文档库 最新最全的文档下载
当前位置:文档库 › 论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积地优缺点
论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积的优缺点

物理气相沉积技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。

溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。

离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。

物理气相沉积技术基本原理可分三个工艺步骤:

(1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。

(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。

(3)镀料原子、分子或离子在基体上沉积。

物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。

随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。

化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。

化学气相沉积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相

淀积已成为无机合成化学的一个新领域。它的特点是:

1)在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。

2)可以在常压或者真空条件下(负压“进行沉积、通常真空沉积膜层质量较好)。

3)采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行。

4)涂层的化学成分可以随气相组成的改变而变化,从而获得梯度沉积物或者得到混合镀层。

5)可以控制涂层的密度和涂层纯度。

6)绕镀件好。可在复杂形状的基体上以及颗粒材料上镀膜。适合涂覆各种复杂形状的工件。由于它的绕镀性能好,所以可涂覆带有槽、沟、孔,甚至是盲孔的工件。

7)沉积层通常具有柱状晶体结构,不耐弯曲,但可通过各种技术对化学反应进行气相扰动,以改善其结构。

8)可以通过各种反应形成多种金属、合金、陶瓷和化合物涂层。

化学气相沉积所用的反应体系必须满足以下三个条件:

(1)在沉积温度下,反应物必须有足够高的蒸汽压。假如反应物在室温下全部为气态,沉积

装置就比较简单;假如反应物在室温下挥发性很小,就需要对其加热,使其挥发,而且一般还要用运载气体把它带入反应室,这样反应源到反应室的管道也需要加热,以防止反应气体在管道中冷凝下来。

(2)反应的生成物,除了所需要的沉积物为固态薄膜外,其余都必须是气态。

(3)沉积薄膜的蒸汽压应足够低,以保证在整个沉积反应过程中,沉积的薄膜能维持在具有

一定温度的基体上。

基体材料在沉积温度下的蒸汽压也必须足够低。

化学气相沉积的优点:

(1)沉积成膜装置简单;

(2)与直接蒸发法相比,可在大大低于其熔点或分解温度的沉积温度下制造耐熔金属和各种

碳化物、氮化物、硼化物、硅化物和氧化物薄膜;

(3)成膜所需的反应源材料一般比较容易获得,而且制备通一种薄膜可以选用不同的化学反

应;有意识的改变和调节反应物的成分,又能方便的控制薄膜的成分和特性,因此灵活性较大;

(4)特别适用于在形状复杂的零件表面和内孔镀膜。

化学气相沉积的缺点:

(1)沉积速率不太高,一般在几~几百nm/min,不如蒸发和离子镀,甚至低于溅射镀膜;

(2)在不少场合下,参加沉积的反应源和反应后的余气易燃、易爆或有毒,因此需要采取防

止环境污染的措施;对设备来说,往往还有耐腐蚀的要求;

(3)基体需要局部或某一个表面沉积薄膜时很困难,不如PVD技术来得方便;

(4)即使采取了一些新的技术,CVD成膜时的工件温度仍然PVD高于技术,因此应用上受到

一定的限制。

物理性质与化学性质

第6节物理性质与化学性质 知识点1:物理变化和化学变化 1,物理变化:物质从一种状体变成另一种状态,没有新物质生成的变化。(分子、原子没有发生变化)如:水结冰(液态水变成固态水)铁块拉成铁丝(形状发生改变)矿石粉碎,典升华等。 2,化学变化:物质从一种状体变成另一种状态,有新物质生成的变化。(分子、原子发生了变化)如:木炭在氧气中燃烧生成了二氧化碳(原来的木炭变成二氧化碳生成了新物质),钢铁生锈,食物腐烂等, 3,物理变化与化学变化的本质区别:变化时是否有新的物质生成。 4,物理变化与化学变化的联系:化学变化过程中一定伴随物理变化 5,注意事项:化学变化常伴随着发光、发热等现象,但发光、发热等现象产生的变化却不一定是化学变化。如灯泡发光发热就是物理变化。 知识点2:物理性质和化学性质 1,物理性质:物质不需要发生化学变化就能表现出来的性质叫做物理性质。如颜色、状态、气味、熔点、沸点、硬度、溶解性、延展性、导电性、导热性、挥发性、磁性等 2,化学性质:物质在化学变化中变现出来的性质叫做化学性质:如可燃性、酸碱性、稳定性等。 3.,物理(化学)变化和物理(化学)性质的区别:物质的变化是一个过程,而物质的性质是指物质固有的属性。 4,例题:下列叙述中,哪些属于物理性质的描述(),哪些属于化学性质描述(),哪些是物理变化的描述(),哪些是属于化学变化的描述()。 ①木炭燃烧②木炭能燃烧③木炭是黑色的④块状木炭碾成碳粉 5,注意事项:酸味是物理性质,不是化学性质。 知识点3:酸性物质和碱性物质。 1,酸性物质:醋酸、盐酸、硫酸、硝酸等都是酸。 食醋是一种酸溶液,具有酸性。平时吃的果汁含有某些酸,具有酸性。某些地方的雨中含有某些酸,也具有酸性。不同的酸性物质的酸性强度是不同的。 2,碱性物质:烧碱(氢氧化钠)、熟石灰(氢氧化钙)、氢氧化钾、氢氧化钡、氨水等都是碱。另外小苏打、纯碱、洗涤剂等的水溶液都具有碱性。碱性物质的碱性也有强弱。某些碱性物质(洗涤剂)有一定的去污能力。 3,例题: ①下列说法正确的是() A 碱与酸大部分具有很强的腐蚀性,使用时不要直接接触。 B 洗涤剂有较强的去污能力,它属于强碱。 C 紫色石蕊试液能使酸溶液变红

薄膜基本知识

膜是什么? 新华字典: 膜:①动植物体内象薄皮的组织;②象膜的薄皮。 这种解释“膜”就是薄皮,因此又有薄膜之说,我们所要探讨的特指薄膜。至于其他的膜种比如耳膜、骨膜、肋膜由医学界研究,还有敏感部位与节操有关的膜大部分被腐败的领导们研究了,在此也不做赘述。 薄膜又是什么呢? 《薄膜科学与技术》:膜是两个几何学平行平面向所夹的物质。薄膜多数是由一个个的原子以无规则的方式射到平整表面上,并使其凝结而形成的,在薄膜形成的初期,由于原子的表面迁移、生核等,从徽观上,所得到的物质多数为是丘陵似的岛状结构,在这种状态下从宏观上可看作是各向同性且均匀,这种物质即为薄膜。 通俗讲薄膜就是贴皮:A物质(可以多种构成)以原子或离子态附着在B物质上,且A物质同时满足以下几个条件:薄、匀、牢、密,各种涂层形成的表面都可以叫做薄膜。 多薄才可以叫薄膜呢? 木有严格定义,一般来说应该比B物质薄、不影响B物质使用且能够起保护作用或提高B物质功能属性。

薄膜起什么作用? 首先是保护,薄膜附着在机体上,可以首先磨损薄膜,防腐蚀耐磨损;其次是改性,使原来的物质具备薄膜的物理属性:提高硬度、提高耐高温能力、降低摩擦系数;第三改变颜色,使机体更炫更美。 薄膜的物理属性有哪些? 1、有一定的厚度,无论多薄的膜,都有一定的厚度; 2、薄膜有一定的致密性,孔隙率越小致密性越大,膜的质量 月好; 3、有一定的硬度,根据使用要求不同,薄膜应该满足相应的 硬度需求,由于薄膜的构成和制备工艺不同硬度也千差万别; 4、有一定的结合力,薄膜和机体的结合力应该满足使用要求; 其结合力的强度决定于薄膜的构成和制备工艺; 5、薄膜有特定的色泽,薄膜成分不同会产生万紫千红、色彩 斑斓的表面颜色,根据需求选择适合的元素搭配。 薄膜有哪些分类? 致密性薄膜从大类上可分为装饰膜和功能膜两种。 功能膜又可以分成硬膜和润滑膜。 如何测量膜的硬度? 硬度是材料抵抗异物压入的能力,是材料多种力学性能的综合表

气相沉积综述

气相沉积综述(总6页)本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

气相沉积技术研究现状及应用 任强,吴玉萍 (河海大学,南京) 摘要:本文主要阐述了气相沉积技术的研究现状,介绍了化学气相沉积技术和物理气相沉积技术,分析并展望了其未来的发展趋势。 关键词:材料表面工程;气相沉积;薄膜技术; The Recent Research andApplication of Vapor Deposition Technology REN Qiang,Wu Yuping (College of Mechanical and Eletronic Engineering ,Hohai University, Nanjing,China) Abstract:This article mainly expounds the research status quo of vapor deposition technology, introduces the chemical va por deposition technology and physical vapor deposition techno logy, analyses and prospects its development trend of the fu ture. Keywords: Material Surface Engineering; Vapor deposition; Thin film technology 0 前言 涂层材料近十几年来的迅速发展和应用,无疑是和各种气相沉积技术的发展有着密切的关系。气相沉积技术是一种获得薄膜的技术,它不仅可以用来制备各种特殊力学性能(如超硬、高耐蚀、耐热和抗氧化等)的薄膜涂层,而且还可以用来制备各种功能薄膜材料和装饰薄膜涂层。它是在真空中产生待沉积材料的蒸汽,然后将其冷凝于基体材料上,而产生所需要的膜层。主要有物理气相沉积(PV D)和化学气沉积(CVD),以及在此基础上发展的物理化学气相沉积(PCVD)。在物理气相沉积情况下,膜层材料由熔融或固体状态经蒸发或溅射得到,而在化学气相沉积情况下,沉积物由引人到高温沉积区的气体离解所产生[1]。 由于气相沉积获得的膜层具有结构致密、厚度均匀、与基材结合力好等优点,尤其是可以制备多种功能性薄膜,因此作为一种新的表面改性技术,它引起了极大的关注和研究,得到了迅速的发展。已成功地应用于机械加工(如各种刀具等)、建筑装修、装饰、汽车、航空、航天、食品包装、微电子光学等各个领域中。 1化学气相沉积

大学物理知识点

A r r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确 r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?= ? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+

化学气相沉积法

化学气相沉积法 摘要:本文从化学气相沉积法的概念出发,详细阐述了利用化学气相沉积法制备石墨烯以及薄膜,并展望了未来化学气相沉积法可能的发展方向。 关键词:化学气相沉积法;制备;应用 一、前言 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS 的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 二、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好

【北京理工大学】大学物理1(上)知识点总结

一 质 点 运 动 学 知识点: 1. 参考系 为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。 2. 位置矢量与运动方程 位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系: k ?)t (z j ?)t (y i ?)t (x )t (r r ++== 称为运动方程。 位移矢量:是质点在时间△t 内的位置改变,即位移: )t (r )t t (r r -+=?? 轨道方程:质点运动轨迹的曲线方程。 3. 速度与加速度 平均速度定义为单位时间内的位移,即: t r v ?? = 速度,是质点位矢对时间的变化率: dt r d v = 平均速率定义为单位时间内的路程:t s v ??= 速率,是质点路程对时间的变化率:ds dt υ= 加速度,是质点速度对时间的变化率:dt v d a = 4. 法向加速度与切向加速度 加速度 τ?a n ?a dt v d a t n +==

法向加速度ρ=2 n v a ,方向沿半径指向曲率中心(圆心),反映速度方向的变化。 切向加速度dt dv a t =,方向沿轨道切线,反映速度大小的变化。 在圆周运动中,角量定义如下: 角速度 dt d θ = ω 角加速度 dt d ω= β 而R v ω=,22 n R R v a ω== ,β==R dt dv a t 5. 相对运动 对于两个相互作平动的参考系,有 ''kk pk pk r r r +=,'kk 'pk pk v v v +=,'kk 'pk pk a a a += 重点: 1. 掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的 物理量,明确它们的相对性、瞬时性和矢量性。 2. 确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。 3. 理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。 难点: 1.法向和切向加速度 2.相对运动问题 三、功和能 知识点: 1. 功的定义 质点在力F 的作用下有微小的位移d r (或写为ds ),则力作的功定义为力和位移的标积即 θθcos cos Fds r d F r d F dA ==?= 对质点在力作用下的有限运动,力作的功为 ? ?=b a r d F A 在直角坐标系中,此功可写为 ???++=b a z b a y b a x dz F dy F dx F A

物理性质和化学性质的区别和应用集锦

物理性质和化学性质的区别和应用集锦 物理性质: 1. 概念:不需要发生化学变化就直接表现出来的性质。 2. 实例:在通常状态下,氧气是一种无色,无味的气体。 3. 物质的物理性质:如颜色,状态,气味,熔点,沸点,硬度等。化学性质: 1. 概念:物质在化学变化中表现出来的性质,如铁在潮湿的空气中生成铁锈,铜能在潮湿的空气中生成铜绿。化学性质只能通过化学变化表现出来。 物质的性质和用途的关系: 若在使用物质的过程中,物质本身没有变化,则是利用了物质的物理变化,物质本身发生了变化,变成了其他物质,则是利用了物质的化学性质。物质的性质与用途的关系:物质的性质是决定物质用途的主要因素,物质的用途体现物质的性质。

判断是“性质”还是“变化”: 判断某种叙述是指物质的“性质”还是“变化”时,首先要准确把握它们的区别和联系,若叙述中有“能”,“难”,“易”,“会”,“就”等词语,往往指性质,若叙述中有“已经”,“了”,“在”等词语,往往指物质的变化。 有关描述物质的词语: 1. 物理性质: (1)熔点 物质从固态变成液态叫熔化,物体开始熔化时的温度叫熔点。(2)沸点 液体沸腾时的温度叫沸点。 (3)压强 物体在单位面积上所受到的压力叫压强。 (4)密度 物质在单位体积上的质量叫密度,符号为p。 (5)溶解性

一种物质溶解在另一种物质里的能力,称为这种物质的溶解性。溶解性跟溶质、溶剂的性质及温度等因素有关。 (6)潮解 物质在空气中吸收水分,表面潮湿并逐渐溶解的现象。如固体、NaOH,精盐在空气中易潮解。 (7)挥发性 物质由固态或液态变为气体或蒸气的过程二如浓盐酸具有挥发性,可挥发出氯化氢气体 (8)导电性 物体传导电流的能力叫导电性:固体导电靠的是白由移动的电子,溶液导电依靠的是自由移动的离子 (9)导热性 物体传导热量的能力叫导热性。一般导电性好的材料,其导热性也好。 (10)延展性 物体在外力作用下能延伸成细丝的性质叫延性;在外力作用下能碾成薄片的性质叫展性。二者合称为延展性,延展性一般是金属的物理性质之一。 2. 化学性质: (1)助燃性物质在一定的条件下能进行燃烧的性质。如硫具有可燃性。 (2)助燃性物质能够支持燃烧的性质。如氧气具有助燃性

物理性质和化学性质习题

【活用实例】物质的下列性质不属于物理性质的是( ) A.铁能在潮湿空气中生锈 B.硫磺是淡黄色固体 C.石墨耐高温,熔点高 D.水在4℃密度最大为1 g/mL 【活用实例】下列属于物质化学性质的是( ) A.在天然物质中,金刚石的硬度最大. B.40C时,水的密度最大,为1 g/cm3 . C.酒精能够燃烧. D.氧气是一种无色、无气味的气体. 5.下列变化与氧气化学性质有关的是() A.碳酸钠晶体在干燥的空气里变成粉末 B.铁在潮湿的空气里生锈 C.露置在空气中的石灰水变质 D.常压下,氧气在约-183℃时变为淡蓝色液体 6.下列叙述中,属于物质化学性质的是( ) A.纯水为无色无味的液体 B.镁带在空气中燃烧生成了氧化镁 C.铜绿受热时会发生分解 D.氧气不易溶于水且密度比空气大 7.1999年诺贝尔化学奖授予了开创“飞秒(10-15s)化学”新领域的科学家,使运用激光光谱技术观测化学反应时分子、原子运动成为可能。你认为该技术不能观察到的是( ) A.原子中原子核的内部结构 B.化学反应中原子的运动 C.化学反应中生成物分子的形成 D.化学反应中反应物分子的分解 9.阅读下面短文,回答有关问题 ①1773年和1774年舍勒和普利斯特里先后发现一种新的气体,②后经拉瓦锡确认,它是空气的组成部分,③这就是我们现已熟知的氧气。④氧气是无颜色无气味的气体,⑤它能供给呼吸,支持燃烧,⑥但氧气能腐蚀钢铁等金属,使它们生锈,⑦少量氧气能微溶于水。 叙述氧气物理性质的是、两句; 述氧气化学性质的是、两句。 10.1860年英国化学家戴维用通电分解法首先从苏打中制得一种金属,并将其命名为“钠”。他对钠作了如下实验:用小刀切下一小块金属钠,切面呈银白色,将其投入水中,它浮于水面,与水发生剧烈反应,并在水面急速游动,发出嘶嘶声,立刻熔化成一个银白色的小球,逐渐缩小,最后完全消失。根据以上内容,请归纳出金属钠的有关物理性质。 (1) (2) (3) 【例1】物理变化与化学变化的本质区别是() A.有无颜色变化B.有无新物质生成C.有无气体生成D.有无 发光、放热现象

大学物理物理知识点总结

y 第一章质点运动学主要内容 一 . 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

粉末冶金基本知识篇

粉末冶金基本知识篇 绪论 粉末冶金(也称金属陶瓷法):制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 粉末冶金工艺:1)、制取金属、合金、金属化合物粉末以及包覆粉末; 2)、将原料粉末通过成形、烧结以及烧结后的处理制得成品。大概流程:物料准备(包括粉末预先处理(如加工,退火)、粉末分级、混合和干燥等)→成形→烧结→烧结后处理(精整、浸油、机加工、热处理、粉末冶金的特点: 1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料: ①能控制制品的孔隙度(多孔材料、多孔含油轴承等); ②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材 料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等); ③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越: ①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分 的偏析); ②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔 金属)。 粉末冶金技术的优越性和局限性: 优越性:1)、无切削、少切削,能够大量节约材料,节省能源,节省劳动。普通铸造合金切削量在30-50%,粉末冶金产品可少于5%。2)、能够大量能够制备其他方法不能制备的材料。3)、能够制备其他方法难以生产的零部件。 局限性:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 常用粉末冶金材料:粉末冶金减摩、多孔、结构、工具模、高温和电磁材料。 第一章:粉末的制取 第一节:概述 制粉方法分类: 机械法:由机械破碎、研磨或气流研磨方法将大块材料或粗大颗粒细化的方法。物理法:采用蒸发凝聚成粉或液体雾化的方法使材料的聚集状态发生改变,获得粉末。 化学法:依靠化学或电化学反应,生成新的粉态物质(气相沉积、还原化合、电化学发)。 在固态下制取粉末的方法包括:有机械粉碎法和电化腐蚀法;还原法;还原-化合法。 在气态制备粉末的方法包括:蒸气冷凝法;羟基物热离解法。 在液态制备粉末的方法有:雾化法;置换法、溶液氢还原法;;水溶液电解法;熔盐电解法。 从过程的实质看,现有制粉方法大体上可归纳为两大类,即机械法和物理化学法。机械法是将原材料机械地粉碎,而化学成分基本上不发生变化;物理化学法是

大学物理上知识点整理

大学物理上知识点整理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状 大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 ?固体间的静摩擦力:(最大值) ?固体间的滑动摩擦力: 3、流体阻力:或?。 4、万有引力: ?特例:在地球引力场中,在地球表面附近:。 ?式中R为地球半径,M为地球质量。 ?在地球上方(较大),。 ?在地球内部(),。

三、惯性参考系中的力学规律?牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功

石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备

摘要:化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨 烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点 从结构控制、质量提高以及大面积生长等发面评述了CVD法制备石墨 烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能 发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与 无损转移等。 关键词:石墨烯制备化学气相沉积法转移 Abstract chemical vapor deposition(CVD) is an effective way for the preparation of preparation of graphene with large area and high quality.In this review,the echanism and characteristics of the four main preparation methods of graphene are briefly introduced ,including microm echanical Cleavage,chemical exfoliation,SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in term of structure contral, quality improvement and large area graphene synthesis were discussed .Other possible methods single crystalline graphene ,graohene nanoribbons and graphene avrostructures. Keywords : Graphene,Preparation, Chemical vapor deposition; transfe

物理性质和化学性质的区别和应用

物理性质: 1. 概念:不需要发生化学变化就直接表现出来的性质。 2. 实例:在通常状态下,氧气是一种无色,无味的气体。 3. 物理性质:如颜色,状态,气味,熔点,沸点,硬度等。 化学性质: 1. 概念:物质在化学变化中表现出来的性质。 2. 实例:铁在潮湿的空气中生成铁锈,铜能在潮湿的空气中生成铜绿。 3. 化学性质:只能通过化学变化表现出来。 二、物质的性质和用途的关系: 若在使用物质的过程中,物质本身没有变化,则是利用了物质的物理变化,物质本身发生了变化,变成了其他物质,则是利用了物质的化学性质。 物质的性质与用途的关系:物质的性质是决定物质用途的主要因素,物质的用途体现物质的性质。 三、物质的性质与物质的变化的区别和联系 1、物质的性质和物质的变化 区别物质的性质是指物质的特有属性,不同的物质其属性不同,是变化的内因物质的变化是一个过程,是有序的,动态的,性质的具体体现 2、联系物质的性质决定了它能发生的变化,而变化又是性质的

3、判断是“性质”还是“变化” 判断某种叙述是指物质的“性质”还是“变化”时,首先要准确把握它们的区别和联系,若叙述中有“能”,“难”,“易”,“会”,“就”等词语,往往指性质,若叙述中有“已经”,“了”,“在”等词语,往往指物质的变化。 四、有关描述物质的词语 1. 物理性质: (1)熔点:物质从固态变成液态叫熔化,物体开始熔化时的温度叫熔点。 (2)沸点:液体沸腾时的温度叫沸点。 (3)压强:物体在单位面积上所受到的压力叫压强。 (4)密度:物质在单位体积上的质量叫密度,符号为p。 (5)溶解性:一种物质溶解在另一种物质里的能力,称为这种物质的溶解性。溶解性跟溶质、溶剂的性质及温度等因素有关。 (6)潮解:物质在空气中吸收水分,表面潮湿并逐渐溶解的现象。如固体、NaOH,精盐在空气中易潮解。 (7)挥发性:物质由固态或液态变为气体或蒸气的过程二如浓盐酸具有挥发性,可挥发出氯化氢气体。 (8)导电性:物体传导电流的能力叫导电性:固体导电靠的是白由移动的电子,溶液导电依靠的是自由移动的离子。 (9)导热性:物体传导热量的能力叫导热性。一般导电性好的材料,其

气相沉积简介

气相沉积 简介 CVD(Chemical Vapor Deposition,化学气相沉积),指把含有构成薄膜元素的气态反 应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用CVD方法制备。经过CVD处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。 特点 沉积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。 制备的必要条件 1)在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;2)反应产物除了形成固态薄膜物质外,都必须是挥发性的; 3)沉积薄膜和基体材料必须具有足够低的蒸气压。 PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件 下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。 涂层技术 增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。 过滤阴极弧:过滤阴极电弧(FCA )配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。 磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。根据使用的电离电源的不同,导体和非导体材料均可作为靶材被溅射。 离子束DLC:碳氢气体在离子源中被离化成等离子体,在电磁场的共同作用下,离子源释放出碳离子。离子束能量通过调整加在等离子体上的电压来控制。碳氢离子束被引到基片上,沉积速度与离子电流密度成正比。星弧涂层的离子束源采用高电压,因而离子能量更大,使得薄膜与基片结合力很好;离子电流更大,使得DLC膜的沉积速度更快。离子束技术的主要优点在于可沉积超薄及多层结构,工艺控制精度可达几个埃,并可将工艺过程中的颗料污染所带来的缺陷降至最小。

大学物理(上)知识点整理

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:;

经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关

大学物理知识点整理

一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量)

牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关系的力称保守力:

最新物理气相沉淀和化学气相沉积法

液相制备纳米材料的原理、方法和形成机理 液相法实在液体状态下通过化学反应制取纳米材料方法的总称,又称为湿化学法或溶液法。现在,有各种各样的制备方法,文献中无公认一致的分类方法,相反还有些凌乱。为清晰醒目,特点明显,便于理解。这里将液相材料的纳米制备方法分为:沉淀法、溶胶-凝胶(sol-gel)法、水热法、化学还原法、化学热分解法、微乳胶法、声化学法、电化学法和水中放电法等9中。本章就沉淀法、溶胶-凝胶(sol-gel)法加以讨论。 沉淀法 沉淀法是在金属盐溶液中加入沉淀剂,进行化学反应,生成难容性的反应物,在溶液中沉淀下来,或将沉淀物加热干燥和煅烧,使之分解得到所需要的纳米材料的方法。沉淀法又主要分为共沉淀(CP),分布沉淀(SP),均匀沉淀(HP)等几种。下面对这几种沉淀法做一简要分析。 含1种或多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法。(包括:单项共沉淀发和混合共沉淀法)下图给出共沉淀法的典型工艺流程。 沉淀物为单一化合物或单相固溶体时,称为单相共沉淀,亦称化合物沉淀法。其原理为溶液中的金属离子是以具有与配比组成相等的化学计量化合物形式沉淀的,因而,当沉淀颗粒的金属元素之比就是产物化合物的金属元素之比时,沉淀物具有在原子尺度上的组成均匀性。但是,对于由二种以上金属元素组成的化

合物,当金属元素之比按倍比法则,是简单的整数比时,保证组成均匀性是可以的。然而当要定量的加入微量成分时,保证组成均匀性常常很困难,靠化合物沉淀法来分散微量成分,达到原子尺度上的均匀性。如果是形成固溶体的系统是有限的,固溶体沉淀物的组成与配比组成一般是不一样的,则能利用形成固溶体的情况是相当有限的。要得到产物微粒,还必须注重溶液的组成控制和沉淀组成的管理。为方便理解其原理以利用草酸盐进行化合物沉淀的合成为例。反应装置如图: 图 利用草酸盐进行化合物沉淀的合成装置 实验原理:在Ba 、Ti 的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO3(C2H4)2?4H2O 沉淀;BaTiO3(C2H4)?4H2O 沉淀由于煅烧,分解形成BaTiO3微粉。 化学方程式如下所示: (1)BaTiO 3(C 2H 4)2?4H 2O BaTiO 3(C 2H 4)2 + 4H 2O (2)BaTiO 3(C 2H 4)2 + ? O 2 BaCO 3(无定形)+TiO 2(无定形)+ CO +CO 2 (3)BaCO 3(无定形)+TiO 2(无定形) BaCO 3(结晶)+TiO 2(结晶) 如果沉淀产物为混合物时,称为混合物共沉淀。四方氧化锆或全稳定立方氧化锆的共沉淀制备就是一个很普通的例子。举例:用ZrOCl 2?8H 2O 和Y 2O 3(化学纯)为原料来制备ZrO 2- Y 2O 3的纳米粒子。反应过程:Y2O3用盐酸溶解得到YCl3, 然后将ZrOCl 2?8H 2O 和Y 2O 3配置成一定浓度的混合溶液,在其中加NH 4OH 后便有

物理性质和化学性质

8月25日物理性质和化学性质 中考频度:★★★★★难易程度:★☆☆☆☆ (2017·南京)物质的下列性质中,属于化学性质的是 A.颜色 B.状态 C.熔点 D.氧化性

1.(2017·北京)下列物质的性质,属于化学性质的是 A.颜色B.密度 C.可燃性D.沸点 2.下列物质的性质,属于物理性质的是 A.氧气有助燃性 B.氢气有可燃性 C.浓氨水有挥发性 D.一氧化碳有毒性 3.下列有关物质性质的描述中,属于化学性质的是 A.干冰易升华 B.酒精能燃烧 C.二氧化碳比空气密度大 D.二氧化硫有刺激性气味 4.谷氨酸钠是生活中常用的调味料味精的主要成分。下列属于谷氨酸钠化学性质的是 A.易溶于水 B.略有甜味或咸味 C.白色晶性 D.光照条件下不分解 1.【答案】C

【解析】此题考查物质的性质概念,化学性质指需要通过化学变化来表现的性质。颜色、密度、沸点均不需化学变化就能表现出来,属于物理性质;可燃性需要通过化学变化才能表现出来,属于化学性质。故选C。学&科网 2.【答案】C 【解析】必须经化学变化才能表现的性质叫化学性质,不需要发生化学变化就能表现的性质叫物理性质。 浓氨水有挥发性,只发生了物质状态的改变,物质种类不变,所以氨水的挥发性是物理性质。助燃性、可燃性、毒性均需通过化学变化才能表现出来,是化学性质。故选C。 3.【答案】B 【解析】物质在化学变化中表现出来的性质叫化学性质;物质不需要发生化学变化就表现出来的性质叫物理性质。A、干冰易升华,不需要发生化学变化就能表现出来,故是物理性质;B、酒精能燃烧,需要发生化学变化才能表现出来,故是化学性质;C、二氧化碳比空气密度大,不需要发生化学变化就能表现出来,是物理性质;D、二氧化硫有刺激性气味,不需要发生化学变化就能表现出来,故是物理性质。 故选B。 4.【答案】D 每日总结是为了更好的进步! _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________

大学物理A(2)基本知识点

大学物理A (2)基本知识点 一、试题题型、试卷结构和试题分数分布 1、试题题型: 选择题(10小题,每小题3分,计30分) 填空题(10小题,每小题3分,计30分) 计算题或证明题(4小题,每小题10分,计40分) 二、大学物理A (2)基本知识点 气 体 分 子 动 理 论 1. 理想气体状态方程 在平衡态下 RT M PV μ = , n k T p =, 普适气体常数 K m o l /J 31.8R ?= 玻耳兹曼常数 K /J 10 38.1N R k 23 A -?== 2. 理想气体的压强公式 t 2 E n 3 2v nm 31p = = 3. 温度的统计概念 kT 23E t = 4. 能量均分定理 每一个自由度的平均动能为1/(2KT)。 一个分子的总平均动能为自由度):i (kT 2i E =。 ν摩尔理想气体的内能RT 2 i E ?ν=。 5. 速率分布函数 Ndv dN )v (f = 麦克斯韦速率分布函数 2 v kT 2m 23 v e )kT 2m (4)v (f 2 - ππ= 三种速率

最概然速率 μ = = RT 2m kT 2v p 平均速率 πμ = π= RT 8m kT 8v 方均根速率 μ = = RT 3m kT 3v 2 热 力 学 基 础 1. 准静态过程:在过程进行中的每一时刻,系统的状态都无限接近于平衡态。 2. 体积功:准静态过程中系统对外做的功为 pdV dA =, ? = 2 1 v v pdV A 3. 热量:系统与外界或两个物体之间由于温度不同而交换的热运动能量。 4. 热力学第一定律 A )E E (Q 12+-=, A dE dQ += 5. 热容量 d T d Q C = 定压摩尔热容量 dT dQ C p p = 定容摩尔热容量 dT dQ C V V = 迈耶公式 R C C V p += 比热容比 i 2i C C V p += = γ 6. 循环过程 热循环(正循环):系统从高温热源吸热,对外做功,同时向低温热源放热。 效率 1 21 Q Q 1Q A - == η 致冷循环(逆循环):系统从低温热源吸热,接受外界做功,向高温热源放热。 致冷系数:2 122Q Q Q A Q -= = ε 7. 卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。 卡诺正循环效率 1 2T T 1- =η

物理性质和化学性质习题

【活用实例】物质的下列性质不属于物理性质的 是 ( ) A.铁能在潮湿空气中生锈 B.硫磺是淡黄色固体 C.石墨耐高温,熔点高 D.水在4℃密度最大为1 g/mL 【活用实例】下列属于物质化学性质的 是 ( ) A.在天然物质中,金刚石的硬度最大. B.40C时,水的密度最大,为1 g/cm3 . C.酒精能够燃烧. D.氧气是一种无色、无气味的气体. 5.下列变化与氧气化学性质有关的是() A.碳酸钠晶体在干燥的空气里变成粉末 B.铁在潮湿的空气里生锈 C.露置在空气中的石灰水变质 D.常压下,氧气在约-183℃时变为淡蓝色液体 6.下列叙述中,属于物质化学性质的是 ( ) A.纯水为无色无味的液体

B.镁带在空气中燃烧生成了氧化镁 C.铜绿受热时会发生分解 D.氧气不易溶于水且密度比空气大 7.1999年诺贝尔化学奖授予了开创“飞秒(10-15s)化学”新领域的科学家,使运用激光光谱技术观测化学反应时分子、原子运动成为可能。你认为该技术不能观察到的是 ( ) A.原子中原子核的内部结构 B.化学反应中原子的运动 C.化学反应中生成物分子的形成 D.化学反应中反应物分子的分解 9.阅读下面短文,回答有关问题 ①1773年和1774年舍勒和普利斯特里先后发现一种新的气体,②后经拉瓦锡确认,它是空气的组成部分,③这就是我们现已熟知的氧气。④氧气是无颜色无气味的气体,⑤它能供给呼吸,支持燃烧,⑥但氧气能腐蚀钢铁等金属,使它们生锈,⑦少量氧气能微溶于水。 叙述氧气物理性质的是、两句; 述氧气化学性质的是、两句。 10.1860年英国化学家戴维用通电分解法首先从苏打中制得一种金属,并将其命名为“钠”。他对钠作了如下实验:用小刀切下一小块金属钠,切面呈银白

相关文档