ2-形式存 在,碱性条件下则以CrQ2「形式存在。六价铬的还原在酸性条件下反应较快,一般要求pHv4,通常控制pH2.5?3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代 硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr (OH 3沉淀的最佳pH为 7?9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4HCrO+6NaHSO3HSO==26 (SO) 3+3NaSO+10HO 2HCrO+3NaSO+3HSO==Cr2 (SQ) 3+3NaSO+5HO 还原后用NaOH中和至pH=7?8,使Cr3+生成Cr (OH 3沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100?1000mg/L; ②废水pH为2.5?3 ③还原剂的理论用量为(重量比):亚硫酸氢钠:六价铬=4 :1 焦亚硫酸钠:六价铬=3 :1 亚硫酸钠:六价铬=4 :1 投料比不应过大,否则既浪费药剂,也可能生成 2— [Cr2 (OH 2SO]—而沉淀不下来; ORP= 25?300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7?8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2. 含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu (CN 2-以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN)64-被氧化后仍然以络离子存在,所以氰离子并不能解离氧化,增加了破氰难度。氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN+OCI+H2O==CNCI+2OH

生物制剂深度处理重金属废水及资源化技术修订稿

生物制剂深度处理重金 属废水及资源化技术 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

生物制剂深度处理重金属废水及资源化技术 适用范围 应用于选矿尾矿库废水、有色金属冶炼废水、有色金属压延加工废水、矿山酸性重金属废水、电镀废水、化工重金属废水处理。 基本原理 生物制剂是以硫杆菌为主的复合特异功能菌群在非平衡生长(缺乏氮、氧、磷、硫)条件下大规模培养形成的代谢产物与某种无机化合物复配,形成的一种带有大量羟基、巯基、羧基、氨基等功能基团的聚合物,在低pH条件下呈胶体粒子状态存在,可与金属离子Cu2+,Pb2+,Zn2+,Hg2+,Cd2+成键形成生物配合体。然后在pH9~10时水解,诱导生物配位体形成的“胶团”长大,并形成溶度积非常小的、含有多种元素的非晶态的化合物,从而使重金属离子高效脱除。 生物制剂与重金属配合图如下所示: 工艺流程 生物制剂处理常规重金属废水工艺流程图如下所示: 流程说明:重金属废水经收集至调节池进行水质水量调节,然后经提升泵进入配合反应池,在配合反应池中加入生物制剂与废水中的重金属离子发生配合反应,生成重金属配合物,实现重金属离子的深度脱除;在水解反应池中加入石灰乳调节体系pH值进行水解反应,在絮凝反应池中加入PAM絮凝后进入沉淀池实现固液分离,固液分离后的上清液进入清水池,在清水池经硫酸调节pH值至6-9后外排或回用。污泥经脱水后根据需要安全处置或回用。 根据企业水质不同,可调整为不同工艺; 当废水需脱钙回用时,应增加脱钙剂和脱钙反应池,其余流程不变; 当废水为选矿废水,含有CODCr时,应增加氧化剂和氧化反应池,其余流程不变;当废水需要脱铊时,应增加稳定剂和稳定反应池,其余流程不变; 当废水需要脱氟时,应增加脱氟剂和脱氟反应池,其余流程不变。 关键技术或设计特征 该技术经取样分析,经过筛选和分离得到三株细菌:PannonibacterphragmitetusT1,,,这三株细菌能够耐受Pb2+、Cr6+、Mn2+、Zn2+、Cu2+、Ni2+、Cd2+、Co2+、Ag+、Hg2+多种重金属。 在整个系统的运行过程中,无废气产生,节约能源。系统抗污染物冲击负荷强,净化高效,运行稳定。 处理快速高效,反应时间只需10-30min,且工艺稳定,高效处理CODCr的同时,对重金属离子实现同时深度脱除。 设备设施简单,布局紧凑,投资成本低,可结合自控系统减少人工劳动力。 对于常规的重金属废水处理药剂成本很低,且处理后的净化水能够满足回用的要求。 典型规模 生物制剂处理重金属废水处理规模不限,日处理规模可从几立方米到几万立方米。 推广情况 该技术已经被广泛应用于株洲冶炼集团(14400m3/d)、河南豫光金铅集团(5000m3/d)、中金岭南凡口铅锌矿(14400m3/d)、湖南水口山康家湾矿(5500m3/d)、锡矿山闪星锑业(10000m3/d)、江西铜业铅锌金属有限公司(8000m3/d)、紫金铜业有限公司(1500m3/d)、株洲清水塘重金属污水处理厂(10000m 3/d)、永州福嘉(300m3/d)、郴州金贵银业(100m3/d)等50多家大型采选矿、冶炼、化工企业。由该技术处理废水总量占当前我国铅锌总产能水量的60%以上,实现年处理重金属废水量为11000万m 3,废水减排量4000万m3,重金属减排量230t/a。 典型案例 (一)项目概况 水口山康家湾重金属废水生物制剂处理及回用设施设计处理水量5500m3/d,污水来源于选矿废水,2014年3月开工建设,于2015年1月完成调试并建成投产。 (二)技术指标 根据水口山集团康家湾矿、长沙质监站和湖南诚信监理有限公司共同出具的验收报告,项目出水达到《铅锌工业污染物排放标准》(GB25466—2010)。以平均进水铅为L,锌为L,CODCr为99,SS为208计,该污水处理设施每年削减CODCr约吨,重金属离子吨,其中Pb减排吨,Zn减排吨。同时该

相关文档