文档库 最新最全的文档下载
当前位置:文档库 › 电机工程系(所)

电机工程系(所)

电机工程系(所)
电机工程系(所)

電機工程系(所)

98年3月27日972第2次系務會議通過

(一)目標與特色

1.教學目標

本系所教育目標在96學年度申請工程及科技教育認證時修訂為以下三點:

(1)教育學生具有電機工程之基礎及專業知識。

(2)增進學生於職場所需之專業技能及團隊合作精神。

(3).培養學生之博雅素養及專業倫理。

此教育目標的發展為延續學校教育目標:

「培育新世代企業頂尖人才」:具備創新研發、現場管理或創業能力之人才。

與工程學院的教育目標:「培育產業所需之工程應用及系統整合技術人才」:

(1) 授予學生理論及實務訓練,啟發其領導與創新能力。

(2) 輔導養成正向思考、理性溝通、認真負責及正確的職業倫理觀念。

在使學生具有國際觀、完整電機專業知識與技能、及高尚的職業道德與敬業精神。藉著優良的教學品質培育高級電機工程技術人才,期望達成向下紮根、層級發展的目標,以因應國家高科技之需要。此外並落實導師制度、加強學生生活與心理輔導,使其具專業技術外,也成為具有高尚品德的好公民。在理論與實務並重的原則下,均衡授予基礎專業知識及務實專題製作能力訓練,使學生具備下列專業基本能力:

(1)具有機電設備之維護能力

(2)具有電子電路設計、實現與維護的能力

(3)具有電腦及視窗軟體應用的相關知識及程式設計能力

(4)具備序向控制與可程式控制之應用能力

(5)具有自動控制系統與數位控制分析基本能力

(6)具有數位邏輯設計與微處理機應用的軟、硬體設計的能力

(7)具有半導體技術的基本觀念

針對研究生更特別加強技術、獨立設計與研究開發能力之訓練,期望學生具備下列高等電機專業技術:

(1)微處理機及PLC控制應用技術

(2)電力電子應用技術

(3)能源應用與能源規劃技術

(4)電動機控制及伺服馬達驅動控制技術

(5)半導體應用技術

2.本系(所)特色

本系之教學規劃密切配合教育目摽朝向「學理與實務整合」的教學方式與「整合性研究、設計及實作」的教育訓練,結合師資專長與學生實務專題課程進行研究之實作。期透過實務專題課程,整合師生與對外結合產業之經驗,從事與研究相關之活動,進而提升產業技術的進步。並透過有業界師資配合授課之就業學程課程或模組課程,讓學生了解產業發展現況及未來發展趨勢。

本系為了使學生奠定良好的電機基礎專業知識,及考量學生個人特質及興趣,在專業課程的規劃上,於低年級的課程安排盡量以共同的試探課程為主,以方便學生瞭解自己在專業走向的興趣所在;至於高年級的課程安排則著重於專精課程,讓學生依自己的專業興趣能學有專長,並特別注重理論與實務相配合,力求與社會高科技工業的需求趨勢相結合。所以在課程設計規劃之內容是與教育目標一致,採用質量並重的實驗與操作學習模式,並為能與業界接軌,自93學年度起,陸續開設就業學程,使學生了解業界之現況與需求。

本系積極鼓勵有志升學之畢業生報考研究所,自88學年首屆大學畢業生起,錄取研究所碩(博)士班之人次,呈現穩定成長之趨勢。

電機系歷年錄取研究所碩(博)士班人次一覽表

(二)發展策略

1.學制內涵

(1)日間部大學部四年制:招生對象為一般高(中)職生。

(2)日間部大學部二年制:招生對象以二專、五專電機科相關畢業生與同等學

力為主。

(3)日間部研究所碩士班:招生對象以大學電機相關系科畢業生與同等學力為

主。

(4)進修部大學部四年制在職班:招生對象為一般高(中)職生與同等學力之在

職人士為主。

(5)進修部大學部二年制在職班:招生對象以二專、五專電機科相關畢業生與

同等學力之目前在職人士為主。

(6)進修部大學部二年制在職專班:招生對象以二專、五專電機科相關畢業生

與同等學力之目前在職人士為主。

(7)進修部研究所碩士在職專班:招生對象以大學電機相關系科畢業生與同等

學力之目前在職人士為主。

(8)進修專校:招生對象為一般高(中)職生畢業生之目前在職人士為主。

(9)進修學院大學部二年制在職專班:招生對象以二專、五專電機科相關畢業

生與同等學力之目前在職人士為主。

2.教學品保

本系(所)之教學研究是以學生進路導向為精神,而以教學品保系統為手段。

教師教學認真,累計30餘年來的經驗,對教材之革新與教法的改進,不遺餘力,

以致教與學之品質不斷提昇。持續性的相關教學措施列舉如下:

(1)鼓勵教師自編教材。

(2)審慎制定教案並確實追蹤。

(3)定期召開教學研討會改進教學。

(4)教師定期與學生溝通確保教學品質。

(5)實施專業科目之教學評量。

(6)依據教學評量改進教學與修正課程內容。

(7)規劃系所教學與發展方向。

(8)配合工程學院,訂定工程學群跨系課程。

(9)積極協調運用工程學群跨系課程之師資與設備。

(10)妥善規劃專業圖書及教學設備採購計畫。

(11)定期查閱及追蹤最新的電機專業相關圖書資訊及期刊雜誌,並擇優推介至

學校總圖書館採購。

(12)建立大學部及研究所專業科目之教科書籍相關參考資料。

3.發展與研究計畫重點

本系教師之研究工作從未間斷,年年皆有教師參與國科會計畫及教育部補助研究計畫、廠商建教合作案等,並有多篇論文發表於國內外期刊,及有多項教師研發成果榮獲專利。擬定的發展方針主要以電機系統的整合性發展為主要研究課題,並輔以電子、微機電及半導體應用等技術。此一研究課題能夠整合系統控制技術、電力電子技術、電力管理與監控技術以及其他電機電子科技技術,開發創新的高精密度、高自動化、高智慧型的科技產品,並實際應用於機電整合系統。本研究團隊目前已著手進行或規劃多項研究計畫,相關規劃重點簡要分述如下:

(1) 電力電子相關應用技術:

不斷電電源系統、各式切換式電源供應器、電子式安定器、再生能源之電

能轉換介面、LED驅動電路、EMI濾波器、電力品質改善設備等。

(2) 伺服驅動與控制技術:

精密電機控制、馬達速度控制、馬達驅動設備、智慧型模糊及類神經控制、電力電子控制、控制教學系統研製等。

(3) 電能研發與管理:

諧波改善技術研究、工廠用電參數分析研究、電能管理及轉供策略研究、

分散型電能管理研究、再生能源發電研究等。

(4)半導體技術應用:

真空工程技術、奈米技術、薄膜太陽能元件、光電元件、平面顯示器相關

製程等。

未來亦將因應產業發展與實際需要,加強各教授,各研究室間之連繫,及跨系所之合作。結合本院現有電機、機械、電子等研究所之設備和人力專長,走向目標導向、系統整合之規劃性研究。

4.師資延聘

本系目前計有專任教師32位,助理教授級職以上教師之比率約為88%,博士級職以上教師之比率約為81%。並聘請十餘位業界專家及學者為兼任教師。師資完整,專長涵蓋電力電子、電子安定器、電路設計、電機系統控制、電動機控制、智慧型控制、電力調度、再生能源、配電自動化、真空工程、半導體元件物理、奈米技術、薄膜技術與應用、光電元件等領域。

5.產學合作與技術發展

近年來教育部積極推動大學院校之經費自籌,造成許多國立大專院校積極推動與廠商之建教合作與推廣教育,使得經營本就艱困的私校在推廣教育和建教合作的空間益形壓縮,但為著秉持服務社區及輔導學生的熱誠,本系(所)仍積極規劃各項之推廣教育及建教合作,以期能達成資源共享的目的。預定辦理建教合作分述如下:

(1)台南科學園區電力電子技術、電力監控技術、製程省能技術及電機系統等

之研發應用。

(2)傳統業界控制技術之研發應用。

(3)分散式電力能源開發及能源科技之運用研究。

(4)傳統業界電力品質提昇之改善技術研發。

(5)工業界實用元件之維修及延壽技術研究。

(6)電機系統之整合應用。

(7)積極洽尋儀器設備供應廠商與工研院,以建教合作模式,研發電機之教育

實習設備。

(8)爭取國科會專題計畫,參與經濟部所屬國營事業之產業科技學術合作計

畫。

本系近年規劃產學合作重點方向及可提供廠商技術合作方向簡述如下:

(三)十年發展計畫

1.近程發展方向(97學年度至98學年度):

因應科技進步及產業需求,本程計畫改善並擴充現有各實驗室之設備,以建立良好的教學及研究空間。依大學部需求本系(所)現有規劃實習室如下: 技能證照檢定訓練室(97學年度新增)、電腦教室、基礎電學實習室、電力電子實習室、數位訊號處理實習室、單晶片實習室(97學年度新增)、可程式控制實習室、電動機控制實習室、機電整合實習室(97學年度新增)、自動控制實習室、電機機械實習室。

研究所及專題實習室計有:視聽教室、真空工程研究室、半導體工程研討室(97學年度新增)、再生能源研究室、電力電子應用研究室、電力電子應用研究室、控制與驅動研究室、智慧控制研究室(97學年度新增)、控制與影像視覺研究室、電力電子與馬達控制研究室、電能技術研發與管理研究室。

本程計畫主要之發展規劃如下:

(1)檢討及改善大學部課程及實驗室空間與設備。

(2)檢討及擴充研究所課程及研究室空間與設備。

(3)積極爭取校內外研究計畫並發表論文提昇學校及系上研究風氣。

(4)擴充電力電子應用研究室及真空工程研究室之設備。

(5)成立專屬之再生能源研究室。配合PLC與DSP實驗室,培養配電系統民營

化之後所需之負載管理人才,同時有助於爭取與國科會、台電及相關產業界之研究計畫,提高研究能力。

(6)應用DSP技術於電力電子與控制相關研究,本年度計劃繼續強化電力電子

之基礎研究及並訓練DSP與CPLD/FPGA等相關程式開發及電路設計之研究人才,本執行上將以專題製作配合國科會及產學計畫之型式,由教師帶領研究生及大學部學生,完成應用於電力電子之數位化DSP及CPLD/FPGA 控制器之設計及製作,以加強學生在電力電子及數位化控制器之應用技術。

(7)以精密電機控制為核心,從事電力電子及馬達驅動系統之設計,控制教學系

統之研製,影像視覺系統之應用,同時整合電機系與機械系之師資從事於機電整合之研究,計畫選定影像視覺控制、磁浮球控制、倒單擺系統、電力電子控制、馬達驅動器設計為研究主題,進行合作,以提昇研究層次。

成立智慧型控制研究室,整合本系現有電機控制的研究能量。

(8)積極發展相關應用技術,如真空工程技術、薄膜太陽能元件、奈米技術、平

面顯示器相關製程等。

(9)規劃教師專題製作之課程由各專業教師提出短期(1內)、中期(2~3年)及長期

(3~5年)等專題製作計畫之申請書,並由全系教師或委請校內外之專家學者評估其可行性。

(10)輔導畢業班學生升學及參加各類考試;輔導學生參加各類證照檢定。

(11)為配合各分組之研究方向,全面導入研究生之參與制度,以提昇本系(所)

之研究水準建立學術聲譽。而設備儀器之比重亦適度調整,以發揮最大之教學研究效果。

2.中程發展方向(99學年度至100學年度)

(1)因應科技進步及產業需求,評估、檢討及改善大學部課程及實驗室空間與設

備。

(2)成立機電整合研究室。

(3)追蹤、檢討及改善電力電子應用研究室、控制與驅動研究室及再生能源研究

室之設備使用情況及績效。

(4)妥善應用及規劃所建立專業研究室之資源,積極爭取各項之推廣教育及建教

合作案。

(5)積極爭取國內外合作之研究計畫並參加國內外競賽。

(6)積極爭取並建立具國家認證之檢測中心及貴儀中心。

(7)規劃申請數個整合型研發計畫案,主要朝向:電力電子相關應用技術、伺服

驅動與控制技術、電能研發與管理技術應用、半導體技術應用等四大領域

規劃。

3.遠程發展方向(101學年度至105學年度)

(1)在相關師資與研究成果成熟後,全力投入機電整合的研究。完成本系(所)所

擬定的發展重點:電機系統應用與半導體工程。

(2)整合系統控制技術、電力電子技術、電力管理與監控技術以及其他電機電子

科技技術,開發創新的高精密度、高自動化、高效率、高智慧型的科技產

品,並實際應用於電機整合系統及高科技產業。

(3)追蹤、檢討並改善電力電子應用研究室、再生能源研究室、控制與驅動研究

室、真空工程研究室之設備使用情況及績效。

(4)因應科技進步及產業需求,評估並規劃建立更具特色之研究中心。

(5)建立自我的系所特色,期能獨樹於國內的技職體系中。

福州大学集成电路应用实验一

《集成电路应用》课程实验实验一 4053门电路综合实验 学院:物理与信息工程学院 专业: 电子信息工程 年级: 2015级 姓名:张桢 学号: 指导老师:许志猛

实验一 4053门电路综合实验 一、实验目的: 1.掌握当前广泛使用的74/HC/HCT系列CMOS集成电路、包括门电路、反相 器、施密特触发器与非门等电路在振荡、整形、逻辑等方向的应用。 2.掌握4053的逻辑功能,并学会如何用4053设计门电路。 3.掌握多谐振荡器的设计原理,设计和实现一个多谐振荡器,学会选取和 计算元件参数。 二、元件和仪器: 1.CD4053三2通道数字控制模拟开关 2.万用表 3.示波器 4.电阻、电容 三、实验原理: 1.CD4053三2通道数字控制模拟开关 CD4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH输入,具有低导通阻抗和低的截止漏电流。幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。CD4053的管脚图和功能表如下所示 4053引脚图

4053的8种逻辑功能 CD4053真值表 根据CD4053的逻辑功能,可以由CD4053由4053电路构成如下图所示8种逻辑门(反相器与非门或非门、反相器、三态门、RS 触发器、——RS 触发器、异或门等)。 输入状态 接通通道

]) 2)(()(ln[ T DD T DD T DD T V V V V V V V RC T -+--=2.多谐振荡器的设计 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 可以利用反相器设计出如下图所示的多谐振荡器 这样的多谐振荡器输出的信号周期计算公式为: 当R S ≈2R 时,若:VT=0.5VDD ,对于HC 和HCU 型器件,有 T ≈2.2RC 对于HCT 型器件,有 T ≈2.4RC 四、实验内容: 1. 验证CD4053的逻辑功能,用4053设计门电路,并验证其逻辑功能: (1)根据实验原理设计如下的反相器电路图: CD4053构成反相器电路

电动车无刷马达控制器硬件电路详解

电动车无刷马达控制器硬件电路详解 电动车无刷电机是目前最普及的电动车用动力源,无刷电机以其相对有刷电机长寿,免维护的特点得到广泛应用,然而由于其使用直流电而无换向用的电刷,其换向控制相对有刷电机要复杂许多,同时由于电动车负载极不稳定,又使用电池作电源,因此控制器自身的保护及对电机,电源的保护均对控制器提出更多要求。 自电动车用无刷电动机问世以来,其控制器发展分两个阶段:第一阶段为使用专用无刷电动机控制芯片为主组成的纯硬件电路控制器,这种电路较为简单,其中控制芯片的代表是摩托罗拉的MC33035,这个不是这里的主题,所以也不作深入介绍。第二阶段是以MCU为主的控制芯片。这是这篇文章介绍的重点,在MCR版本的设计中,揉和了模拟、数字、大功率MOSFET 驱动等等许多重要应用,结合MCU智能化控制,是一个非常有启迪性的设计。 今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: 整机电路看起来很复杂,我们将其简化成框图再看看:

图2:电路框图 电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。 图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振

荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT 的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在 3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,120°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。 18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。 19:单片机电源地。 20:单片机电源正。上限是5.5V。 21:数字输入口:外部中断输入,当电流由于意外原因突然增大而不在控制范围时,该口有低电平脉冲输入。单片机收到此信号时产生中断,关闭电机的输出,从而保护重要器件不致损坏或故障不再扩大。 22:数字输出口:同步续流控制端,当电流比较大时,该口输出低电平,控制其后逻辑电路,使同步续流功能开启。该功能在后面详细讲解。 23--28:数字输出口:是功率管的逻辑开关,单片机根据电机转子位置传感器的信号,由这里输出三相交流信号控制功率MOSFET开关的导通和关闭,使电机正常运转。

相异步电机的远程控制完整版

西安邮电大学 毕业设计(论文)题目:三相异步电机调速闭环控制系统设计 系别:自动化学院 专业:自动化专业 班级:自动0703班 学生姓名: 导师姓名:职称:讲师 起止时间:2006年01月10日至 2006年06月17日

毕业设计(论文)诚信声明书 本人声明:本人所提交的毕业论文《三相异步电机调速闭环控制系统设计》是本人在指导教师指导下独立研究、写作的成果,论文中所引用他人的文献、数据、图件、资料均已明确标注;对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式注明并表示感谢。 本人完全清楚本声明的法律后果,申请学位论文和资料若有不实之处,本人愿承担相应的法律责任。 论文作者签名:时间:年月日 指导教师签名:时间:年月日

西安邮电学院 毕业设计(论文)任务书 学生姓名指导教师职称讲师院(系)自动化学院专业自动化 题目 三相异步电动机调速闭环控制系统设计 任务与要求 1、了解电动机调速的基本原理。 2、熟练掌握组态王6.52软件。 3、会使用组态王6.52软件画组态界面。 4、绘制电气原理图、装配图、接线图。 5、熟练掌握S7-300软件,具有一定的编程能力 开始日期1月10日完成日期6月17日

院长(签字)2011年1月10日 西安邮电学院 毕业设计 (论文) 工作计划 学生姓名_苗晓强__指导教师___沈建冬______职称____讲师____ 院(系)______自动化学院_________专业________自动化________题目_三相异步电动机调速闭环控制系统设计 _______________________________________________________ 工作进程

三相异步电动机及控制电路(教案)

三相异步电动机的工作原理及控制电路 三相异步电动机和其他电动机想比较,具有结构简单,制造方便、运行可靠、价格低廉等一系列优点,因此应用广泛。 三相异步电动机的原理和结构 一、三相异步电动机的工作原理 (一)、三相交流电机的旋转磁场 1、旋转磁场的产生:三相交流电通给三相定子绕组(三个线圈彼此互隔1200分布在 定子铁心内圆的圆周上) 经过画图分析不同时间产生的磁场的位置,发现旋转磁场,并找出其特点 2、旋转磁场的特点:大小不变,以一个转速向某一个方向旋转,这个转速把它命名 为旋转磁场的同步转速n1 n1=60 f / p (f为电源频率;p为磁极对数) 3、思考:如何改变旋转磁场的方向 方法:任意调换三相电源中的任意两根相线(交换两根相线即改变了三相电源的相序,从而可以改变旋转磁场的方向) (二)、三相异步电动机的工作原理 1、分析工作原理:三相电通给定子绕组,产生旋转磁场,静止的转子相对于旋转磁场有一个相对的切割磁力线的运动,产生感应电动势,产生感应电流,转子绕组上有了电流,在磁场中会受到电磁力的作用,形成电磁转矩T,驱动转子旋转起来,实现了电能转换成机械能的目的。 2、体会“三相异步电动机”名称的由来: “三相”:三相电通入三相定子绕组 “异步”:不同步,肉眼看不见的旋转磁场转速n1 和看到的转子转速n2大小不同(方向相同),且n1 >n2

“电动机”:最终实现了电能转换成机械能 3、简化模型: 在三相异步电动机的工作原理中:给定子绕组通电,然后转子绕组通过电磁感应产生电,这一点与变压器相似(一次侧通电,二次侧感应出电),所以经常为了分析的方便将三相异步电动机的结构比作变压器,如右图: 4、思考:如何改变转子旋转的方向 方法:通过任意调换两相电流的相序,改变旋转磁场的方向,就改变了转子的旋转方向 5、转差率 S=(n 1-n )/n 1 转子从静止开始运行,转差率S 是从1趋向于0(但不能等于0,0

(技术文档2)异步电机目前几种主要控制方法的对比分析

异步电机几种主要控制方法的对比分析 近些年来,随着电力电子、计算机控制以及矢量控制等技术的不断发展,交流调速获得了巨大的技术支持,交流调速系统已经取代了直流调速系统。交流异步电机调速控制系统大致可分为两大类,一类是标量控制系统,主要是变频调速系统,包括恒压频比控制(V/F 控制)和转差频率控制。另一类是矢量控制系统,包括转子磁场定向矢量控制(VC )、转差频率矢量控制、直接转矩控制(DTC )和无速度传感器矢量控制。 1 标量控制 1.1 恒压频比控制( V/F) 交流异步电机调速时,总是希望保持每极磁通量m Φ为额定值不变,这样铁芯才能工作在最经济状态。电源频率和电机极对数决定异步电动机的同步转速,即在改变电源频率时,可以改变电机的同步转速,这时只有控制电源电压与变化的频率的比值为恒定( V/F 恒定) ,才能确保电动机的磁通m Φ基本恒定。电动机定子的感应电动势: m N 111K 44.4Φ=N f E g (1) 式中Eg —气隙磁通在定子每相绕组中感应电动势有效值; 1f —电源频率; 1N —定子每相绕组串联匝数; 1N K —基波绕组系数; m Φ—每极气隙磁通量。 由式(1)可知,在控制电动机频率时,保持1/f E g 1恒定,就可以维持磁通恒定。有三种不同方式的电压—频率协调控制。 (1) 恒压频比=11/f U 控制,1U 为定子端电压,这种方式最容易实现,能够满足一般调速要求,其缺点是低速带载能力差,需要对定子压降进行补偿。 (2) 恒1/f E g 控制,g E 是气隙磁通在定子每相绕组中感应电动势,它以对恒压频比实行电压补偿为目标,稳态调速性能优于恒压频比11/f U 控制。这种控制方式的缺点是机械特性非线性,产生转矩的能力不强。 (3) 恒1/f E r 控制,r E 是气隙磁通在转子每相绕组中感应电动势,这种控制方式可以得到和直流励电动机一样的机械特性,从而使高性能调速得以实现。但是它的控制系统比较复杂。

福州大学集成电路应用实验二-参考模板

《集成电路应用》课程实验实验二锁相环综合实验 学院:物理与信息工程学院 专业: 电子信息工程 年级: 2015级 姓名:张桢 学号: 指导老师:许志猛

实验二锁相环综合实验 一、实验目的: 1.掌握锁相环的基本原理。 2.掌握锁相环外部元件的选择方法。 3.应用CD4046锁相环进行基本应用设计。 二、元件和仪器: 1.CD4046 2.函数信号发生器 3.示波器 4.电阻、电容若干 5.面包板 三、实验原理: 1.锁相环的基本原理。 锁相环最基本的结构如图所示。它由三个基本的部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。 锁相环工作原理图 鉴相器是个相位比较装置。它把输入信号Si(t)和压控振荡器的输出信号So(t)的相位进行比较,产生对应于两个信号相位差的误差电压Se(t)。 环路滤波器的作用是滤除误差电压Se(t)中的高频成分和噪声,以保证环路所要求的性能,增加系统的稳定性。

压控振荡器受控制电压Sd(t)的控制,使压控振荡器的频率向输入信号的频率靠拢,直至消除频差而锁定。 锁相环是个相位误差控制系统。它比较输入信号和压控振荡器输出信号之间的相位差,从而产生误差控制电压来调整压控振荡器的频率,以达到与输入信号同频。在环路开始工作时,如果输入信号频率与压控振荡器频率不同,则由于两信号之间存在固有的频率差,它们之间的相位差势必一直在变化,结果鉴相器输出的误差电压就在一定范围内变化。在这种误差电压的控制下,压控振荡器的频率也在变化。若压控振荡器的频率能够变化到与输入信号频率相等,在满足稳定性条件下就在这个频率上稳定下来。达到稳定后,输入信号和压控振荡器输出信号之间的频差为零,相差不再随时间变化,误差电压为一固定值,这时环路就进入“锁定”状态。这就是锁相环工作的大致过程。 2.CD4046芯片的工作原理。 CD4046是通用的CMOS锁相环集成电路,其特点是电源电压范围宽(为3V -18V),输入阻抗高(约100MΩ),动态功耗小,在中心频率f0为10kHz下功耗仅为600μW,属微功耗器件。 CD4046锁相的意义是相位同步的自动控制,功能是完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。锁相环主要由相位比较器(PC)、压控振荡器(VCO)、低通滤波器三部分组成,如下所示。 4046组成框图

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

电动车无刷电机控制器软件设计详解

电动车无刷电机控制器软件设计详解作者:谢渊斌原作发表在《电子报2007年合订本》下册版权保留,转帖请注明出处本文以MICROCHIP公司所生产的PIC16F72为基础说明软件编程方面所涉及的要点,此文所涉及的源程序均以PIC的汇编语言为例。由于软件不可避免需与硬件相结合,所以此文可能出现硬件电路图或示意图。本文适合在单片机编程方面有一定经验的读者,有些基础知识恕不一一介绍。我们先列一下电动车无刷马达控制器的基本要求:功能性要求:1.电子换相2.无级调速3.刹车断电4.附加功能a.限速b.1+1助力c.EBS柔性电磁刹车d.定速巡航e.其它功能(消除换相噪

音,倒车等)安全性要求:1.限流驱动2.过流保护3.堵转保护3.电池欠压保护4.节能和降低温升5.附加功能(防盗锁死,温升限制等)6.附加故障检测功能从上面的要求来看,功能性要求和安全性要求的前三项用专用的无刷马达驱动芯片加上适当的外围电路均不难解决,代表芯片是摩托罗拉的MC33035,早期的控制器方案均用该集成块解决。但后来随着竞争加剧,很多厂商都增加了不少附加功能,一些附加功能用硬件来实现就比较困难,所以使用单片机来做控制的控制器迅速取代了硬件电路芯片。但是硬件控制和软件控制有很大的区别,硬件控制的反应速度仅仅受限于逻辑门的开关速度,而软件的运

行则需要时间。要使软件跟得上电机控制的需求,就必须要求软件在最短的时间内能够正确处理换相,电流限制等各种复杂动作,这就涉及到一个对外部信号的采样频率,采样时机,信号的内部处理判断及处理结果的输出,还有一些抗干扰措施等,这些都是软件设计中需要再三仔细考虑的东西。PIC16F72是一款哈佛结构,精简指令集的MCU,由于其数据总线和指令总线分开,总共35条单字指令,0-20M的时钟速度,所以其运算速度和抗干扰性能都非常出色,2K 字长的FLASH程序空间,22个可用的IO 口,同时又附加了3个定时/计数器,5个8位AD口,1个比较/捕捉/脉宽调制器,8个

完整word版,《电机学上》林荣文版课后答案

09电气学习部 《电机学》系列材料电机学 作业参考答案 福州大学电气工程与自动化学院 电机学教研组黄灿水编 2008-3-3

2-1 设有一台500kV A 、三相、35000/400V 双绕组变压器,初级、次级侧绕组均系星形连接,试求高压方面和低压方面的额定电流。 解:由已知可得:kVA S N 500=、V U N 350001=、V U N 4002=,则有: 高压侧:)(25.8350003105003311A U S I N N N =??= = 低压侧: )(7.721400 3105003322A U S I N N N =??== 2-2 设有一台16MV A 、三相、110/11kV 、Yd 连接的双绕组变压器(表示初级三相绕组接成星形,次级三相绕组接成三角形)。试求高压、低压两侧的额定线电压、线电流和额定相电压、相电流。 解:由已知可得:MVA S N 16=、kV U N 1101=、kV U N 112=,则有: 高压侧 额定线电压: kV U N 1101= 额定线电流: )(0.8410 1103101633 611A U S I N N N =???= = 额定相电压: kV U U N 5.633 110311== =φ 额定相电流: )(8411A I I N ==φ 低压侧 额定线电压: kV U N 112= 额定线电流: )(84010 113101633 622A U S I N N N =???= = 额定相电压: kV U U N 1122==φ 额定相电流: )(4853 8403 22A I I N == =φ

异步电动机综合控制系统设计

摘要:本文设计了一种基于PLC的异步电动机调速与定位综合控制系统 ,应用模糊-PI复合控制算法实现了异步电动机的速度控制,应用比例因子自调整模糊控制算法实现了异步电动机的位置控制。该系统集异步电动机速度控制和位置控制为一体,达到了一定的控制精度。 1 引言 随着变频调速技术的不断发展,交流传动系统的性能突飞猛进。交流异步电动机以其低廉的造价、坚固的结构得到了越来越广泛的应用。在交流传动的许多应用场合中,均对电机的调速性能和定位性能提出了较高的要求。例如在加工设备和机床的主轴伺服系统中,主轴应兼备速度和位置控制的功能;在住宅小区和高层建筑的恒压供水系统中,要求电机有较高的调速性能;在炼钢转炉的准确定位、堆垛机械的位置控制系统中,要求电机有精确的定位功能。在上述应用场合中,异步电动机以其大功率、高性价比的独特优势而占有一席之地,但同时其调速性能和定位性能却不甚完美,尚需完善。 本文提出了一种基于可编程控制器(PLC)硬件平台的异步电动机综合控制系统。该系统在没有增加硬件投资的情况下集异步电动机速度控制和位置控制为一体,应用模糊控制策略,达到了一定的控制精度。 2 硬件设计 异步电动机综合控制系统硬件如图1所示。图1中,上位计算机和PLC通过变频器对异步电动机进行速度和位置控制。通过旋转编码器的脉冲计数值可以获得异步电动机的速度和位置信息。脉冲计数由PLC完成,并不断与上位机通讯,将计数值传送给上位机。上位机根据PLC 传送过来的脉冲计数值得到速度和位置信息,根据不同的控制策略,得到输出控制量——速度给定值,再传送给PLC,经过PLC的A/D转换模块,将速度给定值的模拟量送到变频器的模拟控制端进行控制,形成闭环控制。

电动车无刷控制器硬件电路详解

电动车无刷马达控制器硬件电路详解 2008-5-10 9:47:25 电动车无刷电机是目前最普及的电动车用动力源,无刷电机长寿,免维护的特点得到广泛应用,然而由于其使用直电刷,其换向控制相对有刷电机要复杂许多,同时由于电动又使用电池作电源,因此控制器自身的保护及对电机,电器提出更多要求。 自电动车用无刷电动机问世以来,其控制器发展分两个阶用专用无刷电动机控制芯片为主组成的纯硬件电路控制器单,其中控制芯片的代表是摩托罗拉的MC33035,这个不以也不作深入介绍。第二阶段是以MCU为主的控制芯片。的重点,在MCR版本的设计中,揉和了模拟、数字、大功等许多重要应用,结合MCU智能化控制,是一个非常有启今以应用最广泛的以PIC16F72为智能控制中心,350W的机电路如图1:

图1:350W整机电路图 整机电路看起来很复杂,我们将其简化成框图再看看:

图2:电路框图 电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的控制部分,因为其他电路都是为其服务或被其控制,弄清路就比较容易明白。

图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机电源、复位、振荡器等,共有22个可复用的IO口,其中输出口,可输出最大分辨率达10BIT的可调PWM信号,另路AD模数转换输入口,可提供检测外部电路的电压,一个可处理突发事件。内部软件资源我们在软件部分讲解,这里各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将换后经过运算来控制PWM的输出,使电流不致过大而烧毁时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机转换后判断电池电压是否过低,如果低则切断输出以保护过放电而损坏。正常时电压应在3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口压高低来控制输出给电机的总功率,从而达到调整速度的

福州大学《电机学下》课时小结

《电机学(下)》 课时小结 -------------------------------------------------------------------------------- 第十五章同步电机的基本结构和工作原理 1.同步电机命名的由来?同步电机的基本特点和主要用途? 2.隐机和凸极同步电机的结构特点比较?(重点) 3.同步电机中阻尼绕组的作用? 4.电机产生旋转磁场的方法有哪些?它们间有什么异同点? 5.同步电机运行方式有哪些? 6.同步发电机励磁的要求和分类?(了解) 7.同步电机的额定值间的关系?(重点) 8.同步发电机空载时气隙磁动势是励磁绕组还是电枢绕组产生 的?磁动势实际波形是什么波(隐极和凸极)?波形系数如何定义?(重点) 9.电压波形正弦畸变率的定义是什么? 10.空间矢量和时间相量的物理意义有何区别?同步电机中哪 些量是空间矢量,哪些量是时间相量?何谓时空矢量图?同步发电机空载时的时空矢量图?(重点) 11.电枢反应的概念?两磁场?三个角?四个轴?(重点)

12.任意角度电枢反应的分析(画负载时空矢量图,分析电机运 行状态、功率交换情况、电枢反应性质、励磁情况)?(重点) 13.根据ψ判别同步电机的运行方式? 14.电枢反应是同步电机能量传送的关键。 15.隐极同步电机的基本方程、等效电路和相量图?(重点) 书面作业:16-1 16-2(补充:绕组为星形连接) 16-3 16.何为双反应理论?凸极同步电机交、直轴电枢磁场磁动势实 际波形?交、直轴电枢磁场磁密实际波形?(分析时均取其基波分量) 17.凸极同步电机的基本方程、等效电路和相量图?(重点) 18.比较大小:x s>x a>xσx d>x q>xσ xσ是常量,x s、x a、x ad、x aq与气隙磁场饱和度有关。

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

三相异步电动机的控制电路图

三相异步电动机的控制电路 一、复习思路及要求 1. 题型:选择题、技能题、简答题。 2. 必须熟练分析各种控制电路的工作原理,只有熟悉了工作原理才能正确绘制控制电路;补画控制电路;识别电路图中的错误;对故障进行正确分析处理;设计一些简单的控制电路;并且对PLC中简单的程序设计也有帮助。 3. 该部分容是非常重要的,要熟悉电路形式及控制形式:自锁、联锁的作用及连接方式;点动、连续运转;具有过载保护的连续运转控制电路是基础。 4. 需要掌握的控制电路有:⑴点动单向运转控制电路;⑵连续单向运转控制电路;⑶点动与连续混合控制电路;⑷接触器联锁双向运转控制电路;⑸按钮联锁双向运转控制电路;⑹接触器按钮双重联锁双向运转控制电路;(7)降压起动控制电路。 二、控制电路的分析 1.单向点动转控制电路 2.单向连续运转控制电路 3.连续与点动混合控制电路(一) 4.连续与点动混合控制电路(二) 5.连续与点动混合控制电路(三)

该电路中使用了中间继电器。其电器符号是KA。作用是:当其他继电器的触点数量不够时,可借助中间继电器来扩展触头数和触点容量,起到信号中继作用。 注:通过以上控制电路明确自锁的作用及其连接方式.......................。 6.多地控制电路 该控制电路能实现电动机的两地控制。起动按钮并联,停止按钮串联。(图中如果SB1、SB2控制A地,则SB3、SB4控制B地。) 7.接触器联锁双向控制电路 该电路采用了接触器联锁优点是工作安全可靠。但电动机由正转变为反转时,必须先按下停止按钮,才能按反转按钮,否则由于接触器联锁作用,不能实现反转。 8.按钮联锁双向控制电路该线路的优点是操作方便,由正转变为反转时不必按下停止按钮,但容易产生电源两相短路故障。 9.接触器按钮双重联锁双向控制电路 该线路工作安全可靠、操作方便。 注:通过以上三个线路要明确联锁的作用及连接方式.......................。 10.定子绕组串电阻降压起动控制线路(一)

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

电动车无刷马达控制器硬件电路详解

电动车无刷马达控制器硬件电路详解 电动车无刷电机是目前最普及的电动车用动力源,无刷电机以其相对有刷电机长寿,免维护的特点得到广泛应用,然而由于其使用直流电而无换向用的电刷,其换向控制相对有刷电机要复杂许多,同时由于电动车负载极不稳定,又使用电池作电源,因此控制器自身的保护及对电机,电源的保护均对控制器提出更多要求。 自电动车用无刷电动机问世以来,其控制器发展分两个阶段:第一阶段为使用专用无刷电动机控制芯片为主组成的纯硬件电路控制器,这种电路较为简单,其中控制芯片的代表是摩托罗拉的MC33035,这个不是这里的主题,所以也不作深入介绍。第二阶段是以MCU为主的控制芯片。这是这篇文章介绍的重点,在MCR版本的设计中,揉和了模拟、数字、大功率MOSFET驱动等等许多重要应用,结合MCU智能化控制,是一个非常有启迪性的设计。 今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: 图1:350W整机电路图 整机电路看起来很复杂,我们将其简化成框图再看看:

图2:电路框图 电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。 图3:PIC16F72在控制器中的各引脚应用图

我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT的可调PWM信号,另有AN0‐AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A‐D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0‐1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A‐D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,120°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。 18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。 19:单片机电源地。 20:单片机电源正。上限是5.5V。 21:数字输入口:外部中断输入,当电流由于意外原因突然增大而不在控制范围时,该口有低电平脉冲输入。单片机收到此信号时产生中断,关闭电机的输出,从而保护重要器件不致损坏或故障不再扩大。 22:数字输出口:同步续流控制端,当电流比较大时,该口输出低电平,控制其后逻辑电路,使同步续流功能开启。该功能在后面详细讲解。 23‐‐28:数字输出口:是功率管的逻辑开关,单片机根据电机转子位置传感器的信号,由这里输出三相交流信号控制功率MOSFET开关的导通和关闭,使电机正常运转。

《电机学上》课后答案

《电机学》系列材料电机学 作业参考答案 福州大学电气工程与自动化学院 电机学教研组黄灿水编 2008-3-3

2-1 设有一台500kV A 、三相、35000/400V 双绕组变压器,初级、次级侧绕组均系星形连接,试求高压方面和低压方面的额定电流。 解:由已知可得:kVA S N 500=、V U N 350001=、V U N 4002=,则有: 高压侧:)(25.8350003105003311A U S I N N N =??= = 低压侧: )(7.721400 3105003322A U S I N N N =??== 2-2 设有一台16MV A 、三相、110/11kV 、Yd 连接的双绕组变压器(表示初级三相绕组接成星形,次级三相绕组接成三角形)。试求高压、低压两侧的额定线电压、线电流和额定相电压、相电流。 解:由已知可得:MVA S N 16=、kV U N 1101=、kV U N 112=,则有: 高压侧 额定线电压: kV U N 1101= 额定线电流: )(0.8410 1103101633 611A U S I N N N =???= = 额定相电压: kV U U N 5.633 110311== =φ 额定相电流: )(8411A I I N ==φ 低压侧 额定线电压: kV U N 112= 额定线电流: )(84010 113101633 622A U S I N N N =???= = 额定相电压: kV U U N 1122==φ 额定相电流: )(4853 8403 22A I I N == =φ

嵌入式电机控制系统(硬件)

摘要 随着我国工业的日益发展,电机在许多工矿、机械企业得到广泛的应用,本嵌入式电机控制系统是运用单片机控制的变频调速系统,控制对象主要是三相交流电动机,控制思想是用转差频率进行控制,通过改变程序来达到控制转速的目的。 系统以AT89C52为控制核心,主要采用变频调速技术,结合所学的单片机技术,实现系统的功能要求。系统的总体结构主要由主回路,sa4828大规模集成spwm变频器电路,键盘显示电路,光电隔离电路,检测保护电路,驱动电路,串口通信电路。 主要电路芯片由51系列单片机at89c52, Intel8279通用键盘/显示器,SPWM 波产生电路SA4828芯片,以及驱动芯片IR2304等。 由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器,结构清晰,成本大大降低。 关键词AT89C51单片机;SA4828变频器;IR2304;整流器;三相异步电动机

Abstract With the increasing development of China's industry, the electrical in many mining, machinery enterprises have wide application, the embedded motor control system is to use the SCM Control Frequency Control System, control is primarily aimed at three-phase AC motor, control thinking Use slip frequency control, by changing the speed control procedures to achieve the objective. AT89C52 for the control system to the core, mainly VVVF technology, integration of the microcontroller technology, to achieve the function of the system requirements. The overall structure of the main system by the main circuit, sa4828 large-scale integrated circuit spwm converter, the keyboard show circuit, photoelectric circuit isolation, detection protection circuit, driving circuit, serial communication circuits. The main circuit chip from 51 MCU at89c52, Intel8279 universal keyboard / display, SPWM wave generated SA4828 circuit chips, and driver chips, and so on. As the design of electrical power do not, so do not use controlled rectifier circuits, capacitors filter; inverter with three-phase power inverter transistor, a clear structure, the cost much lower. Key words:AT89C51 SCM; SA4828 converter; IR2304; rectifier; three-phase asynchronous motor

相关文档
相关文档 最新文档