文档库 最新最全的文档下载
当前位置:文档库 › 蚁群算法C

蚁群算法C

蚁群算法C
蚁群算法C

// AO.cpp : 定义控制台应用程序的入口点。

#pragma once

#include

#include

#include

const double ALPHA=1.0; //启发因子,信息素的重要程度

const double BETA=2.0; //期望因子,城市间距离的重要程度

const double ROU=0.5; //信息素残留参数

const int N_ANT_COUNT=34; //蚂蚁数量

const int N_IT_COUNT=1000; //迭代次数

const int N_CITY_COUNT=51; //城市数量

const double DBQ=100.0; //总的信息素

const double DB_MAX=10e9; //一个标志数,10的9次方

double g_Trial[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间信息素,就是环境信息素double g_Distance[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间距离

//eil51.tsp城市坐标数据

double x_Ary[N_CITY_COUNT]=

{

37,49,52,20,40,21,17,31,52,51,

42,31,5,12,36,52,27,17,13,57,

62,42,16,8,7,27,30,43,58,58,

37,38,46,61,62,63,32,45,59,5,

10,21,5,30,39,32,25,25,48,56,

30

};

double y_Ary[N_CITY_COUNT]=

{

52,49,64,26,30,47,63,62,33,21,

41,32,25,42,16,41,23,33,13,58,

42,57,57,52,38,68,48,67,48,27,

69,46,10,33,63,69,22,35,15,6,

17,10,64,15,10,39,32,55,28,37,

40

};

//返回指定范围内的随机整数

int rnd(int nLow,int nUpper)

{

return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1);

}

//返回指定范围内的随机浮点数

double rnd(double dbLow,double dbUpper)

{

double dbTemp=rand()/((double)RAND_MAX+1.0);

return dbLow+dbTemp*(dbUpper-dbLow);

}

//返回浮点数四舍五入取整后的浮点数

double ROUND(double dbA)

{

return (double)((int)(dbA+0.5));

}

//定义蚂蚁类

class CAnt

{

public:

CAnt(void);

~CAnt(void);

public:

int m_nPath[N_CITY_COUNT]; //蚂蚁走的路径

double m_dbPathLength; //蚂蚁走过的路径长度

int m_nAllowedCity[N_CITY_COUNT]; //没去过的城市 int m_nCurCityNo; //当前所在城市编号

int m_nMovedCityCount; //已经去过的城市数量public:

int ChooseNextCity(); //选择下一个城市

void Init(); //初始化

void Move(); //蚂蚁在城市间移动

void Search(); //搜索路径

void CalPathLength(); //计算蚂蚁走过的路径长度};

//构造函数

CAnt::CAnt(void)

{

}

//析构函数

CAnt::~CAnt(void)

{

}

//初始化函数,蚂蚁搜索前调用

void CAnt::Init()

{

for (int i=0;i

{

m_nAllowedCity[i]=1; //设置全部城市为没有去过 m_nPath[i]=0; //蚂蚁走的路径全部设置为0

}

//蚂蚁走过的路径长度设置为0

m_dbPathLength=0.0;

//随机选择一个出发城市

m_nCurCityNo=rnd(0,N_CITY_COUNT);

//把出发城市保存入路径数组中

m_nPath[0]=m_nCurCityNo;

//标识出发城市为已经去过了

m_nAllowedCity[m_nCurCityNo]=0;

//已经去过的城市数量设置为1

m_nMovedCityCount=1;

}

//选择下一个城市

//返回值为城市编号

int CAnt::ChooseNextCity()

{

int nSelectedCity=-1; //返回结果,先暂时把其设置为-1

//============================================================================ ==

//计算当前城市和没去过的城市之间的信息素总和

double dbTotal=0.0;

double prob[N_CITY_COUNT]; //保存各个城市被选中的概率

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

prob[i]=pow(g_Trial[m_nCurCityNo][i],ALPHA)*pow(1.0/g_Distance[m_nCurCityNo][i],BET A); //该城市和当前城市间的信息素

dbTotal=dbTotal+prob[i]; //累加信息素,得到总和

}

else //如果城市去过了,则其被选中的概率值为0

{

prob[i]=0.0;

}

}

//============================================================================ ==

//进行轮盘选择

double dbTemp=0.0;

if (dbTotal > 0.0) //总的信息素值大于0

{

dbTemp=rnd(0.0,dbTotal); //取一个随机数

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

dbTemp=dbTemp-prob[i]; //这个操作相当于转动轮盘,如果对轮盘选择不熟悉,仔细

考虑一下

if (dbTemp < 0.0) //轮盘停止转动,记下城市编号,直接跳出循环

{

nSelectedCity=i;

break;

}

}

}

}

//============================================================================ ==

//如果城市间的信息素非常小( 小到比double能够表示的最小的数字还要小)

//那么由于浮点运算的误差原因,上面计算的概率总和可能为0

//会出现经过上述操作,没有城市被选择出来

//出现这种情况,就把第一个没去过的城市作为返回结果

//题外话:刚开始看的时候,下面这段代码困惑了我很长时间,想不通为何要有这段代码,后来才搞清楚。

if (nSelectedCity == -1)

{

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

nSelectedCity=i;

break;

}

}

}

//============================================================================ ==

//返回结果,就是城市的编号

return nSelectedCity;

}

//蚂蚁在城市间移动

void CAnt::Move()

{

int nCityNo=ChooseNextCity(); //选择下一个城市

m_nPath[m_nMovedCityCount]=nCityNo; //保存蚂蚁走的路径

m_nAllowedCity[nCityNo]=0;//把这个城市设置成已经去过了

m_nCurCityNo=nCityNo; //改变当前所在城市为选择的城市

m_nMovedCityCount++; //已经去过的城市数量加1

}

//蚂蚁进行搜索一次

void CAnt::Search()

{

Init(); //蚂蚁搜索前,先初始化

//如果蚂蚁去过的城市数量小于城市数量,就继续移动

while (m_nMovedCityCount < N_CITY_COUNT)

{

Move();

}

//完成搜索后计算走过的路径长度

CalPathLength();

}

//计算蚂蚁走过的路径长度

void CAnt::CalPathLength()

{

m_dbPathLength=0.0; //先把路径长度置0

int m=0;

int n=0;

for (int i=1;i

{

m=m_nPath[i];

n=m_nPath[i-1];

m_dbPathLength=m_dbPathLength+g_Distance[m][n];

}

//加上从最后城市返回出发城市的距离

n=m_nPath[0];

m_dbPathLength=m_dbPathLength+g_Distance[m][n];

}

//tsp类

class CTsp

{

public:

CTsp(void);

~CTsp(void);

public:

CAnt m_cAntAry[N_ANT_COUNT]; //蚂蚁数组

CAnt m_cBestAnt; //定义一个蚂蚁变量,用来保存搜索过程中的最优结果 //该蚂蚁不参与搜索,只是用来保存最优结果public:

//初始化数据

void InitData();

//开始搜索

void Search();

//更新环境信息素

void UpdateTrial();

};

//构造函数

CTsp::CTsp(void)

{

}

CTsp::~CTsp(void)

{

}

//初始化数据

void CTsp::InitData()

{

//先把最优蚂蚁的路径长度设置成一个很大的值

m_cBestAnt.m_dbPathLength=DB_MAX;

//计算两两城市间距离

double dbTemp=0.0;

for (int i=0;i

{

for (int j=0;j

{

dbTemp=(x_Ary[i]-x_Ary[j])*(x_Ary[i]-x_Ary[j])+(y_Ary[i]-y_Ary[j])*(y_Ary[i]-y_Ary[j]); dbTemp=pow(dbTemp,0.5);

g_Distance[i][j]=ROUND(dbTemp);

}

}

//初始化环境信息素,先把城市间的信息素设置成一样

//这里设置成1.0,设置成多少对结果影响不是太大,对算法收敛速度有些影响

for (int i=0;i

{

for (int j=0;j

{

g_Trial[i][j]=1.0;

}

}

}

//更新环境信息素

void CTsp::UpdateTrial()

{

//临时数组,保存各只蚂蚁在两两城市间新留下的信息素

double dbTempAry[N_CITY_COUNT][N_CITY_COUNT];

memset(dbTempAry,0,sizeof(dbTempAry)); //先全部设置为0

//计算新增加的信息素,保存到临时数组里

int m=0;

int n=0;

for (int i=0;i

{

for (int j=1;j

{

m=m_cAntAry[i].m_nPath[j];

n=m_cAntAry[i].m_nPath[j-1];

dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength;

dbTempAry[m][n]=dbTempAry[n][m];

}

//最后城市和开始城市之间的信息素

n=m_cAntAry[i].m_nPath[0];

dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength;

dbTempAry[m][n]=dbTempAry[n][m];

}

//==================================================================

//更新环境信息素

for (int i=0;i

{

for (int j=0;j

{

g_Trial[i][j]=g_Trial[i][j]*ROU+dbTempAry[i][j]; //最新的环境信息素= 留存的信息素+ 新留下的信息素

}

}

}

void CTsp::Search()

{

char cBuf[256]; //打印信息用

//在迭代次数内进行循环

for (int i=0;i

{

//每只蚂蚁搜索一遍

for (int j=0;j

{

m_cAntAry[j].Search();

}

//保存最佳结果

for (int j=0;j

{

if (m_cAntAry[j].m_dbPathLength < m_cBestAnt.m_dbPathLength) {

m_cBestAnt=m_cAntAry[j];

}

}

//更新环境信息素

UpdateTrial();

//输出目前为止找到的最优路径的长度

sprintf(cBuf,"\n[%d] %.0f",i+1,m_cBestAnt.m_dbPathLength);

printf(cBuf);

}

}

int main()

{

//用当前时间点初始化随机种子,防止每次运行的结果都相同

time_t tm;

time(&tm);

unsigned int nSeed=(unsigned int)tm;

srand(nSeed);

//开始搜索

CTsp tsp;

tsp.InitData(); //初始化

tsp.Search(); //开始搜索

//输出结果

printf("\nThe best tour is :\n");

char cBuf[128];

for (int i=0;i

{

sprintf(cBuf,"d ",tsp.m_cBestAnt.m_nPath[i]+1);

if (i % 20 == 0)

{

printf("\n");

}

printf(cBuf);

}

printf("\n\nPress any key to exit!");

getchar();

return 0;

}

基本蚁群算法

蚁群算法浅析 摘要:介绍了什么是蚁群算法,蚁群算法的种类,对四种不同的蚁群算法进行了分析对比。详细阐述了蚁群算法的基本原理,将其应用于旅行商问题,有效地解决了问题。通过对旅行商问题C++模拟仿真程序的详细分析,更加深刻地理解与掌握了蚁群算法。 关键词:蚁群算法;旅行商问题;信息素;轮盘选择 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 最基本的蚁群算法见第二节。目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。本文将终点介绍随机蚁群算法。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。 蚁群算法的基本思想如下图表示:

蚁群算法

蚁群算法 目录 1 蚁群算法基本思想 (1) 1.1蚁群算法简介 (1) 1.2蚁群行为分析 (1) 1.3蚁群算法解决优化问题的基本思想 (2) 1.4蚁群算法的特点 (2) 2 蚁群算法解决TSP问题 (3) 2.1关于TSP (3) 2.2蚁群算法解决TSP问题基本原理 (3) 2.3蚁群算法解决TSP问题基本步骤 (5) 3 案例 (6) 3.1问题描述 (6) 3.2解题思路及步骤 (6) 3.3MATLB程序实现 (7) 3.1.1 清空环境 (7) 3.2.2 导入数据 (7) 3.3.3 计算城市间相互距离 (7) 3.3.4 初始化参数 (7) 3.3.5 迭代寻找最佳路径 (7) 3.3.6 结果显示 (7) 3.3.7 绘图 (7)

1 蚁群算法基本思想 1.1 蚁群算法简介 蚁群算法(ant colony algrothrim,ACA)是由意大利学者多里戈(Dorigo M)、马聂佐(Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。 蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。 蚁群算法是群智能理论研究领域的一种主要算法。 1.2 蚁群行为分析 B m=20 t=0 m=10 m=10 t=1

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

蚁群算法相关概念

蚁群算法,PSO算法以及两种算法可以融合的几种方法 蚁群算法(ACO)是受自然界中蚂蚁搜索食物行为的启发,是一种群智能优化算法。它基于对自然界真实蚁群的集体觅食行为的研究,模拟真实的蚁群协作过程。算法由若干个蚂蚁共同构造解路径,通过在解路径上遗留并交换信息素提高解的质量,进而达到优化的目的。蚁群算法作为通用随机优化方法,已经成功的应用于TSP等一系列组合优化问题中,并取得了较好的结果。但由于该算法是典型的概率算法,算法中的参数设定通常由实验方法确定,导致方法的优化性能与人的经验密切相关,很难使算法性能最优化。 蚁群算法中每只蚂蚁要选择下一步所要走的地方,在选路过程中,蚂蚁依据概率函数 选择将要去的地方,这个概率取决于地点间距离和信息素的强度。(t+n) = (t)+ Δ (t+n) 上述方程表示信息素的保留率,1-表示信息素的挥发率,为了防止信息的无限积累,取值范围限定在0~1。Δ ij 表示蚂蚁k在时间段t到(t +n)的过程中,在i到j的路径上留下的残留信息浓度。

在上述概率方程中,参数α和β:是通过实验确定的。它们对算法性能同样有很大的影响。α值的大小表明留在每个节点上信息量受重视的程度,其值越大,蚂蚁选择被选过的地点的可能性越大。β值的大小表明启发式信息受重视的程度。 这两个参数对蚁群算法性能的影响和作用是相互配合,密切相关的。但是这两个参数只能依靠经验或重复调试来选择。 在采用蚁群-粒子群混合算法时,我们可以利用PSO对蚁群系统参数α和β的进行训练。 具体训练过程:假设有n个粒子组成一个群落,其中第i个粒子表示为一个二维的向量xi = ( xi1 , xi2 ) , i = 1, 2, ?,n,即第i个粒子在搜索空间的中的位置是xi。换言之,每个粒子的位置就是一个潜在的解。将xi带入反馈到蚁群系统并按目标函数就可以计算出其适应值,根据适应值的大小衡量解的优劣。 蚁群算法的优点: 蚁群算法与其他启发式算法相比,在求解性能上,具有很强的鲁棒性(对基本蚁群算法模型稍加修改,便可以应用于其他问题)和搜索较好解的能力。 蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现。 蚁群算法很容易与多种启发式算法结合,以改善算法性能。

蚁群算法

蚁群算法报告及代码 一、狼群算法 狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。 算法采用基于人工狼主体的自下而上的设计方法和基 于职责分工的协作式搜索路径结构。如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。 二、布谷鸟算法 布谷鸟算法 布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS 算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS 也采用相关的Levy 飞行搜索机制 蚁群算法介绍及其源代码。 具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。 应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能 三、差分算法 差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。 算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体

的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。 四、免疫算法 免疫算法是一种具有生成+检测的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。 五、人工蜂群算法 人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。为了解决多变量函数优化问题,科学家提出了人工蜂群算法ABC模型。 六、万有引力算法 万有引力算法是一种基于万有引力定律和牛顿第二定律的种群优化算法。该算法通过种群的粒子位置移动来寻找最优解,即随着算法的循环,粒子靠它们之间的万有引力在搜索空间内不断运动,当粒子移动到最优位置时,最优解便找到了。 GSA即引力搜索算法,是一种优化算法的基础上的重力和质量相互作用的算法。GSA 的机制是基于宇宙万有引力定律中两个质量的相互作用。 七、萤火虫算法 萤火虫算法源于模拟自然界萤火虫在晚上的群聚活动的自然现象而提出的,在萤火虫的群聚活动中,每只萤火虫通过散发荧光素与同伴进行寻觅食物以及求偶等信息交流。一般来说,荧光素越亮的萤火虫其号召力也就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的萤火虫周围。人工萤火虫算法就是根据这种现象而提出的一种新型的仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中,然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。通过每一代的移动,最终使的萤火虫聚集到较好的萤火虫周围,也即是找到多个极值

4蚁群算法的基本思想

蚁群算法的基本思想 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优 化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感 来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且 最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达 所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当 一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这 里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物, 开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无 关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁 来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的 蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来, 从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短 的路径就找到了。 蚁群算法的基本思想如下图表示:

(二)算法描述 基本蚁群算法的算法简单描述如下: 1.所有蚂蚁遇到障碍物时按照等概率选择路径,并留下信息素; 2.随着时间的推移,较短路径的信息素浓度升高; 3.蚂蚁再次遇到障碍物时,会选 择信息素浓度高的路径; 4.较短路径的信息素浓度继续升高,最终最优路径 被选择出来。 三、随机蚁群算法 在基本蚁群算法中,蚂蚁会在多条可选择的路径中,自动选择出最短的一 条路径。但是,一旦蚁群选择了一条比之前短的路径,就会认为这条路径是最 好的,在这条路径上一直走下去。这样的算法存在问题:蚂蚁可能只是找到了 局部的最短路径,而忽略了全局最优解。 因此,在基本蚁群算法的基础上,需要对蚂蚁选路的方案加以改善:有些 蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,也就是它会按 照一定的概率不往信息素高的地方。如果令开辟的道路比原来的其他道路更短,

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

用蚁群算法解决TSP问题

用蚁群算法解决TSP 问题 一、引言 蚁群算法是一种受自然界生物行为启发而产生的“自然”算法,产生于对蚂蚁行为的研究。蚁群中的蚂蚁以“信息素”为媒介,间接异步的相互联系。蚂蚁在行动中,会在他们经过的地方留下一些化学物质,称为“信息素”。这些物质能被同一种群众后来的蚂蚁感受到,并作为一种信号影响后者的行动,具体表现在后到的蚂蚁选择有这些物质的路径的可能性比选择没有这些物质的路径的可能性大的多。后者留下的信息素会对原有的信息素进行加强,并循环下去。这样,经过蚂蚁多的路径,后到蚂蚁选择这条路径的可能性就越来越大。由于在一定的时间内,越短的路径会被越多的蚂蚁访问,因而积累的信息素就越多,在下一个时间内被其他的蚂蚁选中的可能性也越大。这个过程会持续到所有的蚂蚁都走到最短的那一条路径为止。 二、关键技术 (1) 解的表达形式 在应用蚁群优化算法时,只需要建立一个虚拟的始终点,相当于蚁群的巢穴和食物所在地,这样一个所经过城市的路径的排列就构成了一个解; (2) 信息素的记忆和更新 在算法开始时,由于从来没有蚂蚁去寻找过路径,因此可以认为是没有任何先验信息,即每条路上的信息相等。客观地将,信息素应该都为0,但是由于在蚁群算法中,信息素决定了蚂蚁选择这条路径的概率,因此可以认 为初始信息素矩阵为:1/(*(1))0ij N N p -?=?? i j i j ≠=其中N 为城市数 当算法运行过程中,每次放出m 支蚂蚁,每只蚂蚁按照信息素选择路径,将其中路径最短的记录下来,对这条最短路进行信息素的加强;而对于其他路径,因为信息素的挥发,信息素浓度将会降低,更新后的信息素矩阵为: 11(1)//(1)/k ij k ij k ij p N p p ρρρ--?-+?=?-?? i j i j →→经过路径不经过路径其中N 为城市数,ρ为挥发系数 (3) 蚁群的规模 在一般应用中,蚁群中蚂蚁的个数m 是固定数,不超过TSP 图的节点数。

蚁群算法解决旅游线路问题

2011年第八届苏北数学建模联赛 承诺书 我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们的参赛报名号为: 参赛组别(研究生或本科或专科): 本科组 参赛队员(签名) : 队员1:唐文辉 队员2:徐玲 队员3:涂杰 获奖证书邮寄地址:

摘要 本文就旅游线路的优化设计问题,根据旅游者在旅行中的旅游时间,旅游费用,旅游地点,交通状况,住宿等因素的约束,借助图论,蚁群算法,建立最优化数学模型。在最短路路线的基础上,综合考虑交通,用费,时间对问题(2)、(3)、(4)、(5)的影响,给出旅游路线,并用lingo程序对结论进行检验,确保结论的全局最优性。 针对问题(1),首先,由城市经纬度建立城市和城市之间距离的有向图图论模型,在建立图论模型的基础上,建立在城市之间距离矩阵,采用蚁群算法,得到一条最短闭合路线。根据最短路线,查找合适时间的车次,距车站或景点一定范围内的最便宜的宾馆,达到费用最小。结合实际,得出最优路线:徐州->常州->舟山->黄山->庐山->武汉->洛阳->西安->祁县->北京->青岛->徐州,得到行程表和旅游最小费用3551元。 针对问题(2),采用衔接最得当,城市间交通时间和最少的交通方式,由此找出交通方式的时间最优化配置,进而得到最优路线:徐州->舟山->黄山->武汉->九江->常州->洛阳->西安->祁县->青岛->北京->徐州,并得到行程表和最短旅游时间9天。 针对问题(3)在问题(1)的基础上,对每个旅游景区最短停留时间,门票费用加权赋值建立权向量。运用层次分析法,分别求出权重。根据权重,分别求出每个景点综合花销。在2000元旅费的限制下,在最短路线上删除耗时长,费用高的城市。重新查找删去城市后城市间的交通费,得到旅游行程表和最多旅游景点7个,旅行线路:徐州->青岛->北京->祁县->西安->洛阳->武汉->九江。 针对问题(4),在基于问题(2)的结果下,首先,将问题(2)中停留时间(离开时刻与到达时刻之差)较长的城市从路线中删除,直到满足小于5天为止。重新查找删去城市后城市间的交通时间,对路线进行微调后,得到旅游行程表和最多旅游景点7个,分别是:徐州->北京->青岛->祁县->西安->洛阳->武汉->常州->徐州。 针对问题(5),对问题(3)和问题(4)综合考虑,找出其中时间相对长,旅游费用相对大的城市,进行排名并逐个剔除,并做适当调整。当满足条件时,得出行程表和费时5天、总费用1798元的结论,具体路线:徐州->北京->青岛->祁县->西安->洛阳->常州->徐州。 最后,对模型的优缺点进行了分析,提出改进方案。 关键字:TSP问题蚁群lingo 最优 1问题重述 江苏徐州有一位旅游爱好者打算现在的今年的五月一日早上8点之后出发,到全国一些著名景点旅游,最后回到徐州。他预选了十个省市旅游景点,如表1

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

蚁群算法

蚁群算法的改进与应用 摘要:蚁群算法是一种仿生优化算法,其本质是一个复杂的智能系统,它具有较强的鲁棒性、优良的分布式计算机制和易于与其他方法结合等优点。但是现在蚁群算法还是存在着缺点和不足,需要我们进一歩改进,如:搜索时间长、容易出现搜索停滞现象、数学基础还不完整。本文首先说明蚁群算法的基本思想,阐述了蚁群算法的原始模型及其特点,其次讨论如何利用遗传算法选取蚁群算法的参数,然后结合对边缘检测的蚁群算法具体实现过程进行研究分析,最后对本论文所做的工作进行全面总结,提出不足之处,并展望了今后要继续研究学习的工作内容。 关键词:蚁群算法;边缘检测;阈值;信息素;遗传算法; 1 前言 蚁群算法是近年来提出的一种群体智能仿生优化算法,是受到自然界中真实的蚂蚁群寻觅食物过程的启发而发现的。蚂蚁之所以能够找到蚁穴到食物之间的最短路径是因为它们的个体之间通过一种化学物质来传递信息,蚁群算法正是利用了真实蚁群的这种行为特征,解决了在离散系统中存在的一些寻优问题。该算法起源于意大利学者 Dorigo M 等人于 1991 年首先提出的一种基于种群寻优的启发式搜索算法,经观察发现,蚂蚁在寻找食物的过程中其自身能够将一种化学物质遗留在它们所经过的路径上,这种化学物质被学者们称为信息素。这种信息素能够沉积在路径表面,并且可以随着时间慢慢的挥发。在蚂蚁寻觅食物的过程中,蚂蚁会向着积累信息素多的方向移动,这样下去最终所有蚂蚁都会选择最短路径。该算法首先用于求解著名的旅行商问题(Traveling Salesman Problem,简称 TSP)并获得了较好的效果,随后该算法被用于求解组合优化、函数优化、系统辨识、机器人路径规划、数据挖掘、网络路由等问题。 尽管目前对 ACO 的研究刚刚起步,一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自大自然,因此越来越多人开始关注和研究 ACO,初步的研究结果已显示出该算法在求解复杂优化问题(特别是离散优化问题)方面的优越性。虽然 ACO 的严格理论基础尚未奠定,国内外的有关研究仍停留在实验探索阶段,但从当前的应用效果来看,这种自然生物的新型系统寻优思想无疑具有十分光明的前景。但该算法存在收敛速度慢且容易出现停滞现象的缺点,这是因为并不是所有的候选解都是最优解,而候选解却影响了蚂蚁的判断以及在蚂蚁群体中,单个蚂蚁的运动没有固定的规则,是随机的,蚂蚁与蚂蚁之间通过信息素来交换信息,但是对于较大规模的优化问题,这个信息传递和搜索过程比较繁琐,难以在较短的时间内找到一个最优的解。 由于依靠经验来选择蚁群参数存在复杂性和随机性,因此本文最后讨论如何利用遗传算法选取蚁群算法的参数。遗传算法得到的蚁群参数减少了人工选参的不确定性以及盲目性。 2 基本蚁群算法 2.1 蚁群算法基本原理 根据仿生学家的研究结果表明,单只蚂蚁不能找到从巢穴到食物源的最短路 径,而大量蚂蚁之间通过相互适应与协作组成的群体则可以,蚂蚁是没有视觉的,但是是通过蚂蚁在它经过的路径上留下一种彼此可以识别的物质,叫信息素,来相互传递信息,达到协作的。蚂蚁在搜索食物源的过程中,在所经过的路径上留下信息素,同时又可以感知并根据信息素的浓度来选择下一条路径,一条路径上的浓度越浓,蚂蚁选择该条路径的概率越大,并留下信息素使这条路径上的浓度加强,这样会有更多的蚂蚁选择次路径。相反,信息素浓度少的路

蚁群算法解决TSP问题的MATLAB程序

蚁群算法TSP(旅行商问题)通用matlab程序 function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha, Beta,Rho,Q) %%=================================================================== %% ACA TSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.wendangku.net/doc/061181403.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%=================================================================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线 L_best=inf.*ones(NC_max,1);%各代最佳路线的长度 L_ave=zeros(NC_max,1);%各代路线的平均长度

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

基于蚁群算法的旅行商问题解决方案

基于蚁群算法的旅行商问题解决方案 一引言 旅行商问题(TSP, Traveling Salesman Problem)是在1859年由威廉·汉密尔顿爵士首次提出的,它是物流领域中的典型问题,这个问题的求解具有十分重要的理论和现实意义。所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。TSP在工程领域有着广泛的应用,并常作为比较算法性能的标志。如网络通讯、货物运输、电气布线、管道铺设、加工调度、专家系统、柔性制造系统等方面,都是TSP广泛应用的领域。求解算法包括贪婪法(GM)、极小代数法(MA)、模拟退火法(SA)和遗传算法(GA)等。而应用蚁群算法求解旅行商问题是近年来研究的新方向,由于其并行性与分布性,特别适用于大规模启发式搜索,实验结果证明了其可行性和有效性。 二蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到巢穴之间的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特殊的信息素(phero-mone)。当它们碰到一个还没有走过的路口时,就随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后来的蚂蚁再次碰到这个路口的时候,选择激素浓度较高路径概率就会相对较大。这样形成了一个正反馈。最优路径上的激素浓度越来越大,而其它的路径上激素浓度却会随着时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻径过程中,虽然单个蚂蚁的选择能力有限,但是通过激素的作用,整个蚁群之间交换着路径信息,最终找出最优路径。 三基于蚁群算法的旅行商问题求解方案 TSP问题描述如下: 设有n个城市C=(1,2,...,n),任意两个城市i,j之间的距离为d ij ,求一条经过每个城市的路径π=(π(1),π(2),...,π(n)),使得距离最小。

基于MATLAB的蚁群算法解决旅行商问题 (附带源程序、仿真)

摘要:旅行商问题的传统求解方法是遗传算法,但此算法收敛速度慢,并不能获得问题的最优化解。蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出基于MATLAB的蚁群算法在旅行商问题中的应用,对问题求解进行局部优化。经过计算机仿真结果表明,这种蚁群算法对求解旅行商问题有较好的改进效果。 关键词:蚁群算法;旅行商问题;MATLAB;优化 一、意义和目标 旅行商问题是物流领域中的典型问题,它的求解具有十分重要的理论和现实意义。采用一定的物流配送方式,可以大大节省人力物力,完善整个物流系统。 已被广泛采用的遗传算法是旅行商问题的传统求解方法,但遗传算法收敛速度慢,具有一定的缺陷。本文采用蚁群算法,充分利用蚁群算法的智能性,求解旅行商问题,并进行实例仿真。进行仿真计算的目标是,该算法能够获得旅行商问题的优化结果,平均距离和最短距离。 二、国内外研究现状 仿生学出现于20世纪50年代中期,人们从生物进化机理中受到启发,提出了遗传算法、进化规划、进化策略等许多用以解决复杂优化问题的新方法。这些以生物特性为基础的演化算法的发展及对生物群落行为的发现引导研究人员进一步开展了对生物社会性的研究,从而出现了基于群智能理论的蚁群算法,并掀起了一股研究的热潮。 20世纪90年代意大利科学家M.Dorigo M最早提出了蚁群优化算法——蚂蚁系统(Ant system, AS),在求解二次分配、图着色问题、车辆调度、集成电路设计以及通信网络负载问题的处理中都取得了较好的结果。 旅行商问题(TSP, Traveling Salesman Problem)被认为是一个基本问题,是在1859年由威廉·汉密尔顿爵士首次提出的。所谓TSP问题是指:有N个城市,要求旅行商到达每个城市各一次,且仅一次,并回到起点,且要求旅行路线最短。这是一个典型的优化问题,对一个具有中等顶点规模的图来说,精确求解也是很复杂的,计算量随着城市个数的增加而呈指数级增长,即属于所谓的NP问题。

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

蚁群算法简介

1. 蚁群算法简介 蚁群算法(Ant Clony Optimization,ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。 蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。图(1)显示了这样一个觅食的过程。 图(1)蚂蚁觅食 在图1(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。假如在A和E之间突然出现了一个障碍物(图1(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的信息素(pheromone),蚂蚁朝着两个方向行进的概率是相等的。但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会议一定的速率散发掉。信息素是蚂蚁之间交流的工具之一。它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。很明显,沿着短边的的路径上信息素将会越来越浓(图1(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。 2. TSP问题描述 蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。 TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种,是一种NP-hard问题,此类问题用一般的算法是很大得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。 TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题(Asymmetric TSP)。所有的TSP问题都可以用一个图(Graph)来描述:

蚁群算法

蚁群算法 学号:1101500449 姓名:赵亮民 摘要:蚁群算法是优化领域中新出现的一种仿生进化算法。该算法采用分布式并行计算机制,具有较强的鲁棒性;但有搜索时间较长,易陷入局部最优解的缺点。本文首先讲述蚁群算法的来源和基本原理,然后讨论蚁群算法的几种改进策略,并简单介绍近年来蚁群算法在许多新领域中的发展应用,最后对今后进一步研究的方向作了展望。 关键词:蚁群算法;蚂蚁;信息素;优化 Abstract:Ant colony algorithm is a novel category of bionic algorithm for optim ization problems.Parallel computation mechanism is adopted in this algorithm.It has strong robustness and is easy to combinewith other methods in optimization,but it has the limitation of stagnation,and is easy to fall into local optimums.Firstly,the basic principle of ant colony algorithm is introduced.Then。a series of schemes on improving the ant colony algorithm are discussed,and the new applications are also provided.Finally,somerem arks on the further research and directions are presented. Key words:ant colony algorithm ;ant;pheromone;optimization 概念 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。原理 设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢? 现今有哪些关于蚁群算法的应用呢? 1大规模集成电路的线网布局 在大规模集成电路的线网布局中,需要根据电路和工艺的要求完成芯片上单元或功能模块的布局,然后实现它们之间的互连。此问题可看作是寻找一个网格平面上两端点之间绕过障碍的最短路径问题。线网上的每个Agent根据启发策略.像蚂蚁一样在开关盒网格上爬行,所经之处便设置一条金属线.历经一个线网的所有引脚之后.线网便布通了。应用蚁群算法,可以找到成本最低、最合理的线网布局.而且由于其本身的并行性。比较适合于解决此类问题。 2通信网络路由

相关文档