文档库 最新最全的文档下载
当前位置:文档库 › 信号转导

信号转导

信号转导
信号转导

信号转导 061M5007H

学期:2015-2016学年秋| 课程属性:| 任课教师:谢旗等

教学目的、要求

本课程为细胞生物学专业研究生的专业基础课,同时也可作为相关专业研究生的选修课。细胞信号转导是细胞生物学学科进展最快的研究领域之一,信号转导的概念已经开始深入到生命科学的各个领域。本课程内容涵盖动植物受体、G蛋白、环核苷酸第二信使、质膜磷脂代谢产物胞内信使、酶活性受体、蛋白质可逆磷酸化、泛素蛋白化及其对基因表达的调控、信号转导途径的多样性、网络化和专一性等方面的研究现状和进展。

预修课程

生物化学、分子生物学

教材

生命科学学院

主要内容

第一章绪论(3学时,教师:谢旗)细胞信号转导的研究对象和研究意义,细胞信号的主要种类,细胞化学信号分子与信号传递途径的特征。真核生物的蛋白激酶,蛋白磷酸酶,蛋白质可逆磷酸化对信号转导的调节方式,蛋白质可逆磷酸化与基因表达调控,蛋白质可逆磷酸化在细胞信号中的意义。蛋白质稳定性与信号转导。第二章植物免疫的表观遗传调控(3学时,教师:郭惠珊)表观遗传调控包含RNA干扰、DNA修饰、组蛋白翻译后修饰和染色质重塑等各种过程互相交叠,共同调控基因组表观修饰的动态平衡;除了影响生长和发育,表观遗传调控的另一重要功能是抗病免疫作用。本讲将着重介绍植物表观遗传途径及其抗病免疫信号的调控作用。第三章MicroRNA介导的信号(3学时,教师:郭惠珊)microRNA 广泛存在于生物体内,是生物体保守机制RNA沉默过程产生并具有序列特异性调控功能的一类非编码小分子RNA。本课程主要讲授植物microRNA的产生、加工、特性及其调控作用的基本生物学过程;以及植物miRNAs和其他小分子RNA参与植物生长素信号途径和其他植物生理性状的调控作用。第四章钙离子通道及信号转导(3学时,教师:陈宇航)钙离子是生命活动的必需元素,基本分布和内稳,代谢平衡和疾病;钙离子发挥重要生物学功能,简述历史发现,作为第二信使的化学基础,功能调控的基本模式,以钙结合蛋白为例子展开介绍钙离子发挥功能调控的分子结构基础等;介绍钙离子信号转导系统的组成,

信号转导的基本过程等。从结构生物学角度,介绍钙信号转导重要分子结构-功能研究的最新进展;以电压门控钙离子通道,配基激活的非选择性阳离子通道,内质网上的钙离子激活的钙离子通道CRAC,RyR受体等例子,讲述这些重要分子的三维结构研究和调控机理。第五章信号转导的结构生物学基础(3学时,教师:陈宇航)信号转导的基本模式和过程,及重要生物学意义;结构生物学在阐明信号转导机理中的应用和基本方法;信号转导特异性,高效性及其分子结构基础。从结构生物学角度,以最新研究进展为实例来讲述信号转导的分子机制;讲述G蛋白和GPCR信号通路相关分子结构-功能研究的最新进展,阐明G 蛋白信号转导人体重要生理功能调节中的分子机制和结构基础;讲述ABA信号通路相关分子结构-功能研究的最新进展,讲述信号转导在植物生理功能调控的分子机制和结构基础。第六章光信号传导(3学时,教师:谢旗委托傅向东研究员)植物生长发育受植物的内源激素、生长环境和营养的影响。三者共同调控植物的生长发育、形态建成及开花等发育过程。三者间相互作用,尤其是不同信号转导途径间的Cross -talking更为重要。主要是讲述光信号传导与不同激素间的互作对植物根生长和发育的调控,及其受或对环境应答的影响。第七章信号转导的调控(3学时,教师:许执恒)MAPK,MAPKK,MAPKKK 在信号传递途径中起了关键的作用。c-Jun氨基端激酶(JNK, 又称应激活化蛋白激酶,SAPK) 信号通路属于丝裂原激活蛋白激酶(MAPK)通路,是细胞凋亡的主要信号转导途径之一并与神经退行性疾病关系密切。JNK信号通路可被细胞外多种刺激通过MAPKKK-MAPKK- MAPK (JNK)所激活。多个在神经细胞凋亡中起关键作用的基因, 并证实参与JNK 传导通路的各种激酶及支架蛋白, 包括POSH、JIPs、Rac1/C dc42、MLKs、MKK4/7 和JNKs,可通过构成一相互作用的复合体--PJAC (POSH 和JIP 相关复合体,上图)而参与凋亡过程。第八章MAPK 信号生理功能与疾病(3学时,教师:许执恒)MAPK信号通路参与的多种生理过程及其调控机制,与MAPK信号通路异常相关的疾病及病理生理机制。第九章神经信号转导途径(3学时,教师:张永清)利用传统的模式动物果蝇进行神经生物学的基础应用研究。通过研究发现果蝇的神经系统在分子和细胞水平上与哺乳动物的非常相似,主要是讲述神经信号转导及调控机制。第十章脂质代谢与神经发育(3学时,教师:张永清)授课内容将主要涉及神经突触发育过程中的信号转导,以及重大神经精神疾病如智障和自闭症的病理发生和分子信号调控机制。通过课堂讲授,学生们将对正常生理过程中突触发育的机制以及相关疾病的病理发生机制有较全面的认识。第十一章植物与逆境环境信号(3学时,教师:谢旗)植物生长发育面临不同生长环境的影响。尤其是不同信号转导途径间的分子机理是该领域的热点。主要是讲述以拟南芥根发育作为研究对象、分离鉴定与环境应答相关的突变体。如何研究不同逆境应答因子的信号转导及调控机制。进一步阐明植物激素和环境互作调控植物发育的分子机理第十二章信号转导的机制的应用—诱导系统(3学时,教师:谢旗)通过对半乳糖调控、肾上皮质激素、雌性激素、光信号等转导机理的深入研究而重建了多个诱导系统。该章主要内容是多个诱导系统的机制及应用。考试(4学时)教学方式:100 % 课堂授课考核方式:课堂开卷

参考文献

信号转导

信号转导 061M5007H 学期:2015-2016学年秋| 课程属性:| 任课教师:谢旗等 教学目的、要求 本课程为细胞生物学专业研究生的专业基础课,同时也可作为相关专业研究生的选修课。细胞信号转导是细胞生物学学科进展最快的研究领域之一,信号转导的概念已经开始深入到生命科学的各个领域。本课程内容涵盖动植物受体、G蛋白、环核苷酸第二信使、质膜磷脂代谢产物胞内信使、酶活性受体、蛋白质可逆磷酸化、泛素蛋白化及其对基因表达的调控、信号转导途径的多样性、网络化和专一性等方面的研究现状和进展。 预修课程 生物化学、分子生物学 教材 生命科学学院 主要内容 第一章绪论(3学时,教师:谢旗)细胞信号转导的研究对象和研究意义,细胞信号的主要种类,细胞化学信号分子与信号传递途径的特征。真核生物的蛋白激酶,蛋白磷酸酶,蛋白质可逆磷酸化对信号转导的调节方式,蛋白质可逆磷酸化与基因表达调控,蛋白质可逆磷酸化在细胞信号中的意义。蛋白质稳定性与信号转导。第二章植物免疫的表观遗传调控(3学时,教师:郭惠珊)表观遗传调控包含RNA干扰、DNA修饰、组蛋白翻译后修饰和染色质重塑等各种过程互相交叠,共同调控基因组表观修饰的动态平衡;除了影响生长和发育,表观遗传调控的另一重要功能是抗病免疫作用。本讲将着重介绍植物表观遗传途径及其抗病免疫信号的调控作用。第三章MicroRNA介导的信号(3学时,教师:郭惠珊)microRNA 广泛存在于生物体内,是生物体保守机制RNA沉默过程产生并具有序列特异性调控功能的一类非编码小分子RNA。本课程主要讲授植物microRNA的产生、加工、特性及其调控作用的基本生物学过程;以及植物miRNAs和其他小分子RNA参与植物生长素信号途径和其他植物生理性状的调控作用。第四章钙离子通道及信号转导(3学时,教师:陈宇航)钙离子是生命活动的必需元素,基本分布和内稳,代谢平衡和疾病;钙离子发挥重要生物学功能,简述历史发现,作为第二信使的化学基础,功能调控的基本模式,以钙结合蛋白为例子展开介绍钙离子发挥功能调控的分子结构基础等;介绍钙离子信号转导系统的组成,

植物激素信号转导途径简介

植物生长发育的各个阶段, 包括胚胎发生、种子萌发、营养生长、果实成熟、叶片衰老等都受到多种植物激素信号的控制。人们对植物激素的生物合成途径、生理作用已有大量阐述,在生产上的应用也已取得很大进展,但对其信号转导途径的认识并不是很全面。今天小编和大家聊一聊,9大类植物激素信号转导途径。 1.生长素 与生长素信号转导相关的三类蛋白组分是:生长素受体相关SCF复合体(SKP1, Cullin and F-box complex)、发挥御制功能的生长素蛋白(Aux/IAA)和生长素响应因子(ARF)。早期响应基因有Aux/IAA基因家族、GH1、GH3、GH2/4、SAUR基因家族、ACS、GST。生长素信号转导通路主要有4条: TIR1/AFBAux/IAA/TPL-ARFs途径、T MK1-IAA32/34-ARFs途径、TMK1/ABP1-ROP2/6-PINs或RICs 途径和SKP2AE2FC/DPB途径。 2.细胞分裂素

细胞分裂素信号转导途径是基于双元信号系统(TCS),通过磷酸基团在主要组分之间的连续传递而实现。双元信号系统主要包含3类蛋白成员及4次磷酸化事件: (ⅰ)位于内质网膜或细胞膜的组氨酸受体激酶(histidine kinases, HKs)感知细胞分裂素后发生组氨酸的自磷酸化;(ⅱ)将组氨酸残基的磷酸基团转移至自身接受区的天冬氨酸残基上;(ⅲ)受体天冬氨酸残基上的磷酸基团转移至细胞质的组氨酸磷酸化转移蛋白(His-containing phosphotransfer protein, HPs)的组氨酸残基上;(ⅳ)磷酸化的组氨酸转移蛋白进入细胞核并将磷酸基团转移至A类或B类响应调节因子(response regulators, ARR s)。在拟南芥中已知的细胞分裂素受体有AHK2、AHK3和AHK4 3个,AHP有6个(AHP1?6),A类和B类ARR分別有10个和1 2个,它们是细胞分裂素信号转导通路的主要组成部分。

G蛋白在信号转导中的作用

G蛋白在信号转导中的作用 摘要:G蛋白是一种特殊的调节蛋白,它们都具有GTP结合位点,且活性受GTP的调节。G蛋白以其特定的方式偶联许多膜受体及其效应器,其中包括腺苷酸环化酶,cGMP磷酸二酯酶(PDE),离子通道以及磷脂肌醇特异的磷脂酶C(PLC)等,是跨膜信息传递机制中的一个关键因素。G蛋白也称GTP酶开关蛋白,属于GTP酶超大家族中的特殊亚型,可通过结合或水解GTP进行活性控制,是一类广泛分布在细胞中,并在许多生物学过程中执行重要功能的一类蛋白。G蛋白介导的信号转导系统是细胞中最常见的信号传递方式,G蛋白参与了G蛋白偶联受体所介导的信号转导途径和酶联受体信号传导途径,在信号转导中发挥的重要的作用。 关键词:G蛋白,信号转导,G蛋白偶联受体 G蛋白的种类和基本结构: G蛋白是一类能与鸟嘌呤核苷酸结合、具有GTP酶(GTPase)活性的蛋白。G蛋白位于质膜胞质侧,是一个超级家族,包括异源三聚体G蛋白(heterotrimeric G protein ) 或称大G蛋白和小G蛋白( Small G protein)。异源三聚G蛋白( heterotrmieric GTP binding protein ),由α,β,γ三个亚基组成。它变动于它的GDP形式(对环化酶无活性)及它的GTP 形式(有活性) 之间。根据不同的a亚基的功能特性可将大G蛋白分为四类:(1) Gs:其活性能被霍乱毒素抑制;(2) Gi:对腺苷酸环化酶有抑制效应;(3) Gq:百日咳毒素和霍乱毒素不能调节其活性;(4) G12:活化需通过血栓素和凝酶素的介导。目前已经确定了23种Gα,5种Gβ,10种Gγ,这样体内就有上千种G蛋白三聚体组合的可能性,这无疑增加了信号转导的可变性和灵活性。小分子G蛋白,它们的激活不是直接通过与激动型的G蛋白偶联受体相互作用而调节其活性,而是通过鸟嘌呤核苷交换因子(GEF)来控制这类小分子G蛋白的GTP交换,由GEF催化这类小分子单聚体G蛋白的无活性GDP结合状态向有活性的GTP结合状态转换。根据这类小分子G蛋白的蛋白质序列和功能的相似性,可分为Ras、Rho、Rab、Arf等亚家族。 Gα亚基为一多肽单链,含有一个GTP酶区( 结合和水解GTP ) 和一个α螺旋区( 该区将GTP埋藏在G蛋白的核心内) 。每种G蛋白的a亚基都有其独特的氨基酸序列和结构,但也都有一定的同源性,即5个关键功能区。它的N 端与βγ二聚体结合,C端参与和受体的相互作用,而与效应器结合的部位在他的功能区。Gβ亚基具有许多WD一40 (由β一片层结构组成的Trp - Asp结构域)和GH ( Gly - His )重复的保守序列形成的结构域,Gγ为伸展的单条链,与Gα和Gβ都紧密相连。在天然状态下,β和γ亚基以非共价键紧密结合在一起形成二聚体,只有在变性的条件下才能将其分离。 G蛋白作用过程中的分子机理,在受体未收到激素的作用之前,G蛋白与受体是各自分开的。作为基态,G蛋白以αβγ三聚体的形式存在,并有GDP结合在α亚基上。激素与受体的相互作用,导致激素·受体复合物与G蛋白结合,从而改变了G蛋白的构象,使α亚基上的鸟苷酸结合位点打开,GDP解离下来。在胞内GTP浓度较低时,由此可分离得到较为稳定的激素·受体·G蛋白高亲和态复合物,在胞内GTP浓度较高的情况下,GTP很容易结合到鸟苷酸结合位点上去。GTP结合导致G蛋白构象的进一步变化。

KEGG上的信号通路图怎么看

KEGG上的信号通路图怎么看? 提示:请点击标题下方蓝色“实验万事屋”,添加关注后,发“嗯”可以查看我们之前的文章。未经允许,其他公众号不得转载哦! 想要把自己研究的分子扯上明星分子或者明星通路?那是不难,难的是具体到底要怎么去扯,芯片结果啊,生信结果啊,都会给你提示,但真的要具体扯上去,还得看懂那些七七八八的信号通路图。 KEGG Pathway上有着大量的信号通路图,画得一个复杂啊!巨坑爹有没有?曾经有师弟说我之前曾经把Wnt通路描述错了,他师兄告诉他,应该是GSK-3β磷酸化抑制β-Catenin降解,并促进它入核的。在这里,我们只能默默地祝福这位师兄了…… 那我们就用Wnt通路来做例子吧。先上KEGG下载一个Wnt的信号通路图,如下: 绝壁是很高大上的不是么?这要咋看呢?其实这张图上把三个Wnt通路都画上去了,也就是Wnt/β-Catenin(经典Wnt通路),Wnt/PCP(平面的细胞极性途径)和Wnt/Ca2+(Wnt/钙离子)三条信号通路组成,我们就删减一下,就光看经典的Wnt通路,就变成了下面这个模样:

感觉还是很高大上有木有?那就再删减一下,把它变成经典Wnt信号通路的骨架会是什么样呢?就是这样: 简洁明快了吧,但要怎么来看懂这样的图呢?我们来看一下KEGG Pathway的具体图例:

把这些图例用来解释经典Wnt信号通路骨架图,就变成了: 看懂了么?那给你从左到右解释一下: 1)Wnt激活膜上受体,将信号传递到第二信使Dvl,活化的Dvl抑制由Axin、APC 和GSK-3β组成的复合物的活性,使β-catenin不能被GSK-3β磷酸化。 2)磷酸化的β-catenin才可通过泛素化(ubiquitination)而被胞浆内的蛋白酶体所降解,由于非磷酸化的β-catenin不能被蛋白酶体降解,从而导致β-catenin在胞浆内积聚,并移向核内。

第六章同化物的运输分配及信号转导单元自测

第六章?同化物的运输分配及信号传导单元自测 (一)填空 1.根据运输距离的长短,可将高等植物体内的运输可分为?????????????? 距离运输和?????????????? 距离运输。(短,长) 2.一般认为,胞间连丝有三种状态:(1)?????????????? 态,(2)?????????????? 态,(3)?????????????? 态。一般地说,细胞间的胞间连丝多、孔径大,存在的浓度梯度大,则?????????????? 于共质体的运输。(正常,开放,封闭,有利) 3.物质进出质膜的方式有三种:(1)顺浓度梯度的?????????????? 转运,(2)逆浓度梯度的??????????????转运,(3)依赖于膜运动的??????????????转运。(被动,主动,膜动) 4.以小囊泡方式进出质膜的膜动转运包括?????????????? ,?????????????? 和?????????????? 三种形式。(内吞,外排,出胞) 5.一个典型的维管束可由四部分组成:(1)以导管为中心,富有纤维组织的?????????????? ,(2)以筛管为中心,周围有薄壁组织伴联的?????????????? ,(3)穿插木质部和韧皮部间及四周的多种?????????????? ,(4)包围木质部和韧皮部。(木质部,韧皮部,细胞,维管束鞘) 6.目前测定韧皮部运输速度的常用的方法有两种。一种是利用?????????????? 作为示踪物,用显微注射技术将这种分子直接注入筛管分子内,追踪这种分子在筛管中的运输状况,根据单位时间中此分子的移动距离来计算运输速度。另一种是?????????????? 同位素示踪技术,常用的同位素是?????????????? 。将它的化合物饲喂叶片,然后追踪化合物在筛管中的运输状况、运输速度,用这种技术还可研究同化物的分配动态。(染料分子,放射性,14C) 8.筛管中糖的主要运输形式是?????????????? 糖和??????????????糖。(寡聚糖(棉子糖、水苏糖、毛蕊花糖等),蔗糖) 9.光合同化物在韧皮部的装载要经过三个区域:即(1)光合同化物?????????????? 区,指能进行光合作用的叶肉细胞;(2)同化物??????????????区,指小叶脉末端的韧皮部的薄壁细胞;(3)同化物?????????????? 区,指叶脉中的SE-CC。(生产,累积,输出,) 10.质外体装载是指?????????????? 细胞输出的蔗糖先进入质外体,然后通过位于SE-CC复合体质膜上的蔗糖载体??????????????蔗糖浓度梯度进入伴胞,最后进入筛管的过程。共质体装载途径是指??????????????细胞输出的蔗糖通过胞间连丝??????????????浓度梯度进入伴胞或中间细胞,最后进入筛管的过程。(光合,逆浓度,光合,顺蔗糖浓度) 11.韧皮部卸出的途径有两条:一条是?????????????? 途径,另一条是??????????????途径。(共质体,质外体) 12.光合碳代谢形成的磷酸丙糖可继续参与卡尔文循环的运转,或滞留在?????????????? 内,并在一系列酶作用下合成淀粉;或者通过位于叶绿体被膜上的?????????????? 进入细胞质,再在一系列酶作用下合成蔗糖。(叶绿体,磷酸丙糖转运器) 13.1930年E、Münch提出了解释韧皮部同化物运输的??????????????学说。该学说的基本论点是,同化物在筛管内是随液流流动的,而液流的流动是由?????????????? 两端的膨压差引起的。(压力流,输导系统) 14.转化酶是催化蔗糖?????????????? 反应的酶。根据催化反应所需的最适pH,可将转化酶分成两种,一种称为?????????????? 转化酶,该酶对底物蔗糖的亲和力较高,主要分布在液泡和细胞壁中;另一类称为?????????????? 转化酶,该酶主要分布在细胞质部分。(水解,酸性,碱性或中性) 15.光合细胞中蔗糖的合成是在?????????????? 内进行的。催化蔗糖降解代谢的酶有两类,一类是?????????????? ,另一类是?????????????? 。(细胞质,转化酶,蔗糖合成酶) 16.库细胞中淀粉合成的部位是?????????????? 。G1P在?????????????? 酶的作用下形成ADPG,

细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC 膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图: 2、免疫荧光技术Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,

荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP) Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A 就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、G ST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。 示意图:

第十一章 细胞的信号转导习题集及参考答案

第十一章细胞的信号转导 一、名词解释 1、细胞通讯 2、受体 3、第一信使 4、第二信使 5、G 蛋白 6、蛋白激酶A 二、填空题 1、细胞膜表面受体主要有三类即、、和。 2、在细胞的信号转导中,第二信使主要有、、、和。 3、硝酸甘油之所以能治疗心绞痛是因为它在体内能转化为,引起血管,从而减轻的负荷和的需氧量。 三、选择题 1、能与胞外信号特异识别和结合,介导胞内信使生成,引起细胞产生效应的是( )。 A、载体蛋白 B、通道蛋白 C、受体 D、配体 2、下列不属于第二信使的是()。 A、cAMP B、cGMP C、DG D、CO 3、下列关于信号分子的描述中,不正确的一项是()。 A、本身不参与催化反应 B、本身不具有酶的活性 C、能够传递信息 D、可作为酶作用的底物 4、生长因子是细胞内的()。 A、结构物质 B、能源物质 C、信息分子 D、酶 5、肾上腺素可诱导一些酶将储藏在肝细胞和肌细胞中的糖原水解,第一个被激活的酶是()。 A、蛋白激酶A B、糖原合成酶 C、糖原磷酸化酶 D、腺苷酸环化酶 6、()不是细胞表面受体。 A、离子通道 B、酶连受体 C、G蛋白偶联受体 D、核受体 7、动物细胞中cAMP的主要生物学功能是活化()。 A、蛋白激酶C B、蛋白激酶A C、蛋白激酶K D、Ca2+激酶 8、在G蛋白中,α亚基的活性状态是()。 A、与GTP结合,与βγ分离 B、与GTP结合,与βγ聚合 C、与GDP结合,与βγ分离 D、与GDP结合,与βγ聚合

9、下面关于受体酪氨酸激酶的说法哪一个是错误的 A、是一种生长因子类受体 B、受体蛋白只有一次跨膜 C、与配体结合后两个受体相互靠近,相互激活 D、具有SH2结构域 10、在与配体结合后直接行使酶功能的受体是 A、生长因子受体 B、配体闸门离子通道 C、G蛋白偶联受体 D、细胞核受体 11、硝酸甘油治疗心脏病的原理在于 A、激活腺苷酸环化酶,生成cAMP B、激活细胞膜上的GC,生成cGMP C、分解生成NO,生成cGMP D、激活PLC,生成DAG 12、霍乱杆菌引起急性腹泻是由于 A、G蛋白持续激活 B、G蛋白不能被激活 C、受体封闭 D、蛋白激酶PKC功能异常 13下面由cAMP激活的酶是 A、PTK B、PKA C、PKC D、PKG 14下列物质是第二信使的是 A、G蛋白 B、NO C、GTP D、PKC 15下面关于钙调蛋白(CaM)的说法错误的是 A、是Ca2+信号系统中起重要作用 B、必须与Ca2+结合才能发挥作用 C、能使蛋白磷酸化 D、CaM激酶是它的靶酶之一16间接激活或抑制细胞膜表面结合的酶或离子通道的受体是 A、生长因子受体 B、配体闸门离子通道 C、G蛋白偶联受体 D、细胞核受体 17重症肌无力是由于 A、G蛋白功能下降

细胞信号转导练习题 四套题

细胞信号转导 第一套 一、选择题(共10题,每题1分) 1、Ca2+在细胞信号通路中是() A. 胞外信号分子 C. 第二信使 B. 第一信使 D. 第三信使 2、动员细胞内源性Ca2+释放的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 3、细胞通讯是通过()进行的。 A. 分泌化学信号分子 C. 间隙连接或胞间连丝 B. 与质膜相结合的信号分子 D. 三种都包括在内 4、Ras蛋白由活化态转变为失活态需要( )的帮助。 A. GTP酶活化蛋白(GAP) C. 生长因子受体结合蛋白2(GRB2) B. 鸟苷酸交换因子(GEF) D. 磷脂酶C-γ(PLCγ) 5、PKC在没有被激活时,游离于细胞质中,一旦被激活就成为膜结合蛋白,这种变化依赖于()。 A. 磷脂和Ca2+ C. DAG和 Ca2+ B. IP3和 Ca2+ D. DAG和磷脂 6、鸟苷酸交换因子(GEF)的作用是()。 A. 抑制Ras蛋白 C. 抑制G蛋白 B. 激活Ras蛋白 D. 激活G蛋白 7、cAMP依赖的蛋白激酶是()。 A. 蛋白激酶G(PKG) C. 蛋白激酶C(PKC) B. 蛋白激酶A(PKA) D. MAPK 8、NO信号分子进行的信号转导通路中的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 9、在下列蛋白激酶中,受第二信使DAG激活的是()。 A. PKA C. MAPK B. PKC D. 受体酪氨酸激酶 10、在RTK-Ras蛋白信号通路中,磷酸化的()残基可被细胞内的含有SH2结构域的信号蛋 白所识别并与之结合。 A. Tyr C. Ser B. Thr D. Pro 二、判断题(共10题,每题1分) 11、生成NO的细胞是血管平滑肌细胞。() 12、上皮生长因子(EGF)受体分子具酪氨酸激酶活性位点。() 13、Ras蛋白在cAMP信号通路中起着分子开关的作用。()

生物膜与信号转导途径考试复习题及答案

生物膜与细胞信号转导 名词解释: 1.脂筏:胆固醇分子不可能在脂双层里均匀分布,而是与鞘脂一起集中在膜的 特定区域,胆固醇-鞘脂漂浮在液态磷酸甘油脂“海洋”上的“筏”一样称为脂筏。 2.转运蛋白: 3.P-型ATPase:是阳离子转运蛋白,在转运过程中需要ATP可逆磷酸化的过 程,磷酸化使得转运蛋白的构象发生变化,同时,转运阳离子做跨膜运输4.次级主动运输:第一种溶质(S1)通过初级主动运输产生浓度梯度后,接着, 第一种溶质顺着浓度梯度提供能量,驱动第二种溶质(S2)逆浓度梯度运输 5.G蛋白分子开关:GTP酶(GTPase)是一个分子开关,开关是通过结合和水解 GTP进行控制。 6.激酶锚定蛋白:AKAPs 是支架蛋白,位于脂筏的胞质侧,将信号通路中执 行功能的蛋白聚集在一起,便于反应进行 7.信号蛋白 8.MAP激酶级联反应:酵母中的mating pheromones,果蝇中复眼的光受体的 分化,开花植物中对病源的防御反应。 简答题: 1.溶质分子跨膜运动,有哪几种机制? 2.以细菌KcsA钾离子通道为例,说明电压门控的钾离子通道结构与运输的关系答:细菌KcsA通道是由四个亚基组成,其中两个亚基由两个跨膜的螺旋(M1和M2) 和通道胞外的孔区域(P)组成。每个亚基的M2螺旋线与另一个亚基的M2相互交叉形成一个“螺旋束”,封闭了面向质膜的孔,则K+不能通过;M2 螺旋线可以在具有甘氨酸残基的位点弯曲,将通道门打开。K+运输。 P区域是由一个长约1/3通道宽度的短的螺旋和一个能形成“衬里的”狭窄的选择性过滤器的无螺旋的环,允许K+通过。选择性过滤器的衬里含有高度保守的五肽骨架,产生5个连续排列的氧原子环。每个环由四个氧原子组成,直径是3nm,而失水K+直径是2.7nm。当通道门打开,K+进入通道时,电负性的氧原子替代了与K+结合的水分子,与K+稳定的相互作用使K+运输。尽管选择性过滤器具有4个K+结合位点,但实际上只能同时结合2个K+。 3.乙酰胆碱受体门控通道结构及离子运输机制 结构:乙酰胆碱是由运动神经元释放到肌细胞质膜,与乙酰胆碱受体结合,它可以改变受体的构象,引起离子通道打开。乙酰胆碱受体允许Na+、Ca2+和K+通过。由5个亚基组成:γ,β和δ各1个,2个α亚基,每个α亚基带有1个乙酰胆碱结合位点。每个亚基含有4个跨膜双螺旋,5个亚基围成1个中心孔,孔直径约20 ?,突出在胞质和细胞表面。 机制:2个乙酰胆碱结合到2个α亚基上,引起构象发生变化,使疏水侧链远离通道的中心,打开离子通道,让离子通过。组成5个亚基的M2螺旋所含有的5个Leu 侧链突出在通道,限制了通道的直径。当两个乙酰胆碱受体位点被占据,构想发生变化,随着M2螺旋的轻微扭曲,5个Leu残基旋转,远离通道中心,由较小的极性氨基酸代替,通过道门打开,允许Ca2+,Na+、K+通过。

双组份2

2. 双组分调节系统的功能 细菌的生存环境中存在各种环境变化。包括感应pH,养分,氧化还原状态,渗透压力和抗生素等,因此细菌含有多套双组分系统,来应对各种环境的变化。此外,一些双组分系统还能控制基因簇,该基因簇对细胞生长、毒力、生物膜和群体感应有重要作用。 2.1大肠杆菌双组分调节系统 在大肠杆菌中,EnvZ-OmpR系统是研究比较清楚的一个双组分系统,是一种渗透胁迫相关的双组分系统,该系统是通过调节OmpF和OmpC的基因表达,能影响OmpF和OmpC在外膜上数量的多少,跨膜运输物质最终受到影响,调控者细胞对渗透胁迫的响应过程。OmpF和OmpC是大肠杆菌细胞膜上的两个主要孔道蛋白,其表达是由磷酸化的OmpR调节,小分子量的亲水性物质可以通过它们进入细胞。它们对环境渗透势的大小极为敏感。二者在外膜上数量的多少都受渗透势改变的影响,渗透势低时,外膜中有较多的OmpF,渗透势高时,外膜中有较多的OmpC。OmpF和OmpC基因的表达是由EnvZ-OmpR双组系统调控的。渗透感应器是EnvZ,属于HPK,能进行自身磷酸化是在感受到外界渗透势变化下,然后将其高能His-Pi基团传递到RR的OmpR上,磷酸位点接受模件的Asp残基。随后,磷酸化的OmpR与OmpF和OmpC的上游序列结合,调节这两个基因的表达[10]。 2.2 病原性细菌 在病原性细菌中,双组分信号系统转导系统经常控制基因簇对细胞生长和致病过程发生的作用。因此,可以通过引入双组分系统的抑制子作用于传感器的感官结构域,阻止群体感应系统,或者作用于必要的RR,通过特异性抑制双组分系统的信号转导控制病原性细菌的致病性,对医学研究新药品提供一定的理论依据[11]。 2.3结核分枝杆菌双组分调节系统 在结核分制杆菌中,PhoPR 双组分系统对结核分枝杆菌的毒力及持留

主要的信号转导途径

第三节主要的信号转导途径 一、膜受体介导的信号传导 (一)cAMP-蛋白激酶A途径 述:该途径以靶细胞内cAMP浓度改变和激活蛋白激酶A(PKA)为主要特征,是激素调节物质代谢的主要途径。 1.cAMP的合成与分解 ⑴引起cAMP水平增高的胞外信号分子:胰高血糖素、肾上腺素、 促肾上腺皮质激素、促甲状腺素、甲状旁腺素和加压素等。 α-GDP-βγ(Gs蛋白)激素+受体→激素-受体→↓ α-GTP + βγ ↓ AC激活 ↓ ATP →cAMP 述:当信号分子(胰高血糖素、肾上腺素和促肾上腺皮质激素)与靶细胞质膜上的特异性受体结合,形成激素一受体复合物 而激活受体。活化的受体可催化Gs的GDP与GTP交换,导 致Gs的α亚基与βγ解离,蛋白释放出αs-GTP。αs-GTP能激 活腺苷酸环化酶,催化ATP转化成cAMP,使细胞内cAMP 浓度增高。过去认为G蛋白中只有α亚基发挥作用,现知βγ 复合体也可独立地作用于相应的效应物,与α亚基拮抗。 腺苷酸环化酶分布广泛,除成熟红细胞外,几乎存在于所有组织的细胞质膜上。cAMP经磷酸二酯酶(PDE)降解成 5'-AMP而失活。cAMP是分布广泛而重要的第二信使。

⑵AC活性的抑制与cAMP浓度降低 ◇Gα-GTP结合AC并使之激活后,同时激活自身的GTP酶活性,Gα-GTP→Gα-GDP,Gs、AC均失活。从而在细胞对cAMP浓度升高作出应答后AC活性迅速逆转。 ⑶少数激素,如生长激素抑制素、胰岛素和抗血管紧张素II 等,它们活化受体后可催化抑制性G蛋白解离,导致细胞内AC活性下降,从而降低细胞内cAMP水平。 ⑷正常细胞内cAMP的平均浓度为10-6mol/L。cAMP在细 胞中的浓度除与腺苷酸环化酶活性有关外,还与磷酸二酯酶的活性有关。举例如下: ①一些激素如胰岛素,能激活磷酸二酯酶,加速cAMP降解; ②某些药物如茶碱,则抑制磷酸二酯酶,促使细胞内cAMP 浓度升高。 2.cAMP的作用机制――cAMP激活PKA(幻灯64) ⑴cAMP对细胞的调节作用是通过激活cAMP依赖性蛋白激酶 或称蛋白激酶A (PKA)系统来实现的。 ⑵PKA的结构 2C(催化亚基):蛋白丝/苏氨酸磷酸化酶活性四聚体蛋白 变构酶 2R(调节亚基):各有2个cAMP结合位点述:催化亚基有催化底物蛋白质某些特定丝/苏氨酸残基磷酸化的功能。调节亚基与催化亚基相结合时,PKA呈无活性状态。当4分子cAMP与2个调节亚基结合后,调节亚基脱落,游离的催化亚基具有蛋白激酶活性。PKA的激活过程需要Mg2+。

PECAM-1在机械信号 转导的作用

Pharmacy Information 药物资讯, 2018, 7(2), 21-26 Published Online March 2018 in Hans. https://www.wendangku.net/doc/001111875.html,/journal/pi https://https://www.wendangku.net/doc/001111875.html,/10.12677/pi.2018.72005 The Function of Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) in Mechanotransduction Shengcun Li, Jichun Han, Jing Shang* School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing Jiangsu Received: Mar. 8th, 2018; accepted: Mar. 21st, 2018; published: Mar. 27th, 2018 Abstract Atherosclerosis is a chronic, inflammatory disease form at specific regions of the arterial tree such as in the vicinity of branch points, the outer wall of bifurcations, and the inner wall of curvatures, where disturbed flow occurs. Local factors, such as hemodynamic forces, play a major role in the regional localization of atherosclerosis. Endothelial cell (EC) surfaces are equipped with numer-ous mechanoreceptors capable of detecting and responding to forces stimuli. After activation of mechanoreceptors, a complex network of several intracellular pathways is triggered. These pathways lead to phosphorylation of several transcription factors (TFs), which bind positive or negative shear stress responsive elements (SSREs) at promoters of mechanosensitive genes, ulti-mately, modulating cellular function and morphology. Here, we focus on the function of platelet endothelial cell adhesion molecule-1 (PECAM-1), one of the mechanoreceptors, in mechanotrans-duction. Keywords PECAM-1, Mechanoreceptors, Mechanotransduction PECAM-1在机械信号 转导的作用 李胜存,韩吉春,尚靖* 中国药科大学中药学院,江苏南京 收稿日期:2018年3月8日;录用日期:2018年3月21日;发布日期:2018年3月27日 *通讯作者。

信号转导通路图片大全【精品】

信号转导通路图片大全【精品】 一、概念 细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。 二、信号转导受体 (一)膜受体 1.环状受体(离子通道型受体) 多为神经递质受体,受体分子构成离子通道。受体与信号分子结合后变构,导致通道开放或关闭。引起迅速短暂的效应。 2.蛇型受体 7个跨膜α-螺旋受体, 有100多种,都是单条多肽链糖蛋白,如G蛋白偶联型受体。 3.单跨膜α-螺旋受体 包括酪氨酸蛋白激酶型受体和非酪氨酸蛋白激酶型受体。 (1)酪氨酸蛋白激酶型受体这类受体包括生长因子受体、胰岛素受体等。与相应配体结合后,受体二聚化或多聚化,表现酪氨酸蛋白激酶活性,催化受体自身和底物Tyr磷酸化,有催化型受体之称。 (2)非酪氨酸蛋白激酶型受体,如生长激素受体、干扰素受体等,。当受体与配体结合后,可偶联并激活下游不同的非受体型TPK,传递调节信号。(二)胞内受体 位于胞液或胞核,结合信号分子后,受体表现为反式作用因子,可结合DNA 顺式作用元件,活化基因转录及表达。包括类固醇激素受体、甲状腺激素受体等。 胞内受体都是单链蛋白,有4个结构区:①高度可变区②DNA结合区③激素结合区④绞链区 (三)受体与配体作用的特点是:①高度亲和力,②高度特异性,③可饱和性

1.受体:位于细胞膜上或细胞内,能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA结合蛋白。受体在细胞信息传递过程中起极为重要的作用。 2.G蛋白:即鸟苷酸结合蛋白,是一类位于细胞膜胞浆面、能与GDP或GTP 结合的外周蛋白,由α、β、γ三个亚基组成。以三聚体存在并与GDP结合者为非活化型。当α亚基与GTP结合并导致βγ二聚体脱落时则变成活化型,可作用于膜受体的不同激素,通过不同的G蛋白介导影响质膜上某些离子通道或酶的活性,继而影响细胞内第二信使浓度和后续的生物学效应。 三、细胞信号转导的主要途径 亚基的功能,参与细胞内信号转导。信息分子与受体结合后,激活不同G蛋白,有以下几种途经:(1)腺苷酸环化酶途径通过激活G蛋白不同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓度。cAMP可激活蛋白激酶A(PKA),引起多种靶蛋白磷酸化,调节细胞功能。(2)磷脂酶途径激活细胞膜上磷脂酶C(PLC),催化质膜磷脂酰肌醇二磷酸(PIP2)水解,生成三磷酸肌醇(IP3)和甘油二酯(DG)。IP3促进肌浆网或内质网储存的Ca2+释放。Ca2+可作为第二信使启动多种细胞反应。Ca2+与钙调蛋白结合,激活Ca2+/钙调蛋白依赖性蛋白激酶或磷酸酯酶,产生多种生物学效应。DG与Ca2+能协调活化蛋白激酶C(PKC)。α和γ亚基组成的异三聚体在膜受体与效应器之间起中介作用。小G蛋白只具有G蛋白β、α1.G蛋白介导的信号转导途径G 蛋白可与鸟嘌呤核苷酸可逆性结合。由 2.受体酪氨酸蛋白激酶(RTPK)信号转导途径受体酪氨酸蛋白激酶超家族的共同特征是受体本身具有酪氨酸蛋白激酶(TPK)的活性,配体主要为生长因子。RTPK途径与细胞增殖肥大和肿瘤的发生关系密切。配体与受体胞外区结合后,受体发生二聚化后自身具备(TPK)活性并催化胞内区酪氨酸残基自身磷酸化。RTPK的下游信号转导通过多种丝氨酸/苏氨酸蛋白激酶的级联激活:(1)激活丝裂原活化蛋白激酶(MAPK),(2)激活蛋白激酶C(PKC),(3)激活磷脂酰肌醇3激酶(PI3K),从而引发相应的生物学效应。 3.非受体酪氨酸蛋白激酶途径此途径的共同特征是受体本身不具有TPK活性,配体主要是激素和细胞因子。其调节机制差别很大。如配体与受体结合使受

G蛋白在植物细胞信号转导中的作用

G蛋白在植物细胞信号转导中的作用 一、植物G蛋白的种类 G蛋白是普遍存在于真核生物细胞中的一个GTP结合蛋白家族,根据其亚基组成及分子量大小,可将参与细胞信号转导的G蛋白分为异三聚体G蛋白,小G蛋白[15]。 异三聚体G蛋白在SDS电泳图上可看到α、β、γ 3 种亚基。α亚基单体分子量为39 ~52KDa,β和γ亚基分子量为35 ~37KDa和6 ~10KDa,各种G蛋白亚基中,α亚基差别较大,β、γ亚基比较相似[16]。根据植物G蛋白中α/β界面和β/γ界面的氨基酸残基与动物细胞中的相比是高度保守的,并且高度保守的氨基酸残基也存在于植物G蛋白α亚基的“开关”区和核甘酸结合基序中,所以认为,植物体中的α,β,γ 3 个亚基也可能组成异源异三聚体G蛋白[17-18],小G蛋白是单体鸟苷酸结合蛋白,由一条多肽链构成,分子量较小,一般为20 ~30kDa。根据在细胞中功能不同,小G蛋白可分为5个亚家族,包括Ras、Rho、Rad、Arf和RanRas家族在酵母和哺乳动物中调节细胞分化过程,Rho家族调控肌动蛋白重组过程和参与MAP激酶的细胞信号转导,Rad和Arf家族在膜转运过程中起着不同的重要作用,而Ran家族在核孔位置调节着蛋白和RNA分子的运输过程。到目前为止,利用分子生物学技术已从植物细胞中分离出几十种小G蛋白基因[15]。此外,植物中还有另外一类G蛋白,超大G蛋白(XLG)[19],然而目前尚未有关于XLG能和常规G蛋白βγ发生相互作用的证据,因此,对植物XLG的功能

研究有待深入。 二、G蛋白在细胞信号转导中的作用 细胞信号转导是偶联各种胞外刺激信号(包括各种胞内、外源刺激信号)与其所引起的生理效应之间的一系列分子反应机理,包括三个阶段:(1)胞外刺激信号传递;(2)跨膜信号转换;(3)胞内信号转导。在信号的跨膜转换过程中细胞表面的受体尤其是G蛋白偶联的受体起着重要的作用,是细胞跨膜转换信号的主要方式。异三聚体G蛋白介导的信号转导是一个存在于几乎所有的真核生物中保守的信号转导机制。这一途径主要涉及3 个关键的组成部分:(1)质膜受体,一般称为G蛋白偶联受体(GPCR);(2)质膜内侧的异三聚体G蛋白; (3)质膜上或质膜内表面的效应器。异三聚体G蛋白在信号转导过程中起着分子开关的作用,当G蛋白α亚基与GDP结合时,信号转导通路处于关闭状态;当胞外配体与受体结合形成复合物时,导致受体胞内结构域与G蛋白α亚基耦联,并促使α亚基结合的GDP被GTP 交换而被活化,即信号转导通路处于开启状态。所以,当细胞受到某些胞外信号刺激时,质膜表面的GPCR与之相结合,活化的受体激活质膜内侧的G蛋白,后者再去调控其下游的效应器,产生胞内第二信使[20]。 1987年,Hasunuma和Funadera等发现浮萍蛋白提取物GTP结合活性能被红光或远红光处理所抑制,暗示G蛋白可能参与了光信号转导过程。周君莉等的研究结果表明, 异三聚体G蛋白可能参与了光敏色素调控的尾穗觅觅红素合成,鸟苷酸环化酶可能是G蛋白下

第六章同化物的运输分配及其信号转导单元自测

第六章同化物的运输分配及信号传导单元自测 (一)填空 1.根据运输距离的长短,可将高等植物体内的运输可分为距离运输和距离运输。(短,长) 2.一般认为,胞间连丝有三种状态:(1) 态,(2) 态,(3) 态。一般地说,细胞间的胞间连丝多、孔径大,存在的浓度梯度大,则于共质体的运输。(正常,开放,封闭,有利) 3.物质进出质膜的方式有三种:(1)顺浓度梯度的转运,(2)逆浓度梯度的转运,(3)依赖于膜运动的转运。(被动,主动,膜动) 4.以小囊泡方式进出质膜的膜动转运包括,和三种形式。(内吞,外排,出胞) 5.一个典型的维管束可由四部分组成:(1)以导管为中心,富有纤维组织的,(2)以筛管为中心,周围有薄壁组织伴联的,(3)穿插木质部和韧皮部间及四周的多种,(4)包围木质部和韧皮部。(木质部,韧皮部,细胞,维管束鞘) 6.目前测定韧皮部运输速度的常用的方法有两种。一种是利用作为示踪物,用显微注射技术将这种分子直接注入筛管分子内,追踪这种分子在筛管中的运输状况,根据单位时间中此分子的移动距离来计算运输速度。另一种是同位素示踪技术,常用的同位素是。将它的化合物饲喂叶片,然后追踪化合物在筛管中的运输状况、运输速度,用这种技术还可研究同化物的分配动态。(染料分子,放射性,14C) 8.筛管中糖的主要运输形式是糖和糖。(寡聚糖(棉子糖、水苏糖、毛蕊花糖等),蔗糖) 9.光合同化物在韧皮部的装载要经过三个区域:即(1)光合同化物区,指能进行光合作用的叶肉细胞;(2)同化物区,指小叶脉末端的韧皮部的薄壁细胞;(3)同化物区,指叶脉中的SE-CC。(生产,累积,输出,) 10.质外体装载是指细胞输出的蔗糖先进入质外体,然后通过位于SE-CC复合体质膜上的蔗糖载体蔗糖浓度梯度进入伴胞,最后进入筛管的过程。共质体装载途径是指细胞输出的蔗糖通过胞间连丝浓度梯度进入伴胞或中间细胞,最后进入筛管的过程。(光合,逆浓度,光合,顺蔗糖浓度) 11.韧皮部卸出的途径有两条:一条是途径,另一条是途径。(共质体,质外体) 12.光合碳代谢形成的磷酸丙糖可继续参与卡尔文循环的运转,或滞留在内,并在一系列酶作用下合成淀粉;或者通过位于叶绿体被膜上的进入细胞质,再在一系列酶作用下合成蔗糖。(叶绿体,磷酸丙糖转运器) 13.1930年E、Münch提出了解释韧皮部同化物运输的学说。该学说的基本论点是,同化物在筛管内是随液流流动的,而液流的流动是由两端的膨压差引起的。(压力流,输导系统) 14.转化酶是催化蔗糖反应的酶。根据催化反应所需的最适pH,可将转化酶分成两种,一种称为转化酶,该酶对底物蔗糖的亲和力较高,主要分布在液泡和细胞壁中;另一类称为转化酶,该酶主要分布在细胞质部分。(水解,酸性,碱性或中性) 15.光合细胞中蔗糖的合成是在内进行的。催化蔗糖降解代谢的酶有两类,一类是,另一类是。(细胞质,转化酶,蔗糖合成酶) 16.库细胞中淀粉合成的部位是。G1P在酶的作用下形成ADPG,ADPG 则在酶催化下和葡聚糖引物反应合成直链淀粉,直链淀粉又可在酶作用下最终形成支链淀粉。(淀粉体,ADPG焦磷酸化,淀粉合成,分支)

相关文档