文档库 最新最全的文档下载
当前位置:文档库 › Identification of N-(4-Piperidinyl)-肝癌-CDK2

Identification of N-(4-Piperidinyl)-肝癌-CDK2

Identification of N-(4-Piperidinyl)-肝癌-CDK2
Identification of N-(4-Piperidinyl)-肝癌-CDK2

Identi?cation of N-(4-Piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519),a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design?

Paul G.Wyatt,?,?Andrew J.Woodhead,?,*Valerio Berdini,⊥John A.Boulstridge,?Maria G.Carr,?David M.Cross,# Deborah J.Davis,|Lindsay A.Devine,§Theresa R.Early,?Ruth E.Feltell,|E.Jonathan Lewis,#Rachel L.McMenamin,| Eva F.Navarro,?Michael A.O’Brien,?Marc O’Reilly,§Matthias Reule,#Gordon Saxty,?Lisa C.A.Seavers,|

Donna-Michelle Smith,#Matt S.Squires,|Gary Trewartha,?Margaret T.Walker,?and Alison J.-A.Woolford?

Astex Therapeutics Ltd,436Cambridge Science Park,Milton Road,Cambridge,CB40QA,United Kingdom

Recei V ed April3,2008

The application of fragment-based screening techniques to cyclin dependent kinase2(CDK2)identi?ed multiple(>30)ef?cient,synthetically tractable small molecule hits for further optimization.Structure-based design approaches led to the identi?cation of multiple lead series,which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site.The majority of this paper details the structure-guided optimization of indazole(6)using information gained from multiple ligand-CDK2cocrystal structures.Identi?cation of key binding features for this class of compounds resulted in a series of molecules with low nM af?nity for CDK2.Optimisation of cellular activity and characterization of pharmacokinetic properties led to the identi?cation of33(AT7519),which is currently being evaluated in clinical trials for the treatment of human cancers.

Introduction

Background to Fragment-Based Drug Discovery.Astex has previously described the use of fragment-based X-ray crystallographic screening to identify low-af?nity fragment hits for a range of targets,1,2and the area in general has been reviewed extensively over recent years.3–7Fragment-based screening approaches have become widely used throughout the pharmaceutical industry and can now be regarded as a compli-mentary approach to high-throughput screening.Fragments are low-molecular-weight compounds3(typically100-250Da)with generally low binding af?nities(>100μM)and,as a result, very sensitive biophysical screening methods are frequently used to detect them,such as X-ray crystallography,1,8nuclear magnetic resonance spectroscopy(NMR),9and surface plasmon resonance(SPR).10Fragment screening has a number of advantages over conventional screening methodologies.First, only small libraries of compounds are needed for screening purposes(~200-2000),due to the much greater probability of complimentarity between each fragment and the target than is expected for larger,drug-like compounds.11Second,despite their often very low af?nity,fragments generally possess good ligand ef?ciency(LE a)12and as such form a small number of very high quality interactions.It is possible to optimize fragments to relatively low molecular weight leads with good drug-like properties,and this can be achieved with a limited number of molecules,particularly if good structural data is available.LE is the ratio of free binding af?nity to molecular size,depicted mathematically as LE)-?G/HAC≈-RT ln(IC50)/HAC, where the HAC(heavy atom count)includes all non-hydrogen atoms.This concept can be used to compare hits of widely differing structures and activities and is also a simple way of determining if the optimization of a hit into a lead has been carried out ef?ciently.

Inhibition of Cyclin Dependent Kinases.The cyclin-dependent kinases(CDKs)are a family of serine-threonine protein kinases,which are key regulatory elements in cell cycle progression.The activity of CDKs is critically dependent on the presence of their regulatory partners(cyclins),whose levels of expression are tightly controlled throughout the different phases of the cell cycle.13–15Loss of cell cycle control resulting in aberrant cellular proliferation is one of the key characteristics of cancer,16and it is anticipated that inhibition of CDKs may provide an effective method for controlling tumor growth and hence an effective weapon in cancer chemotherapy.17,18 CDK2/cyclin E,CDK4/cyclin D and CDK6/cyclin D prima-rily regulate progression from the G1(Gap1)phase to the S phase(DNA synthesis)of the cell cycle through phosphorylation of the retinoblastoma protein(Rb).19,20Subsequent progression through S phase and entry into G2(Gap2)is thought to require the CDK2/cyclin A https://www.wendangku.net/doc/0117648311.html,plexes of CDK1and the A or B type cyclins regulate both the G2to M phase transition

?Coordinates of the CDK2complexes with compounds6,7,8,10,11, 12,14,15,18,22,23,28,29,and33have been deposited in the Protein Data Bank under accession codes2VTA,2VTH,2VTM,2VTJ,2VTR, 2VTS,2VTI,2VTL,2VTN,2VTO,2VTP,2VTQ,2VTT,and2VU3, together with the corresponding structure factor?les.

*To whom correspondence should be addressed.Phone:+44(0)1223 226287.Fax:+44(0)1223226201.E-mail:a.woodhead@astex-therapeutics. com.

?Medicinal Chemistry.

§Structural Biology.

|Biology.

⊥Computational Chemistry and Informatics.

#DMPK.

?Current address:Drug Discovery Unit,Division of Biological Chem-istry&Drug Discovery College of Life Sciences,James Black Centre, University of Dundee,Dow Street,Dundee,DD15EH,United Kingdom. Phone:+44(0)1382386231.E-mail:p.g.wyatt@https://www.wendangku.net/doc/0117648311.html,.

a Abbreviations:CDK,cyclin dependent kinase;DCM,dichloromethane; DFG,region of conserved amino acids,aspartic acid,phenyl alanine,glycine; EDC,1-(3-dimethyaminopropyl)-3-ethylcarbodiimide;HP CD,hydrox-ypropyl- -cyclodextrin;HOBT,1-hydroxybenzotriazole hydrate;HOAt, 1-hydroxy-7-azabenzotriazole;LE,ligand ef?ciency;NMP,1-methyl-2-pyrrolidinone;NPM,nucleophosmin;Rb,retinoblastoma protein;T/C,mean tumor volume of treated animals divided by the mean control tumor volume.

J.Med.Chem.2008,51,4986–4999

4986

10.1021/jm800382h CCC:$40.75 2008American Chemical Society

Published on Web07/26/2008

and mitosis.15,17However,not all members of the CDK family are involved exclusively in cell cycle control;CDK2/cyclin E plays a role in the p53mediated DNA damage response pathway and also in gene regulation.21–24CDKs 7,8,and 9are implicated in the regulation of transcription,and CDK5plays a role in neuronal and secretory cell function.25–27

Thus inhibiting CDK enzyme activity may affect cell growth and survival via several different mechanisms and therefore represents an attractive target for therapeutics designed to arrest,or recover control of,the cell cycle in aberrantly dividing cells.Accumulating evidence from genetic knockouts of the CDKs and/or their cyclin partners and from siRNA studies suggests signi?cant redundancy in their regulation of key cell cycle events.28–32In addition,the effects of CDK inhibitors on cell proliferation and the induction of apoptosis are not fully reconciled with the current understanding of the biological functions of individual CDKs and the CDK family as a whole.Therefore,an inhibitor active against more than one of the key CDKs may have additional bene?ts in terms of antitumor activity.

Not surprisingly,with the wealth of underlying biological rationale,the development of chemical modulators of CDKs as new anticancer agents has engendered signi?cant interest,with several compounds in clinical and preclinical development.33,34First generation CDK inhibitors such as 1(Flavopiridol/L868275)35and 7-hydroxystaurosporine 36(UCN-01)have been evaluated in the clinic for some time,and recently 1has been granted orphan drug status for the treatment of chronic lym-phocytic leukemia.37Inhibitors with greater selectivity for the CDKs such as 2(roscovitine/CYC-202),383(BMS-387032/SNS-032)39(both primarily target CDK2,but also possess signi?cant CDK7and 9activity),and 4(PD0332991)40(a selective CDK4/6inhibitor)(Figure 1)are currently being evaluated in phase I and II clinical trials,but limited results have been published to date.

Hit Identi?cation.Apo crystals of CDK2were soaked with cocktails of targeted fragments (4fragments per cocktail).The screening set of about 500compounds was made up from a focused kinase set,a drug fragment set,and compounds identi?ed by virtual screening against the crystal structure of CDK2.1Multiple (>30)low-af?nity fragment hits were identi-?ed that bind in the adenosine 5′-triphosphate (ATP)binding

site.A conserved structural feature of all the bound fragments was one or more hydrogen bonding interactions to key backbone residues at the hinge region of CDK2(Glu81and Leu83).ATP itself adopts a similar binding mode,as illustrated in Figure 2.41The compounds shown in Figure 3are a representative selection of the hits identi?ed during fragment screening (compounds 5-8).The hits had only low potency (40μM to 1mM)but were highly ef?cient binders given their low molecular weight (<225)and limited functionality.An important consid-eration during our fragments-to-leads phase is pursuing multiple series in parallel in order to have two or more series for optimization in the later stages of the project.A key feature of this process was the collection of multiple protein -ligand crystal structures to guide iterative cycles of optimization.1,2

To enable the design process,a detailed analysis of the ATP binding site of CDK2and binding mode of known CDK inhibitors was carried out.The analysis identi?ed a number of key interactions and regions of the protein to target in order to optimize activity and physicochemical properties (Figure 2).Hydrogen bonds to the backbone carbonyl and NH of Leu83and the backbone carbonyl of Glu81were commonly observed with bound fragments and more potent ligands.Making all three of these interactions with the hinge appeared to be a potential way to design a very potent and ligand ef?cient inhibitor.Other key areas to explore included the relatively small region between the gatekeeper residue (Phe80)and the catalytic aspartic acid (Asp145)of the DFG motif and a hydrophobic pocket leading to the solvent exposed region (de?ned by Phe82,Ile10,Leu134,and side chain methylene of Asp86).A number of inhibitors in the literature appeared to interact with Asp86,and this was targeted with some early compounds.42,43The solvent accessible region toward Lys89was identi?ed as potentially suitable for modulating physicochemical properties,particularly for

increas-

Figure 1.CDK inhibitors currently under investigation in clinical

trials.

Figure 2.X-ray crystal structure of ATP (adenosine triphosphate)bound into the active site of CDK2(1HCL).The ligand is anchored in place with two hydrogen bonds,one between the backbone carbonyl of Glu81and the 6-amino group and one between the backbone NH of Leu83and the N1position of the adenine ring.An additional favorable electrostatic interaction is made between the hydrogen atom at the C2position and the carbonyl of Leu83.The ribose and phosphate groups form multiple polar interactions,one of which involves coordination to the catalytic magnesium (gray/silver sphere)via the phosphate groups along with Asp145and Asn132.Other key features to notice are that ATP does not interact with the solvent accessible region or the hydrophobic pocket between the gatekeeper residue and the DFG region.

Identi?cation of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164987

Figure 3.Fragment -protein cocomplexes of four low-molecular-weight hits identi?ed by fragment-based X-ray crystallographic screening (5-8).On the left is shown the fragment structure and available IC 50data,in the center a pictorial representation of the protein -ligand complex,and the right-hand column provides a description of the experimentally determined binding mode.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water -ligand hydrogen bonds;blue dashed lines,other electrostatic interactions.The PDB code for compound 5is 1WCC.

4988Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.

Figure 4.Fragment to lead optimization of pyrazine-based https://www.wendangku.net/doc/0117648311.html,pound 5possesses reasonable growth points toward the gatekeeper residue (Phe80)and from the amino group out toward the solvent exposed region.Hydrophobic space ?lling by substitution at the 2-amino position with an aryl group gave compound 9(7μM;LE )0.50),displaying a 150-fold jump in activity over the starting fragment 5.Perhaps surprisingly,the structural data quality for this compound was poor,with no electron density observed for the aryl group,possibly due to the aryl group being able to bind in a number of conformations.Introduction of a sulfonamide at the 4-position of the aryl group forces an intramolecular salt bridge between Asp86and Lys89to break and allows for the formation of a further H-bonding interaction between the sulfonamide and the backbone NH of Asp86.In spite of this additional interaction,only a modest increase in activity is observed for 10(1.9μM;LE )0.43).51Further modi?cation of this group or replacement of the 6-chloro substituent suggested that optimization beyond low micromolar activity was not straightforward,so this series was not pursued further.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water-ligand hydrogen bonds;blue dashed lines,other electrostatic

interactions.

Figure 5.Fragment to lead optimization of pyrazolopyrimidine-based inhibitors.Fragment 8binds to CDK2as described in Figure 3.The binding mode is very similar to that of Roscovitine (2)and other bicyclic templates described in the literature.Substitution of compound 8at the 7-position with a hydrogen bond donor allowed a third interaction to be formed with the protein backbone at the hinge region (carbonyl of Leu83).The amine could be substituted with a range of functionalities and the isopropyl group being particularly https://www.wendangku.net/doc/0117648311.html,pound 11gave a 700-fold jump in binding af?nity (IC 50)1.5μM,LE )0.50)and an improvement in ligand ef?ciency over the starting fragment.Growing out from the 5-position allowed the opportunity to access the ribose and phosphate binding regions of the active site.Introduction of basic functionality in the phosphate binding pocket was well tolerated,with this strategy producing the high af?nity lead 12(IC 50)0.03μM,LE )0.45).The crystal structure shows the 4-amino group to be forming hydrogen bonds with the carboxylate of Asp145and the side chain carbonyl of Asn132,mimicking the Mg 2+observed in many ATP bound kinase https://www.wendangku.net/doc/0117648311.html,pound 12also displayed good cellular activity (HCT116cell IC 50)0.29μM),however,this did not translate into in vivo activity and work on this series was abandoned in favor of more promising compounds.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water -ligand hydrogen bonds;blue dashed lines,other electrostatic interactions.

Identi?cation of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164989

ing water solubility.Many of these interactions are discussed in an interesting review by Liao on the molecular recognition of protein kinase binding pockets.44Results and Discussion

Summary of Fragment to Lead Optimization.Figure 3shows four representative fragment hits identi?ed by structural screening of CDK2.A number of considerations were taken into account when deciding which of the hits should be worked on further,and these included LE,vectors suitable to access the key regions highlighted in Figure 2,novelty,and synthetic tractability.Of the fragments described,compound 7was assessed not to have suitable vectors for optimization and,in addition,the chemistry did not appear to be very tractable.As a result,this compound did not enter hit-to-lead https://www.wendangku.net/doc/0117648311.html,pounds 5,6,and 8were deemed to have suitable vectors and the chemistry suf?ciently tractable to warrant further work.The optimization of compounds 5and 8is outlined in brief in Figures 4and 5,respectively;the optimization of compound 6will be discussed in detail in the following sections.

Fragment to Lead Optimization of Compound 6.The “hit to lead”chemistry of 6focused primarily on two vectors (from the 3and 5positions of the indazole ring,see Figure 6)suitable to access pockets identi?ed by the kinase structural analysis (Figure 2).Structural data from Astex fragments and known CDK inhibitors suggested that formation of an additional hydrogen bonding interaction to the carbonyl of Leu83was a possibility.45,46This was achieved by linking an aryl amide to the 3-position of indazole,resulting in 13(IC 50)3μM;LE )0.42)(Table 1).The phenyl ring was twisted out of plane and occupies the hydrophobic pocket formed by the backbone of the linker region and side chains of Ile10and Leu134.Addition of a sulfonamide group at the 4-position of the phenyl ring afforded 14with submicromolar activity (IC 50)0.66μM;LE )0.38).The sulfonamide picks up two further interactions,both to Asp86,a direct hydrogen bond to the backbone NH and a water-mediated interaction to the carboxylate side chain (Figure 6).42,43

Substitution of the indazole ring at the 4or 5positions resulted in relatively small increases in CDK2activity,while as expected,substitutions at the 6or 7positions were poorly tolerated (data not shown)due to the close proximity of Phe80.An alternative strategy was pursued in parallel and rather than seeking to increase the potency of 14by continuing to add molecular weight,the system was simpli?ed by removal of the fused benzene ring to afford the pyrazole 15(IC 50)97μM;

LE )0.39).Despite a drop in activity,the LE was similar to the more elaborated compounds and the binding mode

as

Figure 6.CDK2cocrystal structures of compounds 6,14,and 15.Key:red spheres,water molecules;purple dashed lines,protein -ligand hydrogen bonds;arrows indicate potential vectors for substitution.

Table 1.CDK2Inhibition of Selected Indazole and Pyrazole Amides

a

a

Compound were assayed 2or more times.b IC 50data for 2was generated in house and compares well with values quoted in the literature (within 2fold).47

4990Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.

con?rmed by the X-ray crystal structure remained identical to the starting fragment,which encouraged us to pursue this strategy further.The change of hinge binder provided a signi?cantly different vector and improved access to the DFG region between the gatekeeper residue (Phe80)and the catalytic aspartate (Asp145)(Figure 2).It appeared that derivatizing the pyrazole at the 4-position presented an opportunity to grow into this pocket (Figure 6).Accordingly,introduction of a 4-amino group as a synthetic handle gave 17which resulted in a modest increase in activity (IC 50)85μM;LE )0.35).Introduction of a hydrogen bond acceptor gave compounds such as the amide 18,leading to a 100-fold increase in activity and improved LE (IC 50)0.85μM;LE )0.44).An X-ray structure of 18bound into CDK2showed that the increase in activity was at least in part due to a water mediated hydrogen bond from the acetamide carbonyl oxygen to the backbone NH of Asp145(Figure 7).Another important observation is that the planarity of 18is achieved due to an intramolecular hydrogen bond between the acetamide NH and the benzamide carbonyl,allowing the compound to ?t into the narrow binding pocket.

Ongoing with this work were attempts to replace the amide at the 3-position of the pyrazole with alternative groups that could maintain the hydrogen bonding interaction to the backbone carbonyl of Leu83while maintaining the planarity of the system.For example,a 2-benzimidazole group proved to be an effective replacement for the aryl amide.16(IC 50)25μM;LE )0.45)is more active than the corresponding amide 15.Further optimization of 16led to the identi?cation of an alternative series with excellent kinase and cell activity.Details of the develop-ment of this alternative series will follow in a subsequent publication.

The protein -ligand structure of 18indicated that the methyl of the acetamide group is in very close proximity to the side chain carboxylate of Asp145(approximately 3.5?),making the pocket relatively small.Some protein ?exibility is observed in this region of the binding site,so in order to probe this area further,a limited number of amides with diverse properties were synthesized (Table 2).A range of simple functionalities such as 19and 20did not afford a signi?cant increase in activity over 18;however,interesting levels of kinase activity were obtained with directly attached monocycles such as the cyclo-hexyl amide 21and benzamide 22,and these compounds also showed some indication of cellular activity.The benzamide 22was particularly interesting,showing only a small increase in binding af?nity and a decrease in ligand ef?ciency (IC 50)0.14

μM,LE )0.39);however,the protein -ligand crystal structure (Figure 7)provided a number of important insights into the binding mode of this compound.First,a small amount of protein movement had occurred,allowing the aromatic ring to be accommodated.Second the phenyl ring was signi?cantly twisted out of plane of the amide,with a torsion angle of 51°,an energetically unfavorable conformation.It was postulated that stabilization of this twist by diortho substitution of the phenyl ring might be bene?cial.The X-ray structure con?rmed that 23bound to CDK2as predicted (Figure 7),resulting in a 45-fold increase in kinase activity for the addition of only two heavy atoms and with a ligand ef?ciency very similar to the starting fragment (IC 50)0.003μM,LE )0.45).

Although 23exhibited good kinase activity and its pharma-cokinetic (PK)properties indicated it to be a good lead

molecule,

Figure 7.CDK2cocrystal structures of compounds 18,22,and 23,demonstrating the use of 2,6-disubstitution on the phenyl ring (23)to stabilize the induced twist observed for the benzamide of 22on binding to CDK2.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water-ligand hydrogen bonds.

Table 2.Pyrazole Diamide Structure -Activity Relationships

(SAR)

a

Compounds were assayed 2or more times unless indicated *where n )1.

Identi?cation of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164991

with moderate plasma clearance (40mL/min/kg)after intrave-nous (iv)dosing in mice,its antiproliferative cell activity against HCT116colon cancer cells was only moderate (1.4μM).One explanation for this moderate cell activity may be due to low cell permeability.23has a ClogP of 2.4,however,the measured value is approximately 2log units higher,presumably due to internal hydrogen bonding reducing the overall polarity of the molecule.This relatively high lipophilicity may be detrimental to cell permeability,and in an attempt to address this,further optimization of the series was sought by replacing the lipophilic 4-?uorophenyl group of 23(Table 3).In general,other aromatic groups (data not shown)and simple alkyl groups such as in 24gave good kinase activity but only moderate cell activity.However,the directly attached cycloalkyl ring of 25gave an improvement in kinase activity and was the ?rst compound in this series with submicromolar cell activity.Because of its reasonable cellular activity the PK properties of 25were determined in mice and it was found to have high plasma clearance (65mL/min/kg).A potential cause of this was oxidative metabolism of the highly lipophilic cyclohexyl group,and in an attempt to address this,modi?cations were made to the cyclohexyl ring.Although a number of 4-substituted cyclohexyl derivatives such as 26and 27exhibited good kinase and cell activity,most had relatively high plasma clearances.Introduction of a nitrogen atom into the ring affording 28and 29gave compounds with good CDK2and cell potency.It became apparent from making these small polar changes that modulating physicochemical properties was just as important as increasing kinase activity when attempting to improve cell potency.Interestingly,the 3-piperidinyl isomer 29exhibited an

increase in CDK1as well as CDK2activity compared to 28.This increase in activity can be explained by the presence of a conserved carboxylate residue in CDK1and CDK2(Asp86in CDK2)with which the 3-piperidinyl nitrogen of 29can interact.The X-ray structure of 29bound to CDK2(Figure 8)con?rms this interaction,the protonated nitrogen being 2.65?from the carboxylate of https://www.wendangku.net/doc/0117648311.html,pound 28was considered to be a promising lead due to its reasonable cell activity and acceptable plasma protein binding (PPB)(Table 5);as a consequence of this,further in vivo characterization of 28was performed.Despite showing moderate plasma clearance (43mL/min/kg),the compound was dosed to mice bearing HCT116tumor xenografts to determine the level of compound in the tumor.After a single 10mg/kg dose of 28was administered via the ip route,reasonable,albeit somewhat variable levels of compound appeared to distribute into tumor (AUC )3422(2478h ·ng/g)(Table 5).The compound was much more rapidly cleared from plasma,with negligible material remaining after 7h (data not shown).In an attempt to determine whether compound levels in tumor were a potential indicator of in vivo ef?cacy,28was evaluated for antitumor activity in a mouse xenograft model.The hydrochloride salt of compound 28was dosed ip bid (twice daily)at 18.2,9.1,and 4.6mg/kg to SCID mice bearing early stage HCT116human colon carcinoma xenografts for https://www.wendangku.net/doc/0117648311.html,pound 28showed a clear dose -response for antitumor

Table 3.Summary of SAR for Compounds 23-

29

a

Compounds were assayed 2or more times unless indicated *where n )1.b The plasma clearance data was determined after IV administration to BALB/c mice at 0.2mg/kg according to Pharmacokinetic Study

Methods.

Figure 8.CDK2cocrystal structures of compounds 28and 29.29forms an additional hydrogen bond between the ring nitrogen of the piperidyl group and the carboxylate of Asp86.This may explain the observed improvement in binding af?nity.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water -ligand hydrogen bonds.

4992Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.

activity although the dose schedule was not optimized.The 18.2mg/kg dose group showed tumor growth inhibition of 86%(%T /C )14),however this dose was not well tolerated.At a tolerated dose of 9.1mg/kg,growth inhibition was 46%(%T /C )54)(Table 5)and the 4.6mg/kg group showed 22%growth inhibition (%T /C )78).These data suggested that distribution of compounds in tumor and their persistence there might be a useful indicator of in vivo activity when considered alongside protein binding and cell potency.The further impact of compound disposition on biomarker modulation will be dis-cussed in a subsequent paper.

Further optimization of 28aimed at increasing activity against CDK2and subsequently improve cell activity was explored by reoptimizing the 2,6-di?uorophenyl moiety (Table 4).Attempts to block potential metabolism of the phenyl ring by substitution of the 4-position,e.g.,in 30resulted in somewhat reduced inhibitory activity against the kinase.Replacement of one of the ?uorines of 28with small substituents such as methoxy and chloro to give 31and 32was well tolerated and resulted in increased kinase and cell activity (Table 4).The 2,6-dichlo-rophenyl derivative 33gave an increase in kinase and cell activity,as the chlorine atoms ?lled this lipophilic pocket more

effectively than ?uorine.Because previous compounds showed persistence in tumor in spite of moderate to high plasma clearance (e.g.,28),further compounds (31and 33)were dosed to HCT116tumor bearing mice at 10mg/kg to determine tumor distribution properties.A similar trend to compound 28was observed,with signi?cant levels of both 31and 33present in tumor (AUC )3325(543and 6260-6340h ·ng/g,respec-tively)(Table 5).Compound 33in particular showed good tumor exposure.

The promising in vitro kinase and antiproliferative cell activity,coupled with low PPB and reasonable tumor distribu-tion for both 31and 33,led them to be evaluated in vivo for potential antitumor ef?https://www.wendangku.net/doc/0117648311.html,pound 31showed 38%tumor growth inhibition (%T /C )62)in the HCT116mouse xenograft model at 10mg/kg,although the dose and schedule were not https://www.wendangku.net/doc/0117648311.html,pound 33showed signi?cant ef?cacy in the same tumor type producing tumor growth inhibition of 87%(%T /C )13)when dosed at 9.1mg/kg ip bid for 10days (Table 5),which warranted further investigation.A similar bene?cial effect was observed for 33in the A2780(human ovarian carcinoma cell line)mouse xenograft model.Details of this and further characterization of 33is described in the following section.

Characterization of Compound 33.Kinase Selectivity Pro?https://www.wendangku.net/doc/0117648311.html,pound 33was pro?led more widely against a panel of kinases (see Supporting Information).In addition to CDKs 1and 2(IC 50s 190nM and 47nM,respectively),33potently inhibited a number of other CDKs (4and 5in particular,IC 50s 67nM and 18nM,respectively),but had lower activity against other kinases tested (more detailed selectivity data will be published in a subsequent paper).One explanation for the observed selectivity over some kinases (Aurora A,IR kinase,MEK,PDK1,c-abl,IC 50>10μM)is shown in Figure 9a.All these kinases possess an additional glycine residue (in between the amino acids corresponding to Gln85and Asp86of CDK2),which causes the main chain to bulge into the ATP binding pocket resulting in a clash with the piperidine of 33.

Cell-Based https://www.wendangku.net/doc/0117648311.html,pound 33is a potent inhibitor of HCT116cell proliferation (used as a primary screen during lead optimization).Following 72h exposure,33potently inhibited the proliferation of a range of human tumor cell lines (over 100cell lines have been tested),with compound 33showing sub 1μM activity against more than 75(data not shown).Compound 33had reduced antiproliferative activity against the nontrans-formed ?broblast cell line,MRC-5,but more signi?cantly,it did not affect the viability of noncycling MRC-5cells at doses up to 10μM (Table 6).These data suggest that the antiprolif-erative activity is cell cycle related and not due to general cytotoxicity to nondividing cells.

The mechanism of action of 33in cells was investigated by monitoring the phosphorylation state of substrates speci?c for the various CDKs,following treatment with 33for 24h.These studies indicated that inhibition of phosphorylation of the CDK1substrate PP1R (Thr320)and the CDK2substrates Rb (Thr821)and Nucleophosmin (NPM)(Thr199)(data to be published in

Table 4.Substituted Benzamide SAR for Compounds 30-

33

a

Compounds were assayed 2or more times.b The plasma clearance data was determined after IV administration to BALB/c mice at 0.2mg/kg according to Pharmacokinetic Study Methods.

Table 5.Activity,Distribution,and Initial Ef?cacy Parameters for Compounds 28,31,and 33Compound

HCT116a IC 50(μM)Plasma protein binding

(%bound)

Tumor AUC (0-t )h ·ng/g b

Ef?cacy screening protocol in HCT116tumor xenograft model %T /C e

280.31843422(2478(n )4)9.1mg/kg/dose bid QDx10c 54310.052753325(543(n )3)10mg/kg/dose bid QDx9d 6233

0.082

42

6260-6340

9.1mg/kg/dose bid QDx10c

13

a

Compounds were assayed 2or more times.b Mean (SD for n determinations or range for n )2determinations.c Ef?cacy study conducted in SCID mice following ip administration.d Ef?cacy study conducted in BALB/c nude mice following ip administration.e %T /C is the mean tumor volume of treated animals divided by the mean control tumor volume expressed as a percentage.

Identi?cation of AT7519

Journal of Medicinal Chemistry,2008,Vol.51,No.164993

a subsequent paper)in HCT116cells occurred at doses consistent with the observed antiproliferative effects.

Pharmacokinetics Study.As summarized in Table 7,the systemic clearance of 33in BALB/c mice after iv dosing averaged 46mL/min/kg with a mean half-life (t 1/2)and volume of distribution (V ss )of 0.68h and 1.6L/kg,respectively.33showed low oral bioavailability (<1%),which was a common feature of many closely related basic compounds.

In Vivo Antitumor https://www.wendangku.net/doc/0117648311.html,pound 33was evaluated for its in vivo antitumor activity in nude BALB/c mice bearing early stage A2780human ovarian carcinoma xenografts with a mean starting volume of approximately 50mm 3(Figure 10).In this study,the hydrochloride salt of 33,dissolved in 0.9%saline,was administered by the intraperitoneal (ip)route,twice daily,for 8consecutive days.Tumor growth inhibition at the end of the experiment was 86%at the 7.5mg/kg dose level (%T /C )14).A more extensive biological characterization of compound 33,including a comprehensive cell cycle analysis and a detailed in vivo ef?cacy evaluation will be published separately.

https://www.wendangku.net/doc/0117648311.html,pounds 13,14,and 15were synthesized by coupling either 1H -indazole-3-carboxylic acid or 1H -pyrazole-3-carboxylic acid with aniline or https://www.wendangku.net/doc/0117648311.html,pound 16was prepared by coupling 1H -pyrazole-3-carboxylic acid with 1,2-diaminobenzene followed by acid mediated cyclization to form the benzimidazole.Synthesis of aminopyrazole 17was achieved (Scheme 1)by coupling

4-nitropyrazole-3-carboxylic acid 34with 4-?uoroaniline,fol-lowed by catalytic hydrogenation of 35with palladium on carbon.Diamides 18-23were synthesized by coupling of 17with acetic anhydride or the appropriate carboxylic acids using EDC/HOBt.

Esteri?cation of 34with ethanol under acidic conditions followed by catalytic hydrogenation of the nitro group gave the aminopyrazole 36(Scheme 2).Acylation of 36with 2,6-di?uorobenzoic acid,followed by basic hydrolysis afforded pyrazole acid 37.Coupling of 37with the required amines using EDC/HOBt gave compounds https://www.wendangku.net/doc/0117648311.html,pounds 27-29required an additional deprotection step to remove the N-tert -butoxycarbonyl group.This was achieved under standard acidic conditions with saturated HCl in EtOAc.The piperidine amides 30-33were synthesized via the aminopyrazole 38(Scheme 3),itself synthesized from the coupling of 4-amino-piperidine-1-carboxylic acid tert -butyl ester and 34,followed by reduction of the nitro group.Coupling of 38with the

appropriate

Figure 9.(a)Overlay of C-R traces of the crystal structure of 33bound into CDK2(green)with the crystal structures of Aurora A (PDB code 1OL6,yellow),insulin receptor (IR)kinase (1GAG,brown),MEK1(1S9J,purple),PDK1(1UU3,blue),and c-abl (1IEP,red),showing the clash of the kinases (except CDK2)with the piperidine of 33.Aurora A,IR kinase,MEK1,PDK1,and c-abl all have IC 50values >10μM.(b)CDK2cocrystal structures of compound 33.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water -ligand hydrogen bonds.(c)Molecular surface representation of CDK2with 33bound in the ATP binding site.The piperidine moiety is pointing out of the pocket toward solvent.The twisted 2,6-dichlorophenyl is toward the back of the pocket,with the two chlorine atoms ef?ciently ?lling small hydrophobic pockets.Table 6.In Vitro Antiproliferative Activity of 33in a Panel of Human Tumor Cell Lines

Origin Cell line

IC 50(nM)colon carcinoma HCT11682ovarian carcinoma A2780350?broblast

MRC 5

980MRC 5(nonproliferative)

>10000

Table 7.Mouse PK Data of Compound 33after iv Administration to BALB/c Mice a

t 1/2(h)Cl (ml/min/kg)

V ss (L/kg)0.68(0.28

46(21

1.6(0.9

a

Mean (SD for n )5

-7replicate studies.

Figure 10.Ef?cacy of 33in the early stage A2780ovarian carcinoma xenograft mouse model following repeated administration at 7.5mg/kg/dose given twice daily by the intraperitoneal route for 8days against a matched vehicle-dosed control.Tumor growth curves (SE for groups of n )12.Growth curves became signi?cantly different from control from day 5onward (*p <0.05,**p <0.001).The CDK2and cellular IC 50data quoted is the mean based on a minimum of two separate determinations.

4994Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.

carboxylic acids,then acidic deprotection of the Boc protected piperidine of 39,afforded compounds 30-33.During preclinical development,compound 33was synthesized by a six-step route (similar to Scheme 2)in multikilogram quantities with an overall yield of 80%and purity >99%,without the requirement for puri?cation by column chromatography.Conclusions

High-throughput X-ray crystallographic screening of fragment libraries was used to identify multiple hits that bound to CDK2.A number of these fragment hits were elaborated in parallel with the aid of detailed structural information enabling the project to take 3series into late stage lead optimization.Optimization of the indazole hit 6eventually led to the discovery of AT7519(33).The key compounds in the discovery of 33are summarized in Scheme 4.Important structural features identi?ed throughout the optimization process include (Figure 9b):(i)a donor -acceptor -donor interaction anchoring the molecule to the hinge region of CDK2(residues Glu81and Leu83),(ii)a water mediated hydrogen bond between the carbonyl of the 4-benzamide group and the backbone N -H of Asp145,(iii)stabilization of the twisted benzamide conformation by introduction of two ortho-substituents,(iv)introduction of the solubilizing aminopiperidine amide group resulted in improved hydrophobic ?lling of the region bounded by the backbone of the hinge and sidechains of residues Phe82,Ile10,Leu134,and Asp86and which led to selectivity over non-CDK kinases,improved cellular activity,and lower plasma clearance.During the fragment to lead process,structural data and LE were

used to ensure optimization was carried out ef?ciently.It quickly became apparent for indazole based compounds (e.g.,14)that molecular weight was being added for only small gains in potency.In contrast,introduction of the acetamide moiety to the pyrazole system (18)and stabilizing the twisted benzamide conformation (23)were very ef?cient methods of increasing enzyme activity.During later stage lead optimization,LE became a less important criterion as multiple parameters were being changed simultaneously.28is a good example of a compound showing a small decrease in enzyme activity,however,this is offset by a change in physicochemical properties leading to an improvement in cellular activity.

Compound 33is a potent,ligand ef?cient inhibitor of CDK2(IC 50)0.047μM;LE )0.42),with good activity against a range of human tumor cell lines.It has a good pro?le against the major cytochrome P450isoforms (<30%inhibition at 10μM for 1A2,2D6,3A4,2C9,2C19),has good aqueous thermodynamic solubility either as the acetate or hydrochloride salt (>25mg/ml in water or 0.9%saline),and its synthetic tractability makes it readily amenable to large scale synthesis.On the basis of these and further data (to be published in a later paper),compound 33was selected as a preclinical development candidate and subsequently entered clinical development.Experimental Section

Chemistry.Reagents and solvents were obtained from com-mercial suppliers and used without further puri?https://www.wendangku.net/doc/0117648311.html,pounds 5-8were obtained from commercial suppliers.Thin layer chro-

Scheme 1

a

a

Reagents and conditions:(a)4-?uoroaniline,EDC,HOBt,DMF;(b)10%Pd/C,EtOH,H 2;(c)Ac 2O,pyridine,or RCO 2H,EDC,HOBt,DMF,or DMSO.

Scheme 2

a

a

Reagents and conditions:(a)SOCl 2,EtOH;(b)10%Pd/C,EtOH,H 2;(c)2,6-di?uorobenzoic acid,EDC,HOBt,DMF;(d)NaOH,MeOH/H 2O (1:1);(e)RNH 2,EDC,HOBt,or HOAt,DMF,or DMSO;(f)saturated solution of HCl in EtOAc (where R contains a Boc protected amine).

Scheme 3

a

a

Reagents and conditions:(a)4-amino-piperidine-1-carboxylic acid tert-butyl ester,EDC,HOBt,DMF;(b)10%Pd/C,EtOH,H 2;(c)RCO 2H,EDC,DMF;(d)saturated solution of HCl in EtOAc.

Identi?cation of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164995

matography (TLC)analytical separations were conducted with E.Merck silica gel F-254plates of 0.25mm thickness and were visualized with UV light (254nM)and/or stained with iodine,potassium permanganate,or phosphomolybdic acid solutions fol-lowed by heating.Standard silica gel chromatography was employed as a method of puri?cation using the indicated solvent https://www.wendangku.net/doc/0117648311.html,pound puri?cation was also carried out using a Biotage SP4system using prepacked disposable SiO 2cartridges (4,8,19,38,40,and 90g sizes)with stepped or gradient elution at 5-40mL/min of the indicated solvent mixture.Proton nuclear magnetic resonance (1H NMR)spectra were recorded in the deuterated solvents speci?ed on a Bruker Avance 400spectrometer operating at 400MHz.Chemical shifts are reported in parts per million (δ)from the tetramethylsilane internal standard.Data are reported as follows:chemical shift,multiplicity (br )broad,s )singlet,d )doublet,t )triplet,m )multiplet),coupling constants (Hz),https://www.wendangku.net/doc/0117648311.html,pound purity and mass spectra were determined by a Waters Fractionlynx/Micromass ZQ LC/MS platform using the positive electrospray ionization technique (+ES),or an Agilent 1200SL-6140LC/MS system using positive -negative switching,both using a mobile phase of acetonitrile/water with 0.1%formic acid (see Supporting Information for experimental details).

4-(6-Chloropyrazin-2-ylamino)benzenesulphonamide (10).A suspension of 2,6-dichloropyrazine (100mg,0.67mmol)and 4-sulfamoyl aniline (115mg,0.67mmol)in NMP in a sealed tube was heated to 250°C under microwave irradiation for 8min.The mixture was diluted with water and extracted with EtOAc.The organic layer was ?ltered and evaporated under reduced pressure.The residue was puri?ed by preparative HPLC (method C)to give 10(11mg,6%).1H NMR (400MHz,DMSO-d 6):δ10.23(s,1H),8.26(s,1H),8.11(s,1H),7.79(s,4H),7.23(s,2H).LC/MS:R t )1.08min,[M +H]+285(method A).

5-Chloro-7-isopropylaminopyrazolo[1,5-a ]pyrimidine-3-carbo-nitrile (11).Isopropylamine (0.12mL,2.83mmol)and potassium carbonate (652mg,4.72mmol)were added to a solution of 5,7-dichloropyrazolo[1,5-a ]pyrimidine-3-carbonitrile (500mg, 2.36mmol)in acetonitrile (10mL).The resulting mixture was stirred at room temperature overnight,?ltered,and concentrated in vacuo to give 11(10mg,2%).1H NMR (400MHz,Me-d 3-OD):δ8.39(s,1H),6.50(s,1H),4.09-3.98(m,1H),1.39(d,J )6.4Hz,6H).LC/MS:R t )2.81min,[M +H]+236(method A).

5-(4-trans-Amino-cyclohexylamino)-7-isopropylamino-pyrazo-lo[1,5-a ]pyrimidine-3-carbonitrile formate (12).A solution of 5-chloro-7-isopropylamino-pyrazolo[1,5-a ]pyrimidine-3-carboni-trile (180mg,0.61mmol),trans -1,4-cyclohexanediamine (84mg 0.73mmol)and N ,N -diisopropylethylamine (160μL)in DMF (3.1mL)was subjected to microwave heating at 140°C for 1h.The reaction mixture was allowed to cool and then puri?ed by RP-HPLC (method C)to afford 12as a colorless solid (35mg,18%).1

H NMR (400MHz,DMSO-d 6):δ8.42(s,1H),8.23(s,1H),7.27-7.10(m,2H),5.41(s,1H),3.80(s,1H),3.55(s,2H),2.89(t,J )12.3Hz,1H),1.96(t,4H),1.46-1.32(m,2H),1.32-1.22(m,8H).LC/MS:R t )1.03min (RR),[M +H]+314(method B).

Scheme 4.Key Compounds in the Optimization of Fragment 6to the Clinical Candidate 33

a

a

IC 50data are for CDK2.

4996Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.

1H-Indazole-3-carboxylic Acid(4-Sulfamoylphenyl)amide(14). To1H-indazole-3-carboxylic acid(100mg,0.6mmol)in DMF(5

mL)was added EDC(142mg,0.72mmol),HOBt(100mg,0.72

mmol),and sulfanilimide(127mg,0.72mmol).The reaction was

heated at100°C for48h then cooled and evaporated.The residue

was partitioned between DCM and saturated NaHCO3solution,then

the resultant solid was collected by?ltration,washed with water

and DCM,and then dried.The crude material was puri?ed by RP-

HPLC(method C),and product containing fractions were combined

and evaporated to give14as a white solid(12mg,6%).1H NMR

(400MHz,DMSO-d6):δ13.87(s,1H),10.68(s,1H),8.24(d,J )8.1Hz,1H),8.09(d,J)8.3Hz,2H),7.80(d,J)8.3Hz,2H), 7.69(d,J)8.4Hz,1H),7.48(t,J)7.6Hz,1H),7.32(t,J)7.7

Hz,1H),7.26(s,2H).LC/MS:R t)2.72[M+H]+317(method

A).

1H-Pyrazole-3-carboxylic Acid Phenylamide(15).1H-Pyrazole-3-carboxylic acid(100mg,0.9mmol),EDC(211mg,1.1mmol), HOBt(147mg,1.1mmol),and aniline(0.089mL,0.98mmol) were dissolved in DMF(5mL)and the resulting solution was stirred for2days.The mixture was concentrated under reduced pressure and partitioned between water and EtOAc.The organic fraction was dried(MgSO4),?ltered,and evaporated in vacuo and the residue puri?ed by column chromatography to give15(97mg, 58%)as a white solid.1H NMR(400MHz,DMSO-d6):δ13.44 (s,1H),10.01(s,1H),7.93-7.84(s,1H),7.81(d,J)8.0Hz, 2H),7.33(dd,8.0,7.7Hz,2H),7.08(t,J)7.7Hz,1H),6.82(s, 1H).LC/MS:R t)0.98(RR)[M-H]-186(method B).

4-Nitro-1H-pyrazole-3-carboxylic Acid(4-Fluoro-phenyl)-amide (35).4-Nitro-1H-pyrazole-3-carboxylic acid34(10g;63.66mmol) was added to a stirred solution of4-?uoroaniline(6.7mL;70 mmol),EDC(14.6g;76.4mmol),and HOBt(10.3g;76.4mmol) in DMF(25mL)and then stirred at room temperature for16h. The solvent was removed by evaporation under reduced pressure and the residue triturated with EtOAc/saturated brine solution.The resultant yellow solid was collected by?ltration,washed with2M hydrochloric acid,and then dried under vacuum to give35(15.5 g,97%).1H NMR(400MHz,DMSO-d6):δ14.25(s,1H),10.73 (s,1H),8.96(s,1H),7.72(dd,J)8.4,4.9Hz,2H),7.22(t,J) 8.5Hz,2H).LC/MS:R t)2.92min,[M+H]+250(method A). 4-Amino-1H-pyrazole-3-carboxylic Acid(4-Fluoro-phenyl)-amide(17).Compound35(15g,60mmol)was dissolved in200 mL of EtOH,treated with1.5g of10%palladium on carbon under a nitrogen atmosphere,then hydrogenated at room temperature and pressure for16h.The catalyst was removed by?ltration through celite and the?ltrate evaporated.The crude product was dissolved in acetone/water(200mL,1:1),and after slow evaporation of the acetone,17was collected by?ltration as a brown crystalline solid

(8.1g,62%).1H NMR(400MHz,DMSO-d6):δ12.77(s,1H),

9.87(s,1H),7.88-7.76(m,2H),7.25-7.07(m,3H),4.69(s,2H).

LC/MS:R t)1.58min,[M+H]+221(method A).

4-Acetylamino-1H-pyrazole-3-carboxylic Acid(4-Fluoro-phen-yl)-amide(18).Compound17(500mg;2.27mmol)was dissolved in pyridine(5mL),treated with acetic anhydride(240μL,2.5 mmol),and then stirred at room temperature for16h.The solvent was removed by evaporation,and then dichloromethane(20mL) and2M hydrochloric acid(20mL)were added.The undissolved solid was collected by?ltration,washed with dichloromethane and water,and then dried under vacuum.The product18was isolated as an off-white solid(275mg,46%).1H NMR(400MHz,DMSO-d6):δ13.33(br s,1H),10.29(s,1H),9.54(s,1H),8.24(s,1H), 7.90-7.77(m,2H),7.18(t,J)8.7Hz,2H),2.12(s,3H).LC/ MS:R t)2.96min,[M+H]+263(method A).

4-(2-Hydroxyacetylamino)-1H-pyrazole-3-carboxylic Acid(4-?uorophenyl)amide(19).Hydroxyacetic acid(19mg,0.25mmol) was added to a solution of17(50mg,0.23mmol),EDC(53mg, 0.27mmol),and HOBt(37mg,0.27mmol)in DMF(5mL).The reaction mixture was stirred at room temperature for24h.The solvent was removed under reduced pressure.The residue was puri?ed by preparative LC/MS(method C)and,after evaporation of product-containing fractions,yielded19as a white solid(26mg, 41%).1H NMR(400MHz,DMSO-d6):δ13.45(s,1H),10.42(s,1H),10.37(s,1H),8.38-8.26(m,1H),7.92-7.79(m,2H), 7.25-7.12(m,2H),6.09(t,J)5.6Hz,1H),4.01(d,J)5.6Hz, 2H).LC/MS:R t)2.65min,[M+H]+278(method A).

The following compounds were synthesized using the same method as used for19:

4-Benzoylamino-1H-pyrazole-3-carboxylic Acid(4-Fluoro-phen-yl)-amide(22).Benzoic acid gave22as a pink solid(26mg,35%). 1H NMR(400MHz,DMSO-d6):δ13.55(br s,1H),10.56(s,1H),

10.50(s,1H),8.42(s,1H),7.96-7.81(m,4H),7.70-7.55(m, 3H),7.27-7.14(m,2H).LC/MS:R t)3.96min,[M+H]+324 (method A).

4-(2,6-Di?uoro-benzoylamino)-1H-pyrazole-3-carboxylic Acid (4-Fluoro-phenyl)-amide(23).2,6-Di?uorobenzoic acid in DMSO gave23as a cream-colored solid(25mg,30%).1H NMR(400 MHz,DMSO-d6):δ13.57(s,1H),10.42(s,1H),10.31(s,1H), 8.43(s,1H),7.88-7.77(m,2H),7.69-7.58(m,1H),7.27(dd,J

)8.6,8.5Hz,2H),7.17(dd,J)8.7,8.6Hz,2H).LC/MS:R

t 3.76min,[M+H]+361(method A).

4-Amino-1H-pyrazole-3-carboxylic Acid Ethyl Ester(36).Step 1.Thionyl chloride(2.9mL,39.8mmol)was slowly added to a mixture of34(5.68g,36.2mmol)in EtOH(100mL)at room temperature then stirred for48h.The mixture was evaporated in vacuo and re-evaporated with toluene to afford4-nitro-1H-pyrazole-3-carboxylic acid ethyl ester as a white solid(6.42g,96%).1H NMR(400MHz,DMSO-d6):δ14.4(s,1H),9.0(s,1H),4.4(q, 2H),1.3(t,3H).

Step2.A mixture of4-nitro-1H-pyrazole-3-carboxylic acid ethyl ester(6.40g,34.6mmol)and10%Pd/C(650mg)in EtOH(150 mL)was stirred under an atmosphere of hydrogen for20h.The mixture was?ltered through a plug of celite,evaporated under vacuum then re-evaporated with toluene to afford36as a pink solid (5.28g,98%).1H NMR(400MHz,DMSO-d6):δ12.7(s,1H), 7.1(s,1H),4.8(s,2H),4.3(q,2H),1.3(t,3H)(method A).

4-(2,6-Di?uoro-benzoylamino)-1H-pyrazole-3-carboxylic Acid (37).A mixture of2,6-di?uorobenzoic acid(6.32g,40.0mmol), 36(5.96g,38.4mmol),EDC(8.83g,46.1mmol),and HOBt (6.23g,46.1mmol)in DMF(100mL)was stirred at ambient temperature for6h.The mixture was reduced in vacuo,water added,and the solid formed collected by?ltration and air-dried to give4-(2,6-di?uoro-benzoylamino)-1H-pyrazole-3-carboxylic acid ethyl ester as the major component of a mixture(15.3g). LC/MS:R t)3.11min,[M+H]+295.Crude4-(2,6-di?uoro-benzoylamino)-1H-pyrazole-3-carboxylic acid ethyl ester(10.2 g)in2M aqueous NaOH/MeOH(1:1,250mL)was stirred at ambient temperature for14h.Volatile materials were removed in vacuo,water(300mL)added and the mixture adjusted to pH 5using1M aqueous HCl.The resultant precipitate was collected by?ltration and dried through azeotrope with toluene to afford 37as a pink solid(5.70g,83%from36).1H NMR(400MHz, DMSO-d6):δ13.60-13.30(br s,1H),10.06(s,1H),8.25(s, 1H),7.68-7.54(m,1H),7.25(t,J)8.4Hz,2H).LC/MS:R t )2.33min(94%purity),[M+H]+267(method A).

4-(2,6-Di?uoro-benzoylamino)-1H-pyrazole-3-carboxylic Acid (trans-4-Amino-cyclohexyl)-amide(27).A mixture of37(100mg, 0.37mmol),(trans-4-amino-cyclohexyl)-carbamic acid tert-butyl ester(98mg,0.46mmol),EDC(86mg,0.45mmol),and HOBt (60mg,0.45mmol)in DMSO(5mL)was stirred at ambient temperature for16h.The mixture was reduced in vacuo,then the residue taken up in CH2Cl2and washed successively with saturated aqueous sodium bicarbonate,water,and brine.The organic portion was dried(MgSO4),?ltered,and the solvent reduced in vacuo.Trituration of the resulting solid with CH2Cl2 gave27,protected with an N-tert-butoxycarbonyl(t-Boc)group. This was removed by treatment with saturated EtOAc/HCl at room temperature for1h.The solid that precipitated out of the reaction mixture was?ltered off,washed with ether,and then dried to give27(14mg,10%).1H NMR(400MHz,Me-d3-OD):δ8.45(s,1H),8.36(s,1H),7.63-7.57(m,1H),7.16(t, J)8.6Hz,2H), 3.91-3.84(m,1H), 3.18-3.11(m,1H), 2.16-2.05(m,4H),2.03(s,1H),1.61-1.50(m,4H).LC/MS: R t)1.75min,[M+H]+364(method A).

Identi?cation of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164997

The following compounds were synthesized in an analogous manner to27:

4-(2,6-Di?uoro-benzoylamino)-1H-pyrazole-3-carboxylic Acid Piperidin-4-ylamide(28).4-Amino-piperidine-1-carboxylic acid tert-butyl ester gave28(62mg,48%).1H NMR(400MHz, DMSO-d6):δ13.49(s,1H),10.38(s,1H),9.08(br d,1H),8.69 (br s,2H),8.32(s,1H),7.69-7.58(m,1H),7.27(t,J)8.6 Hz,2H),4.11-3.96(m,1H),3.28(d,2H),3.01-2.88(m,2H), 2.00-1.75(m,4H).LC/MS:R t)1.57min,[M+H]+350 (method A).

4-(2,6-Di?uoro-benzoylamino)-1H-pyrazole-3-(S)-carboxylic Acid Piperidin-3-(S)-ylamide Hydrochloride(29).Using HOAt instead of HOBt,3-(S)-amino-piperidine-1-carboxylic acid tert-butyl ester gave29(55mg,43%).1H NMR(400MHz,Me-d3-OD):δ8.37(s,1H),8.35(s,1H),7.65-7.56(m,1H),7.17(t,J) 8.6Hz,2H),4.32-4.22(m,1H),3.49(dd,J)12.2,4.1,1H), 3.36(s,1H),3.08-2.94(m,2H),2.15-2.02(m,2H),1.92-1.73 (m,2H).LC/MS:R t)1.76min,[M+H]+350(method A). 4-[(4-Amino-1H-pyrazole-3-carbonyl)-amino]-piperidine-1-car-boxylic Acid tert-Butyl Ester(38).

Step 1.A solution of34(7.3g,45.8mmol),4-amino-piperidine-1-carboxylic acid tert-butyl ester(10.2mg,51mmol), EDC(10.7g,55.8mmol),and HOAt(7.5g,55.8mmol)in DMF (100mL),was stirred at room temperature for16h.The solvent was then removed by evaporation under reduced pressure and the residue triturated with water(250mL).The resultant cream solid was collected by?ltration,washed with water,and then dried under vacuum to give4-[(4-nitro-1H-pyrazole-3-carbonyl)-amino]-piperidine-1-carboxylic acid tert-butyl ester(13.05g, 84%).1H NMR(400MHz,DMSO-d6):δ12.53(s,1H),7.67(d, J)8.4Hz,1H),7.10(s,1H),4.60-4.52(m,1H),3.99-3.83 (b m,4H),2.88-2.75(m,2H),1.74-1.68(m,2H),1.52-1.37 (m,11H).LC/MS:R t)2.50min,[M+H]+340(method A). Step 2.4-[(4-Nitro-1H-pyrazole-3-carbonyl)-amino]-piperi-dine-1-carboxylic acid tert-butyl ester(13.05g,38.4mmol)was dissolved in EtOH(300mL)and DMF(75mL),treated with 10%palladium on carbon(500mg)and then hydrogenated at room temperature and pressure for16h.The catalyst was removed by?ltration through celite,the?ltrate evaporated and re-evaporated with toluene.The crude material was puri?ed by ?ash column chromatography eluting with EtOAc then2% MeOH/EtOAc then5%MeOH/EtOAc.Product containing fractions were combined and evaporated to give38(8.78g,74%) as a brown foam.1H NMR(400MHz,DMSO-d6):δ12.53(s, 1H),7.67(d,J)8.4Hz,1H),7.10(s,1H),4.60-4.50(m, 1H),3.98-3.81(m,4H),2.87-2.81(m,2H),1.76-1.66(m, 2H),1.54-1.35(m,11H).LC/MS:R t)1.91min,[M+H]+ 310(method A).

Compound33was Made Using the Following General Method. To a stirred solution of38(0.23mmol),EDC(52mg;0.27 mmol),and HOBt(37mg;0.27mmol)in DMF(5mL)was added the corresponding carboxylic acid(0.25mmol),and the mixture was then left at room temperature for16h.The reaction mixture was evaporated and the residue puri?ed by?ash column chromatography or preparative LC/MS.The compound was treated with saturated EtOAc/HCl and stirred at room temperature for1h.The precipitated solid was?ltered off,washed with ether, and then dried to give the required product.

4-(2,6-Dichloro-benzoylamino)-1H-pyrazole-3-carboxylic Acid Piperidin-4-ylamide Hydrochloride(33).2,6-Dichlorobenzoic acid gave33(64mg,73%).1H NMR(400MHz,Me-d3-O D):δ8.37 (s,1H),7.57-7.43(m,3H),4.22-4.08(m,1H),3.53-3.40(m, 2H),3.22-3.07(m,2H),2.25-2.12(m,2H),1.99-1.80(m, 2H).LC/MS:R t)1.87min,[M+H]+383(method A). Crystallography.Crystals of CDK2were produced using published protocols.47,48Soaking of ligands into CDK2crystals, data collection,ligand?tting,structure re?nement,and structure rebuilding were performed using methods described by Hartshorn et al.1

Biological Assays and DMPK studies.Detailed experimental details can be found in the Supporting Information.

Acknowledgment.We thank Emma Vickerstaffe and Charlotte Grif?ths-Jones for writing the experimental details, Miles Congreve,Martyn Frederickson,Emma Vickerstaffe, Michelle Jones,and Chris Murray for proof reading,and David Rees,Nicola Wallis,and Neil Thompson for useful discussions.We are also grateful to Molecular Imaging Research Inc(Ann Arbor,MI),particularly W.R.Leopold, III,and Erin Trachet,for conducting the xenograft studies using SCID mice.

Supporting Information Available:In vitro kinase selectivity data;detailed descriptions of HPLC methods;HPLC purity analysis of?nal compounds;NMR spectra and HPLC traces for compounds10,12,14,15,18,22,23,28,33;further synthetic chemistry experimental;experimental details for biological assays and DMPK studies.This material is available free of charge via the Internet at https://www.wendangku.net/doc/0117648311.html,.

References

(1)Hartshorn,M.J.;Murray,C.W.;Cleasby,A.;Frederickson,M.;Tickle,

I.J.;Jhoti,H.Fragment-Based Lead Discovery Using X-ray Crystal-

lography.J.Med.Chem.2005,48,403–413.

(2)Gill,A.L.;Frederickson,M.;Cleasby,A.;Woodhead,S.J.;Carr,

M.G.;Woodhead,A.J.;Walker,M.T.;Congreve,M.S.;Devine, L.A.;Tisi,D.;O’Reilly,M.;Seavers,L.C.A.;Davis,D.J.;Curry, J.;Anthony,R.;Padova,A.;Murray,C.W.;Carr,R.A.E.;Jhoti,H.

Identi?cation of Novel p38R MAP Kinase Inhibitors Using Fragment-Based Lead Generation.J.Med.Chem.2005,48,414–426.

(3)Jahnke,W.;Erlanson,D.A.Fragment-Based Approaches in Drug

Disco V ery;Wiley:Weinheim,Germany,2007.

(4)Congreve,M.;Chessari,G.;Tisi, D.;Woodhead, A.J.Recent

developments in fragment-based drug discovery.J.Med.Chem.2008, 51,3661–3680.

(5)Ciulli,A.;Abell,C.Fragment-based approaches to enzyme inhibition.

Curr.Opin.Biotechnol.2007,18,489–496.

(6)Congreve,M.;Murray,C.W.;Carr,R.;Rees,D.C.Fragment-based

lead discovery.In Annual Reports in Medicinal Chemistry;Elsevier Inc.:New York,2007;pp431-448.

(7)Hajduk,P.J.;Greer,J.A.decade of fragment-based drug design:

strategic advances and lessons learned.Nat.Re V.Drug Disco V ery2007, 6,211–219.

(8)Lesuisse,D.;Lange,G.;Deprez,P.;Bernard,D.;Schoot,B.;Delettre,

G.;Marquette,J.P.;Broto,P.;Jean-Baptiste,V.;Bichet,P.;Sarubbi,

E.;Mandine,E.SAR and X-ray.A new approach combining fragment-

based screening and rational drug design:application to the discovery of nanomolar inhibitors of Src SH2.J.Med.Chem.2002,45,2379–2387.

(9)Lepre,C.A.;Moore,J.M.;Peng,J.W.Theory and applications of

NMR-based screening in pharmaceutical research.Chem.Re V.2004, 104,3641–3676.

(10)Neumann,T.;Junker,H.D.;Schmidt,K.;Sekul,R.SPR-based

fragment screening:advantages and applications.Curr.Top.Med.

Chem.2007,7,1630–1642.

(11)Hann,M.M.;Leach,A.R.;Harper,G.Molecular complexity and its

impact on the probability of?nding leads for drug discovery.J.Chem.

https://www.wendangku.net/doc/0117648311.html,put.Sci.2001,41,856–864.

(12)Hopkins,A.L.;Groom,C.R.;Alex,A.Ligand ef?ciency:a useful

metric for lead selection.Drug Disco V ery Today2004,9,430–431.

(13)Sherr,C.J.Cancer Cell Cycles.Science1996,274,672–1677.

(14)Grana,X.;Reddy,E.P.Cell cycle control in mammalian cells:role

of cyclins,cyclin-dependent kinases(CDKs),growth suppressor genes and cyclin-dependent kinase inhibitors(CKIs).Oncogene1995,11, 211–9.

(15)Morgan,D.Principles of CDK regulation.Nature1995,374,131–

134.

(16)Hall,M.;Peters,G.Genetic alterations of cyclins,cyclin dependent

kinases and Cdk inhibitors in human cancer.Ad V.Cancer Res.1996, 68,67–108.

(17)Van den Heuvel,S.;Harlow,E.Distinct roles for cyclin-dependent

kinases in cell cycle control.Science1993,262,2050–2054. (18)Malumbres,M.;Barbacid,M.To cycle or not to cycle:a critical

decision in cancer.Nat.Re V.Cancer2001,1,222–231.

(19)Ortega,S.;Malumbres,M.;Barbacid,M.Cyclin D-dependent kinases,

INK4inhibitors and cancer.Biochim.Biophys.Acta2002,602,73–

87.

(20)Weinberg,R.A.The retinoblastoma protein and cell cycle control.

Cell1995,81,323–330.

4998Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.

(21)Zhao,J.;Dynlacht,B.;Imai,T.;Hori,T.;Harlow,E.Expression of

NPAT,a novel substrate of cyclin E-CDK2,promotes S-Phase entry.

Genes De V.1998,12,456–461.

(22)Zhao,J.;Kennedy,B.K.;Lawrence,B.D.;Barbie,D.A.;Matera,

A.G.;Fletcher,J.A.;Harlow,E.NPAT links cyclin E-CDK2to the

regulation of replication-dependent histone gene transcription.Genes De V.2000,14,2283–2297.

(23)Santoni-Rugiu, E.;Falck,J.;Mailand,N.;Bartek,J.;Lukas,J.

Involvement of Myc activity in a G1/S-promoting mechanism parallel to the pRb/E2F pathway.Mol.Cell.Biol.2000,20,3497–3509. (24)Obaya,A.J.;Kotenko,I.;Cole,M.D.;Sedivy,J.M.The proto-

oncogene cmyc acts through the cyclin-dependent kinase(CDK) inhibitor p27KIP1to facilitate the activation of CDK4/6and early G1 phase progression.J.Biol.Chem.2002,277,31263–31269. (25)Dynlacht, B.Regulation of transcription during the cell cycle.

Transcription Factors2001,85,112.

(26)De Falco,G.;Giordiano,A.CDK9:from basal transcription to cancer

and AIDS.Cancer Biol.Therap.2002,1,342–347.

(27)Cruz,J.C.;Tsai,L.A Jekyll and Hyde kinase:roles for CDK5in

brain development and disease.Curr.Opin.Neurobiol.2004,14,390–394.

(28)Berthet,C.;Aleem,E.;Coppola,V.;Tessarollo,L.;Kaldis,P.CDK2

knockout mice are viable.Curr.Biol.2003,13,1775–1785. (29)Tetsu,O.;McCormick,F.Proliferation of cancer cells despite CDK2

inhibition.Cancer Cell2003,3,233–245.

(30)Ortega,S.;Prieto,I.;Odajima,J.;Martin,A.;Dubus,P.;Sotillo,R.;

Barbero,J.L.;Malumbres,M.;Barbacid,M.Cycin-dependent kinase 2is essential for meiosis but not for mitotic cell division in mice.

Nat.Genet.2003,35,25–31.

(31)Geng,Y.;Yu,Q.;Sicinska,E.;Das,M.;Schneider,J.E.;Bhattacharya,

S.;Rideout,W.M.,III;Bronson,R.T.;Gardner,H.;Sicinski,P.Cyclin

E ablation in the mouse.Cell2003,114,431–443.

(32)Malumbres,M.;Sotillo,R.;Santamaria,D.;Galan,J.;Cerezo,A.;

Ortega,S.;Dubus,P.;Barbacid,M.Mammalian cells cycle without the D-type cyclin-dependent kinases CDK4and CDK6.Cell2004, 118,493–504.

(33)Sharma,S.P.;Sharma,R.;Tyagi,R.Inhibitors of cyclin dependent

kinases:useful targets for cancer treatment.Curr.Cancer Drug Targets 2008,8,53–75.

(34)Pevarello,P.;Villa,M.Cyclin-dependent kinase inhibitors:a survey

of the recent patent literature.Expert Opin.Ther.Pat.2005,15,675–703.

(35)Christian,B.A.;Grever,M.R.;Byrd,J.C.;Lin,T.S.Flavopiridol in

the treatment of chronic lymphocytic leukemia.Curr.Opin.Oncol.

2007,19,573–578.

(36)Fuse,E.;Kuwabara,T.;Sparreboom,A.;Sausville,E.A.;Figg,W.D.

Review of UCN-01development:A lesson in the importance of clinical pharmacology.J.Clin.Pharm.2005,45,394–403.

(37)Alvocidib:orphan drug status.U.S.Food and Drug Administration,

Committee for Orphan Medicinal Products84th Plenary Meeting, 2007.

(38)Meijer,L.;Bettayeb,K.;Galons,H.(R)-roscovitine(CYC202,

seliciclib).In Inhibitors of Cyclin-Dependent Kinases as Anti-Tumor Agents;CRC:Boca Raton,FL,2007;pp187-225.

(39)Misra,R.N.;Xiao,H.;Kim,K.S.;Lu,S.;Han,W.;Barbosa,S.A.;

Hunt,J.T.;Rawlins,D.B.;Shan,W.;Ahmed,S.Z.;Qian,L.;Chen,

B.;Zhao,R.;Bednarz,M.S.;Kellar,K.A.;Mulheron,J.G.;Batorsky,

R.;Roongta,U.;Kamath,A.;Marathe,P.;Ranadive,S.A.;Sack, J.S.;Tokarski,J.S.;Pavletich,N.P.;Lee,F.Y.F.;Webster,K.R.;

Kimball,S.D.N-(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase2.N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl] methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide(BMS-387032),a highly ef?cacious and selective antitumor agent.J.Med.Chem.2004, 47,1719–1728.(40)Toogood,P.L.;Harvey,P.J.;Repine,J.T.;Sheehan, D.J.;

VanderWel,S.N.;Zhou,H.;Keller,P.R.;McNamara,D.J.;Sherry,

D.;Zhu,T.;Brodfuehrer,J.;Choi,C.;Barvian,M.R.;Fry,D.W.

Discovery of a Potent and Selective Inhibitor of Cyclin-Dependent Kinase4/6.J.Med.Chem.2005,48,2388–2406.

(41)Hennequin,L.F.;Allen,J.;Breed,J.;Curwen,J.;Fennell,M.;Green,

T.P.;Lambert-van der Brempt,C.;Morgentin,R.;Norman,R.A.;

Olivier,A.;Otterbein,L.;Ple,P.A.;Warin,N.;Costello,G.N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine,a novel,highly selective,orally available,dual-speci?c c-Src/Abl kinase inhibitor.

J.Med.Chem.2006,49,6465–6488.

(42)Bramson,H.N.;Corona,J.;Davis,S.T.;Dickerson,S.H.;Edelstein,

M.;Frye,S.V.;Gampe,R.T.,Jr.;Harris,P.A.;Hassell,A.;Holmes, W.D.;Hunter,R.N.;Lackey,K.E.;Lovejoy,B.;Luzzio,M.J.;

Montana,V.;Rocque,W.J.;Rusnak,D.;Shewchuk,L.;Veal,J.M.;

Walker,D.H.;Kuyper,L.F.Oxindole-Based Inhibitors of Cyclin-Dependent Kinase2(CDK2):Design,Synthesis,Enzymatic Activities, and X-ray Crystallographic Analysis.J.Med.Chem.2001,44,4339–4358.

(43)Byth,K.F.;Culshaw,J.D.;Green,S.;Oakes,S.E.;Thomas,A.P.

Imidazo[1,2-a]pyridines.Part2:SAR and optimisation of a potent and selective class of cyclin-dependent kinase inhibitors.Bioorg.Med.

Chem.Lett.2004,14,2245–2248.

(44)Liao,J.Molecular recognition of protein kinase binding pockets for

design of potent and selective kinase inhibitors.J.Med.Chem.2007, 50,409–424.

(45)Barvian,M.;Boschelli,D.;Cossrow,J.;Dobrusin,E.;Fattaey,A.;

Fritsch,A.;Fry,D.;Harvey,P.;Keller,P.;Garrett,M.;La,F.;Leopold, W.;McNamara,D.;Quin,M.;Trumpp-Kallmeyer,S.;Toogood,P.;

Wu,Z.;Zhang,E.Pyrido[2,3-d]pyrimidin-7-one Inhibitors of Cyclin-Dependent Kinases.J.Med.Chem.2000,43,4606–4616.

(46)Honma,T.;Hayashi,K.;Aoyama,T.;Hashimoto,N.;Machida,T.;

Fukasawa,K.;Iwama,T.;Ikeura,C.;Ikuta,M.i.;Suzuki-Takahashi,

I.;Iwasawa,Y.;Hayama,T.;Nishimura,S.;Morishima,H.Structure-

Based Generation of a New Class of Potent Cdk4Inhibitors New de Novo Design Strategy and Library Design.J.Med.Chem.2001,44, 4615–4627.

(47)Meijer,L.;Borgne,A.;Mulner,O.;Chong,J.P.J.;Blow,J.J.;Inagaki,

N.;Inagaki,M.;Delcros,J.G.;Moulinoux,J.P.Biochemical and cellular effects of roscovitine,a potent and selective inhibitor of the cyclin-dependent kinases cdc2,cdk2,and cdk5.Eur.J.Biochem.1997, 243,527–536.

(48)Schulze-Gahmen,U.;De Bondt,H.L.;Kim,S.H.High-resolution

crystal structures of human cyclin-dependent kinase2with and without ATP:bound waters and natural ligand as guides for inhibitor design.

J.Med.Chem.1996,39,4540–4546.

(49)Brown,N.R.;Noble,M.E.M.;Endicott,J.A.;Johnson,L.N.The

structural basis for speci?city of substrate and recruitment peptides for cyclin-dependent kinases.Nat.Cell Biol.1999,1,438–443. (50)Lowe,E.D.;Tews,I.;Cheng,K.Y.;Brown,N.R.;Gul,S.;Noble,

M.E.M.;Gamblin,S.J.;Johnson,L.N.Speci?city Determinants of Recruitment Peptides Bound to Phospho-CDK2/Cyclin A.Biochem-istry2002,41,15625–15634.

(51)Nociari,M.M.;Shalev,A.;Benias,P.;Russo,C.A novel one-step,

highly sensitive?uorometric assay to evaluate cell-mediated cytotox-icity.J.Immunol.Methods1998,213,157–167.

(52)Tisi,D.;Chessari,G.;Woodhead,A.J.;Jhoti,H.Structural biology

and anticancer drug design.In Cancer Drug Design and Disco V ery;

Elsevier:New York,2008;pp91-106.

JM800382H

Identi?cation of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164999

如何写先进个人事迹

如何写先进个人事迹 篇一:如何写先进事迹材料 如何写先进事迹材料 一般有两种情况:一是先进个人,如先进工作者、优秀党员、劳动模范等;一是先进集体或先进单位,如先进党支部、先进车间或科室,抗洪抢险先进集体等。无论是先进个人还是先进集体,他们的先进事迹,内容各不相同,因此要整理材料,不可能固定一个模式。一般来说,可大体从以下方面进行整理。 (1)要拟定恰当的标题。先进事迹材料的标题,有两部分内容必不可少,一是要写明先进个人姓名和先进集体的名称,使人一眼便看出是哪个人或哪个集体、哪个单位的先进事迹。二是要概括标明先进事迹的主要内容或材料的用途。例如《王鬃同志端正党风的先进事迹》、《关于评选张鬃同志为全国新长征突击手的材料》、《关于评选鬃处党支部为省直机关先进党支部的材料》等。 (2)正文。正文的开头,要写明先进个人的简要情况,包括:姓名、性别、年龄、工作单位、职务、是否党团员等。此外,还要写明有关单位准备授予他(她)什么荣誉称号,或给予哪种形式的奖励。对先进集体、先进单位,要根据其先进事迹的主要内容,寥寥数语即应写明,不须用更多的文字。 然后,要写先进人物或先进集体的主要事迹。这部分内容是全篇材料

的主体,要下功夫写好,关键是要写得既具体,又不繁琐;既概括,又不抽象;既生动形象,又很实在。总之,就是要写得很有说服力,让人一看便可得出够得上先进的结论。比如,写一位端正党风先进人物的事迹材料,就应当着重写这位同志在发扬党的优良传统和作风方面都有哪些突出的先进事迹,在同不正之风作斗争中有哪些突出的表现。又如,写一位搞改革的先进人物的事迹材料,就应当着力写这位同志是从哪些方面进行改革的,已经取得了哪些突出的成果,特别是改革前后的.经济效益或社会效益都有了哪些明显的变化。在写这些先进事迹时,无论是先进个人还是先进集体的,都应选取那些具有代表性的具体事实来说明。必要时还可运用一些数字,以增强先进事迹材料的说服力。 为了使先进事迹的内容眉目清晰、更加条理化,在文字表述上还可分成若干自然段来写,特别是对那些涉及较多方面的先进事迹材料,采取这种写法尤为必要。如果将各方面内容材料都混在一起,是不易写明的。在分段写时,最好在每段之前根据内容标出小标题,或以明确的观点加以概括,使标题或观点与内容浑然一体。 最后,是先进事迹材料的署名。一般说,整理先进个人和先进集体的材料,都是以本级组织或上级组织的名义;是代表组织意见的。因此,材料整理完后,应经有关领导同志审定,以相应一级组织正式署名上报。这类材料不宜以个人名义署名。 写作典型经验材料-般包括以下几部分: (1)标题。有多种写法,通常是把典型经验高度集中地概括出来,一

人力资源结构分析理论介绍

人力资源结构分析 人力资源规划首先要进行人力资源结构分析。所谓人力资源结构分析也就是对企业现有人力资源的调查和审核,只有对企业现有人力资源有充分的了解和有效的运用,人力资源的各项计划才有意义。人力资源结构分析主要包括以下几个方面: (一)人力资源数量分析 人力资源规划对人力资源数量的分析,其重点在于探求现有的人力资源数量是否与企业机构的业务量相匹配,也就是检查现有的人力资源配量是否符合一个机构在一定业务量内的标准人力资源配置。在人力资源配置标准的方法运用上,通常有以下几种: 1、动作时间研究。动作时间研究指对一项操作动作需要多少时间,这个时间包括正常作业、疲劳、延误、工作环境配合、努力等因素。定出一个标准时间,再根据业务量多少,核算出人力的标准。 2、业务审查。业务审查是测定工作量与计算人力标准的方法,该方法又包括两种: (1)最佳判断法。该方法是通过运用各部门主管及人事、策划部门人员的经验,分析出各工作性质所需的工作时间,在判断出人力标准量。 (2)经验法。该方法是根据完成某项生产、计划或任务所消耗的人事纪录,来研究分析每一部门的工作负荷,再利用统计学上的平均数、标准差等确定完成某项工作所需的人力标准。 3、工作抽样。工作抽样又称工作抽查,是一种统计推论的方法。

它是根据统计学的原理,以随机抽样的方法来测定一个部门在一定时间内,实际从事某项工作所占规定时间的百分率,以此百分率来测定人力通用的效率。该方法运用于无法以动作时间衡量的工作。 4、相关与回归分析法。相关与回归分析法是利用统计学的相关与回归原理来测量计算的,用于分析各单位的工作负荷与人力数量间的关系。 有了人力标准的资料,就可以分析计算现有的人数是否合理。如不合理,应该加以调整,以消除忙闲不均的现象。 (二)人员类别的分析 通过对企业人员类别分析,可现实一个机构业务的重心所在。它包括以下两种方面的分析: 1、工作功能分析。一个机构内人员的工作能力功能很多,归纳起来有四种:业务人员、技术人员、生产人员和管理人员。这四类人员的数量和配置代表了企业内部劳力市场的结构。有了这项人力结构分析的资料,就可研究各项功能影响该结构的因素,这些因素可能包括以下几个方面:企业处在何种产品或市场中,企业运用何种技能与工作方法,劳力市场的供应状况如何等。 2、工作性质分析。按工作性质来分,企业内部工作人员又可分为两类:直接人员和间接人员。这两类人员的配置,也随企业性质不同而有所不同。最近的研究发现,一些组织中的间接人员往往不合理的膨胀,该类人数的增加与组织业务量增长并无直接联系,这种现象被称为“帕金森定律”。

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

最新小学生个人读书事迹简介怎么写800字

小学生个人读书事迹简介怎么写800字 书,是人类进步的阶梯,苏联作家高尔基的一句话道出了书的重要。书可谓是众多名人的“宠儿”。历来,名人说出关于书的名言数不胜数。今天小编在这给大家整理了小学生个人读书事迹,接下来随着小编一起来看看吧! 小学生个人读书事迹1 “万般皆下品,惟有读书高”、“书中自有颜如玉,书中自有黄金屋”,古往今来,读书的好处为人们所重视,有人“学而优则仕”,有人“满腹经纶”走上“传道授业解惑也”的道路……但是,从长远的角度看,笔者认为读书的好处在于增加了我们做事的成功率,改善了生活的质量。 三国时期的大将吕蒙,行伍出身,不重视文化的学习,行文时,常常要他人捉刀。经过主君孙权的劝导,吕蒙懂得了读书的重要性,从此手不释卷,成为了一代儒将,连东吴的智囊鲁肃都对他“刮目相待”。后来的事实证明,荆州之战的胜利,擒获“武圣”关羽,离不开吕蒙的“运筹帷幄,决胜千里”,而他的韬略离不开平时的读书。由此可见,一个人行事的成功率高低,与他的对读书,对知识的重视程度是密切相关的。 的物理学家牛顿曾近说过,“如果我比别人看得更远,那是因为我站在巨人的肩上”,鲜花和掌声面前,一代伟人没有迷失方向,自始至终对读书保持着热枕。牛顿的话语告诉我们,渊博的知识能让我们站在更高、更理性的角度来看问题,从而少犯错误,少走弯路。

读书的好处是显而易见的,但是,在社会发展日新月异的今天,依然不乏对读书,对知识缺乏认知的人,《今日说法》中我们反复看到农民工没有和用人单位签订劳动合同,最终讨薪无果;屠户不知道往牛肉里掺“巴西疯牛肉”是犯法的;某父母坚持“棍棒底下出孝子”,结果伤害了孩子的身心,也将自己送进了班房……对书本,对知识的零解读让他们付出了惨痛的代价,当他们奔波在讨薪的路上,当他们面对高墙电网时,幸福,从何谈起?高质量的生活,从何谈起? 读书,让我们体会到“锄禾日当午,汗滴禾下土”的艰辛;读书,让我们感知到“四海无闲田,农夫犹饿死”的无奈;读书,让我们感悟到“为报倾城随太守,西北望射天狼”的豪情壮志。 读书的好处在于提高了生活的质量,它填补了我们人生中的空白,让我们不至于在大好的年华里无所事事,从书本中,我们学会提炼出有用的信息,汲取成长所需的营养。所以,我们要认真读书,充分认识到读书对改善生活的重要意义,只有这样,才是一种负责任的生活态度。 小学生个人读书事迹2 所谓读一本好书就是交一个良师益友,但我认为读一本好书就是一次大冒险,大探究。一次体会书的过程,真的很有意思,咯咯的笑声,总是从书香里散发;沉思的目光也总是从书本里透露。是书给了我启示,是书填补了我无聊的夜空,也是书带我遨游整个古今中外。所以人活着就不能没有书,只要爱书你就是一个爱生活的人,只要爱书你就是一个大写的人,只要爱书你就是一个懂得珍惜与否的人。可真所谓

蛋白质结构分析原理及工具-文献综述

蛋白质结构分析原理及工具 (南京农业大学生命科学学院生命基地111班) 摘要:本文主要从相似性检测、一级结构、二级结构、三维结构、跨膜域等方面从原理到方法再到工具,系统地介绍了蛋白质结构分析的常用方法。文章侧重于工具的列举,并没有对原理和方法做详细的介绍。文章还列举了蛋白质分析中常用的数据库。 关键词:蛋白质;结构预测;跨膜域;保守结构域 1 蛋白质相似性检测 蛋白质数据库。由一个物种分化而来的不同序列倾向于有相似的结构和功能。物种分化后形成的同源序列称直系同源,它们通常具有相似的功能;由基因复制而来的序列称为旁系同源,它们通常有不同的功能[1]。因此,推测全新蛋白质功能的第一步是将它的序列与进化上相关的已知结构和功能的蛋白质序列比较。表一列出了常用的蛋白质序列数据库和它们的特点。 表一常用蛋白质数据库 网址可能有更新 氨基酸替代模型。进化过程中,一种氨基酸残基会有向另一种氨基酸残基变化的倾向。氨基酸替代模型可用来估计氨基酸替换的速率。目前常用的替代模型有Point Accepted Mutation (PAM)矩阵、BLOck SUbstitution Matrix (BLOSUM)矩阵[2]、JTT模型[3]。 序列相似性搜索工具。序列相似性搜索又分为成对序列相似性搜索和多序列相似性搜索。成对序列相似性搜索通过搜索序列数据库从而找到与查询序列相似的序列。分为局部联配和全局联配。常用的局部联配工具有BLAST和SSEARCH,它们使用了Smith-Waterman 算法。全局联配工具有FASTA和GGSEARCH,基于Needleman-Wunsch算法。多序列相似性搜索常用于构建系统发育树,这里不阐述。表二列举了常用的成对序列相似性比对搜索工具

结构动力分析

【结构工程的软件时代】 结构工程已全面进入软件时代,结构工程师要从繁琐的重复劳动中解脱出来,培养结构概念和体系,锻炼结构整体思维。 《结构概念和体系》是国际著名的结构大师林同炎广为流传的著作。相信大多数从事建筑结构的工程人员都或多或少读过这本书。其实,这本书可以说是结构工程师的必修课。从事结构工作,很重要的一点就是在工作中培养结构概念体系和整体性思维的方法。这对于结构工程师来讲,是十分重要的。 如今的软件技术已相当发达,很多繁琐的工作都可以通过软件完成,甚至于智能化到了“一键式完成”的地步。设想,如果在软件再这么智能化而且功能强大下去,到时候,只要输入基本的设计参数和经济指标,按一个回车键,软件就将建筑方案设计、结构方案设计、施工图设计全部一条线完成出来了,那么对结构工程师来说不是一场灾难嘛。软件取代所有主要工作,技术人员不就要下岗了啊。所以,我认为,从一个角度来讲,结构工程软件时代的到来,意味着结构工程师的一场“危机”。如何在这场即将到来的危机面前“明哲保身”,做软件所不能做到的事情是很关键和重要的,什么最关键而重要,我认为就是结构的概念和体系思维,这个才是将来结构工程师的价值所在,而这恰恰是软件所难以做到的。 闲话暂放,言归正传。这篇博客将粗浅地探讨结构动力学问题的概念和体系问题。之所以关注结构动力学问题,一是因为结构静力学研究已比较成熟,林同炎前辈的《结构概念和体系》一书中已阐明很完善精辟了,二是因为现阶段工程结构抗震问题是研究的热点和前沿,这个时代里不懂工程抗震概念的结构工程师很难成为一个好工程师。 构件→结构→结构体系,整体性思维,需要工程实践的锻炼以及不断思考的积累。在实践中,反复向自己提问是培养结构概念的一个好方法。比如,问自己什么叫振型分解法?有哪些假定?什么叫时程分析法?有哪些优缺点?……这样积累下来,很多概念就越辩越明,结构的概念也就逐渐得到建立。 【结构动力分析的分类】 结构动力分析主要包括:特征值分析、反应谱分析、时程分析三大块。特征值分析也称结构自振特性分析,主要求解结构的自振周期和振型向量。反应谱分析基于振型分解反应谱理论,是一种工程上最常用的计算地震作用下结构动力响应方法,但这种方法只限于线弹性结构,弹塑性阶段振型分解法不再适用。时程分析包括线弹性时程分析和弹塑性时程分析两大类,与振型分解法的主要区别在于采用实测的地震波输入结构计算结构的响应,弹塑性时程分析具体还可分为静力弹塑性时程分析(也称Pushover分析)和动力弹塑性时程分析两类。 上述结构动力分析中,特征值分析和反应谱分析比较常用。而时程分析一般仅针对重要建筑以及体型非常复杂的建筑。小震水准下可进行结构线弹性时程分析,大震水准下需要采用结构弹塑性时程分析方法。现阶段,弹塑性时程分析还属于工程上比较前沿的分析内容,还属于一部分实力较强的设计院和科研机构的“专利业务”。当然,我认为随着结构技术人员水平的不断提高,以及软件技术的发达,结构弹塑性时程分析在将来将会越来越普及,甚至成为结构设计人员的“家常便饭”。 【特征值分析】 特征值分析也称结构自振特性分析,因为在数学上这个问题属于齐次线性方程组特征值的求解问题,故亦称特征值分析。其目的是求解结构的自振周期和振型。以前曾经碰到这样一个很有意思的概念问题:结构的阻尼比越大,那么结构的自振周期是减小还是增大呢?概念不清就很容易产生混乱。其实,结构的自振特性均是指无阻尼自由振动的特性值,因此不存在阻尼的影响问题。还有一个问题就是什么是振型?虽然我们经常提振型这个概念,不少人一时半会答不上来。从概念上讲,振型是结构发生无阻尼自由振动时各质点的相对位移,

社会调查报告的基本结构好方式

社会调查报告的基本结构好方式 具体事实、统计数据、文字应简明、准确,条理分明,也可兼用数字、表格、图示说明。 2、分析部分:重点分析所调查事情或现象的产生背景、原因、实质,条分析缕,有事件有依据,抓住问题的实质、规律,揭示出其重要意义或危害性,给人印象深刻,提醒世人或领导注意。 3、建议部分:在有力的分析下,根据实际情况,提出解决问题的建议,为有关部门恰当处理提供参考。(四)结语:总结全文、深化主体、警策世人,也可在建议部分结束 社会调查报告的结构方式 (一)纵式结构:按照事情发生、发展的先后顺序安排材料,即根据事件发展过程的先后次序或按调查的顺序安排结

构层次。有些反映新生事物的调查报告即采用此种结构。有些揭露问题的调查报告,有时也要按调查的经过或事件本身演变的顺序反映。如果是针对某一件事情,通常可采用这种结构方式,如《某某贩卖毒犯罪调查》、《某某公司不正当广告炒作的调查》。 (二)横式结构:即把调查得来的情况、经验、问题等,分成几个部分并列结构,分别冠以小标题或序号,从不同的方面围绕全文中心叙述说明。这种结构多适应于反映情况、介绍经验或研究问题的调查报告。根据材料的内容、特点、性质的不同,进行分类处理,如果是针对某类社会现象,通常采用此种结构方式,如《关于中、小学实行强行补课的调查》、《关于独生子女问题的调查》,社会调查报告一般立足于某类社会现象,故这是常见的一种结构方法。 (三)纵横式结构:将上述两种方法结合起来,但应确定以某一种结构方式为主,另一种为辅的写作要求。 (四)对比式结构 (五)逻辑结构:即按各部分内容之间内在的逻辑联系来安排结构。这种结构多适用于总结典型经验,并进行一定的

武汉城市圈城市结构优化分析

武汉城市圈城市结构优化分析 从武汉城市圈的城市规模结构和功能结构两个方面构建了分析框架,对武汉城市圈的城市结构及建设思路做了初步的探讨,提出了武汉城市圈城市结构优化的措施。 标签:武汉城市圈;城市结构;优化 1 引言 武汉城市圈的概念是在2002年6月的湖北省第八次党代会上首次明晰的,武汉城市圈是以武汉为中心,由武汉及周边若干城市组成的一个经济联合体,主要指武汉以及在其100公里半径内的黄石、鄂州、孝感、黄冈、咸宁、仙桃、潜江、天门等8个城市构成的城市圈。 2武汉城市圈的城市规模结构分析及调整思路 2、1城市的等级规模结构现状 城市等级规模结构体系是指一个国家或区域内各类城市的规模层次与分布的总体构成,同时城市等级规模也反映了一个地区城市空间结构分布的平衡程度。城市的等级规模按照非农业人口数量划分为四等:100万以上的为特大城市、50—100万为大城市、20—50万为中等城市,20万以下的为小城市。 (1)按照城市规模划分的标准,武汉城市圈内特大城市、大城市的数量较少,大部分城市为人口数量20—50万的中等城市,这样就出现了断层现象,是一种不利于整体发展的模式。 (2)核心城市的城市首位度过高。城市首位度是指一个国家或区域内最大城市与第二位城市人口的比值。武汉城市圈的首位度为7.68,即武汉与次级核心城市人口规模差别较大,这样在某种程度上不利于城市圈的整体发展。 (3)各个规模等级的城市人口存在着明显的不平衡现象,其中仅武汉市的人口就占了武汉城市圈内总人口的65.6%。 2、2武汉城市圈城市规模结构的调整思路 根据武汉城市圈9座城市的规模分布图示,如果现有城市规模分布整体向左移动,则其城市规模分布趋势(虚曲线)与城市规模效益曲线基本一致,圈内城市等级规模结构将更符合城市规模效益原则。这种圈内城市等级体系的优化将大大促进都市圈整体功能的有效发挥。因此从整体上说,武汉城市圈需要在完善城市等级规模层次的基础上,实现大中小城市等级规模的整体向上跃升,形成以大型城市为核心(区域中心城市),特大和大城市为骨干(区域次中心城市),以中小城

个人先进事迹简介

个人先进事迹简介 01 在思想政治方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.利用课余时间和党课机会认真学习政治理论,积极向党组织靠拢. 在学习上,xxxx同学认为只有把学习成绩确实提高才能为将来的实践打下扎实的基础,成为社会有用人才.学习努力、成绩优良. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意识和良好的心理素质和从容、坦诚、乐观、快乐的生活态度,乐于帮助身边的同学,受到师生的好评. 02 xxx同学认真学习政治理论,积极上进,在校期间获得原院级三好生,和校级三好生,优秀团员称号,并获得三等奖学金. 在学习上遇到不理解的地方也常常向老师请教,还勇于向老师提出质疑.在完成自己学业的同时,能主动帮助其他同学解决学习上的难题,和其他同学共同探讨,共同进步. 在社会实践方面,xxxx同学参与了中国儿童文学精品“悦”读书系,插画绘制工作,xxxx同学在班中担任宣传委员,工作积极主动,认真负责,有较强的组织能力.能够在老师、班主任的指导下独立完成学院、班级布置的各项工作. 03 xxx同学在政治思想方面积极进取,严格要求自己.在学习方面刻苦努力,不断钻研,学习成绩优异,连续两年荣获国家励志奖学金;作

为一名学生干部,她总是充满激情的迎接并完成各项工作,荣获优秀团干部称号.在社会实践和志愿者活动中起到模范带头作用. 04 xxxx同学在思想方面,积极要求进步,为人诚实,尊敬师长.严格 要求自己.在大一期间就积极参加了党课初、高级班的学习,拥护中国共产党的领导,并积极向党组织靠拢. 在工作上,作为班中的学习委员,对待工作兢兢业业、尽职尽责 的完成班集体的各项工作任务.并在班级和系里能够起骨干带头作用.热心为同学服务,工作责任心强. 在学习上,学习目的明确、态度端正、刻苦努力,连续两学年在 班级的综合测评排名中获得第1.并荣获院级二等奖学金、三好生、优秀班干部、优秀团员等奖项. 在社会实践方面,积极参加学校和班级组织的各项政治活动,并 在志愿者活动中起到模范带头作用.积极锻炼身体.能够处理好学习与工作的关系,乐于助人,团结班中每一位同学,谦虚好学,受到师生的好评. 05 在思想方面,xxxx同学积极向上,热爱祖国、热爱中国共产党,拥护中国共产党的领导.作为一名共产党员时刻起到积极的带头作用,利用课余时间和党课机会认真学习政治理论. 在工作上,作为班中的团支部书记,xxxx同学积极策划组织各类 团活动,具有良好的组织能力. 在学习上,xxxx同学学习努力、成绩优良、并热心帮助在学习上有困难的同学,连续两年获得二等奖学金. 在生活中,善于与人沟通,乐观向上,乐于助人.有健全的人格意 识和良好的心理素质.

结构功能分析法

结构功能分析法 结构功能分析方法是社会研究中常用的一种理论分析方法。它的理论依据来源于社会学的一大理论流派——结构功能理论。在现代社会调查研究中,结构功能分析已成为一种广泛应用的理论分析方法。 结构功能理论认为,任何社会事物都是由一定组成部分或要素构成的,这些部分或要素组成了一个社会系统,它们之间的相对稳定的联系就是这一系统的结构。每一个系统要存在和发展下去,就必须满足一些基本的条件或需求,这些条件或需求是由系统的某一特定部分来满足的,换句话说,系统组成部分担负着特定的社会功能。例如,在民族国家这个社会大系统中,生产组织的主要功能是提供物质产品;军事组织的功能是对外保卫国家、对内维持社会的稳定;政治组织的功能是确定国家的基本目标并组织各种力量以实现这些目标,等等。并且每一个民族国家的生存和发展,也离不开它的这些组成部分所发挥的社会功能。 总之,结构是构成事物各个要素之间所固有的相对稳定的组织方式或联结方式。功能是指构成事物的各个要素之间所发生的相互作用和影响。结构功能法就是通过考察事物的结构和功能来认识事物和分析事物的方法。 结构功能分析法的实施步骤: [1] 明确结构和功能的承载物,即分析对象 如犯罪问题中犯罪团伙,人事管理制度改革问题中的人事管理制度等等,并且应该进一步明确是就哪些方面进行分析。 [2]内部结构分析 即考察各组成要素间在形式上的排列和比例。例如分析犯罪团伙的内部结构,就要弄清谁是骨干,谁是随从;谁是唆使者,谁是被唆使者;谁是策划者,谁是执行者,考察罪犯在团伙中的地位排列,分清犯罪轻重,据此绳之以法。 [3]内部功能分析 即考察各组成要素之间的相互影响和相互作用。包括三项基本内容:一是稳定功能关系的性质,即分析一下有没有相互影响和作用,如果有,是一方影响和作用另一方,还是双方相互影响和作用。例如犯罪团伙的成员之间有没有相互间的利益满足,相互的制约和影响。 二是挖掘功能存在和建立的必要条件,即分析在满足什么样的条件时,要素间的相互影响和作用才能存在和建立起来。例如犯罪团伙之间的相互利益满足是在怎样的社会条件和犯罪团伙的内部条件的前提下才发生的。 三是找出满足功能的机制,即分析促使各个要素之间相互影响和作用的手段和方法。例如犯罪团伙中唆使者往往以许愿、表扬、斥责、恐吓等心理手段和分赃、赏赐、殴打、杀害等行为手段对被唆使者进行控制。 [4]外部功能分析 即考察现象整体对社会的影响和作用,也就是把研究对象和现象放在社会之中,考察

中国社会结构及发展分析

中国社会结构及发展分析 杨志罡10243022 信管1001 社会结构是指一个国家或地区的占有一定资源、机会的社会成员的组成方式与关系格局。改革开放以来,我国社会结构发生了深刻变化,这些变化主要表现在人口结构、家庭结构、就业结构、城乡结构和社会阶层结构等诸多方面。 从社会结构的变迁来看,新中国前30年的变化主要体现在如下几个方面:消灭了地主阶级,在农村进行土改,从而奠定了农村社会结构调整的基础;经过社会主义改造,个体劳动者的数量大大下降,民族资本家不复存在,个体劳动者由解放时的900万下降到1978年15万;随着工业化进程的发展,工人阶级扩充进程的序幕拉开。 当前中国的总体形势,可以概括为:经济高速发展,政治基本稳定,社会矛盾突显,文化繁而未荣。而在纷繁复杂的矛盾中,经济发展和社会发展不平衡、不协调应当是当前中国社会面临的突出矛盾和问题。 在中国社会发展的基本规律方面,中华民族在不同支流的交流融合过程中通过创造性的活动开创了文明古国而较早进入文明时代,并开拓创造出了一个疆域辽阔的大一统的多民族的东方大国和对世界产生了极其深远影响的光辉灿烂的中华古代文明。在长达两千年左右的历史长河里,中国一直是世界文明的极其重要的重心和中心。但是由于社会制度的天然缺憾,中国社会又较早地长期地陷入了以历史循环为特征的发展的沼泽地,因而从总体上来说发展非常缓慢。在西方国家由于资本主义生产方式确立与巩固而加快发展之际,中国落后了,中华民族落伍了。 鸦片战争以来,西方列强用炮舰政策打开了中国的大门。腐败无能的清政府面对帝国主义的侵略束手无策,只能割地赔款以图苟延残喘。西方列强不断加强对中国的侵略与掠夺,逐步控制了中国的经济命脉,攫取了筑路、开矿、海关等等中国主权,操纵了中国外交,从而把中国社会一步步推向半殖民地半封建社会的灾难深渊。中国人民经过长期艰苦斗争,最后,在中国共产党的领导下,组成了以社会主义为奋斗目标,以民主集中制为组织原则的革命力量,其在斗争中由于受到全体中国人民乃至整个中华民族的支持和拥护而不断发展壮大,因而,中国人民最终取得了中国革命的伟大胜利。 这就是说,历史已经证明,只有社会主义才能救中国。社会主义是中国实现顺利发展的必然选择。社会主义是中国近现代社会矛盾运动发展的必然结果,是实现中华民族独立与人民解放从而改变中国贫困落后面貌,实现中国社会顺利发展的必由之路,是现代中国的必然的历史选择。社会主义制度是实现民族振兴、国家富强、人民康乐的根本保证,社会主义制度体现和反映着中国各族人民的根本利益。 在中国社会的发展趋势方面,近代中国社会转型的发展趋势及其特征体现于近代中国的社会转型是从传统农业社会向近代工业社会的转变。在这一过程中,新旧结构的更替呈现多层面的交错运动态势,表现为五种发展趋势:中央政府权威削弱及其衰败化;在西方列强侵略下国家地位的边缘化;传统政治体系向近代政治体系演化的民主化;社会经济演变的市场化;国家与社会结构的二元化。五种趋势构成中国近代化的阻力与推力,使近代中国既表现为从传统农业国向近代工业国的转型,但又无法完成这一转型。造成这种状况的主要原因在中国社会内部,在于制度变革的滞后。从总体上看是从传统农业社会向近代工业社会的转变,伴随着这一转变的,是社会政治、经济、文化诸方面新旧结构的更替过程。但是,我们不能仅从西方现代化模式来解释和理解中国近代社会转型,因为近代中国的这一转型并非社会内

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

优秀党务工作者事迹简介范文

优秀党务工作者事迹简介范文 优秀党务工作者事迹简介范文 ***,男,198*年**月出生,200*年加入党组织,现为***支部书记。从事党务工作以来,兢兢业业、恪尽职守、辛勤工作,出色地完成了各项任务,在思想上、政治上同党中央保持高度一致,在业务上不断进取,团结同事,在工作岗位上取得了一定成绩。 一、严于律己,勤于学习 作为一名党务工作者,平时十分注重知识的更新,不断加强党的理论知识的学习,坚持把学习摆在重要位置,学习领会和及时掌握党和国家的路线、方针、政策,特别是党的十九大精神,注重政治理论水平的提高,具有坚定的理论信念;坚持党的基本路线,坚决执行党的各项方针政策,自觉履行党员义务,正确行使党员权利。平时注重加强业务和管理知识的学习,并运用到工作中去,不断提升自身工作能力,具有开拓创新精神,在思想上、政治上和行动上时刻同党中央保持高度一致。 二、求真务实,开拓进取 在工作中任劳任怨,踏实肯干,坚持原则,认真做好学院的党务工作,按照党章的要求,严格发展党员的每一个步骤,认真细致的对待每一份材料。配合党总支书记做好学院的党建工作,完善党总支建设方面的文件、材料和工作制度、管理制度等。

三、生活朴素,乐于助人 平时重视与同事间的关系,主动与同事打成一片,善于发现他人的难处,及时妥善地给予帮助。在其它同志遇到困难时,积极主动伸出援助之手,尽自己最大努力帮助有需要的人。养成了批评与自我批评的优良作风,时常反省自己的工作,学习和生活。不但能够真诚的指出同事的缺点,也能够正确的对待他人的批评和意见。面对误解,总是一笑而过,不会因为误解和批评而耿耿于怀,而是诚恳的接受,从而不断的提高自己。在生活上勤俭节朴,不铺张浪费。 身为一名老党员,我感到责任重大,应该做出表率,挤出更多的时间来投入到**党总支的工作中,不找借口,不讲条件,不畏困难,将总支建设摆在更重要的位置,解开工作中的思想疙瘩,为攻坚克难铺平道路,以支部为纽带,像战友一样团结,像家庭一样维系,像亲人一样关怀,践行入党誓言。把握机遇,迎接挑战,不负初心。

关于概念结构理论与构式语法说比较分析.

关于概念结构理论与构式语法说比较分析 作者:夏晓蓉时间:2010-1-19 11:19:00 论文关键词:概念结构理论构式语法论元结构体验哲学 论文摘要:本文在比较概念结构理论与构式语法说的基础上,指出:作为认知语言学的两个理论体系,它们有着各自鲜明甚至对立的观点,但是认知的共性使得它们解释语言现象时具有一定的相似之处。因此,两大理论并非截然对立,存在着合作的可能性。 1.引言 Jackendoff(1990)的词汇概念结构理论与Goldberg(1995)的构式语法是上个世纪九十年代认知语言学的重要理论体系,都运用了论元结构来说明语言中的一些特殊现象,动词和句式之间的关系是他们讨论和研究的中心。Jackendoff并没有明确提出“动词中心”的说法,但从他对句子的论元结构的描述不难看出,他的概念结构并没有摆脱生成语法的影子,句子的生成依然是论元插入动词的概念结构,再转化为句法结构的结果。与Jackendoff不同的是,Goldberg以构式(construction)的论元结构为研究中心,认为动词不能决定句子的生成,构式的意义才是构式生成的关键。 虽然他们研究的内容不同,一个是动词概念,一个是构式概念,但是这两者之间的关系是非常紧密的,在一定程度上,动词可以选择它能够出现的构式,同样构式也可以选择满足它的动词。而且,表明句子中动词和名词关系的论元结构在概念结构理论和构式语法中的运用都颇有新意。因此,本文想通过比较Jackendoff和Goldberg的理论方法和哲学基础,讨论这两个分别代表概念语义学和构式研究的理论之间的关系。 2.理论方法 Jackendoff用形式化的语言描述内在概念的空间关系,在生成语法学派中对语义的研究做出了很大的贡献。他的概念结构相当于语义结构,与句法和音系结构并行。Jackendoff摈弃了由表层结构映射到音系和语义结构的句法中心说,认为这三个层次是自主的结构,都具有同等的创造性,不存在从一个层次到另一个层次的派生,它们之间是对应关系而非派生关系,由对应规则(correspondence rules)联系起来。 构式是形式-意义的对应,不依赖动词,基本的句型都是构式的实例。每个

主要事迹简介怎么写(2020年最新)

主要事迹简介怎么写 概括?简要地反映?个单位(集体)或个?事迹的材料。简要事迹不?定很短,如果情况 多的话,也有?千字的。简要事迹虽然“简要”,但切忌语?空洞,写得像?学?期末鉴定。 ?应当以事实来说话。简要事迹是对某单位或个?情况概括?简要地反映情况,?如有三个??很突出,就写三个??,只是写某???时,要把主要事迹突出出来。 简要事迹?般来说,?少要包括两个??的内容。?是基本情况。简要事迹开头,往往要??段?字来表述?些基本情况。如写?个单位的简要事迹,应包括这个单位的?员、 承担的任务以及?段时间以来取得的主要成绩。如写个?的简要事迹,应包括该同志的性 别、出?年?、参加?作时间、籍贯、民族、?化程度以及何时起任现职和主要成绩。这 样上级组织在看了材料的开头,就会对这个单位或个?有?个基本印象。?是主要特点。 这是简要事迹的主体部分,最突出的事例有?个??就写成?块,并按照?定的逻辑关系进 ?排列,把同类的事例排在?起,?个??通常由?个?然段或?个?然段组成。 写作时,特别要注意以下四点: 1.?第三?称。就是把所要写的对象,是集体的?“他们”来表述,是个?的称之为“他(她)”。 (她)”,单位可直接写名称,个?可写其姓名。 为了避免连续出现?个“他们”或“他 2.掌握好时限。?论是单位或个?的简要事迹,都有?个时间跨度,既不要扯得太远,也不 要故意混淆时间概念,把过去的事当成现在的事写。这个时间跨度多长,要根据实际情况 ?定。如上级要某个同志担任乡长以来的情况就写他任乡长以来的事迹;上级要该同志两年 来的情况,就写两年来的事迹。当然,有时为了需要,也可适当地写?点超过这个时间的 背景情况。 3.?点他?的语?。就是在写简要事迹时,可?些群众的语?或有关?员的语?,这样会给??种?动、真切的感觉,衬托出写作对象?较?的思想境界。在?他?语?时,可适当加?,但不能造假。 4.?事实说话。简要事迹的每?个??可分为多个层次,?个层次先??句话作为观点,再???两个突出的事例来说明。?事实说话时,要尽量把?个事例说完整,以给?留下深 刻印象。

郑州市城市形态及空间结构分析

城市形态及空间结构分析 ——以郑州市为例 城市规划0902 祝相科200917020215 城市形态是城市建设和规划的重要依据,城市规划者的城市形态理念直接决定了城市规划的效果,以致影响城市的总体布局、城市发展的综合效果、交通组织和城镇群的合理分布,甚至关系到城市生产、生活质量、城市改造、城市合理发展方向等一系列重大问题。 城市空间是各种人类活动与功能组织在城市地域上的空间投影,是城市建设与发展的载体,城市空间结构的研究是城市发展战略规划的核心内容,城市的区域分析、定位研究以及发展目标的实现等研究最终均要落实到空间上。因此,城市空间结构的合理性对城市的可持续发展也尤为重要。 有学者认为城市结构与城市形态互为表里,城市结构表现为城市发展中的内在的动力支撑要素,城市形态则表现为城市发展的外部显性的状态和形式。城市空间结构只是城市结构的一部分,表达的是要素在空间组合上的关系,这种关系即为城市相互作用。城市结构实际上既决定了城市形态,也最终决定了城市空间结构。也就是说,城市空间结构就是能够通过城市相互作用体现为城市形态的那部分城市结构。 其实,目前对城市形态并没有形成统一的概念。纵观学者们对城市形态的理解和表述,从横的方面来看,城市形态具有物质和非物质两种表现形式,物质方面主要指城市各有形要素的空间布置方式,包括街道网的结构形式,各种功能的地域分异、城市土地利用模式和建筑环境以及中心城市和相邻城镇群组之间的空间位置关系和结构变化特征等;非物质的主要包括城市生活方式、文化观念和价值观念等所形成的城市社会精神面貌和城市文化特色。从纵的方面来看,城市形态并不是单一的,而是拼贴式的,是各个历史时期的文化积淀的汇合;城市形态不是一成不变的,它会随历史的变化而产生渐进式、碎片式的变化,通过这种渐变,既可以保持城市文化的延续,又能不断地更新。不过每一个不同时期,都会有一种反映时代特色的占主体的城市形态。 郑州市城市形态演变过程: 郑州市的城市形态经历 了“块状发展一点轴延伸一组 团分散-一体两翼”的过程, 城市的内部填充主要发生于 老城区与京广铁路线之间,井 向南北方向蔓延。而近20年 则是组团分散-一体两翼的转 变。并且随着城市规模的扩大, 两翼“生长臂”的不断延长, 中心城区的中心功能尤其需 要不断强化才能满足两翼生 长的要求。

结构动力学振型分析

MATALAB 作业 某三层钢筋混凝土结构,结构的各层特性参数为:第一层到第三层质量m 分别为2400kg ,1200kg ,1200kg ,第一层到第三层刚度k 分别为3.3*10^4N/m,1.1*10^4N/m,0.66^4N/m.。地震采用acc_ElCentro_0.34g ,采样周期为0.02。 M3=1200kg K3=0.66*10^4N/m. M2=1200kg K2=1.1*10^4N/m M1=2400kg K1=3.3*10^4N/m 用振型分解法求解结构地震反应的MATLAB 层序如下,编制该程序的程序框图以下所示 %振型分解法求解结构地震反应;主程序 clear 开始 输入地震参数和结构参数 计算结构振型与自振型频率 计算振型参与系数 计算单自由度体系的地震反应 求解结构的地震反应 输出结果 结束

clc %地震波数据 xs=2*0.287; dzhbo=load('acc_ElCentro_0.34g_0.02s.txt'); ag=dzhbo*0.01*xs; dt=0.02; ndzh=400; cn=3; %cn为结构的层数,即质点数 m0=[2.4 1.2 1.2]*1e+3; %结构各层质量 k0=[3.3 1.1 0.66]*1e+5; %结构各层刚度 l=diag(ones(cn)); m=diag(m0); %计算质量矩阵 [ik]=matrixju(k0,cn); %计算刚度矩阵 [x,d]=eig(ik,m); %结构动力特性求解 d=diag(sqrt(d)); %求解结构圆频率 for i=1:cn; [d1(i),j]=min(d); xgd(:,i)=x(:,j); d(j)=max(d)+1; end %以此循环对所求频率和振型进行排序w=d1; %所求自振频率 x=xgd; %所求结构主振型 a1=2*w(1)*w(2)*(0.05*w(2)-0.07*w(1))/(w(2)^2-w(1)^2); a2=2*(0.07*w(2)-0.05*w(1))/(w(2)^2-w(1)^2); for j=1:cn x(:,j)=x(:,j)/x(cn,j); znb0(j)=(a1+a2*w(j)^2)/2/w(j); zhcan(j)=(x(:,j))'*m*l/((x(:,j))'*m*x(:,j)); %求解振型参数 [dlt(j,:),dltacceler(j,:)]=zxzj(znb0(j),w(j),ag); end %求解结构各层的地震反应 for i=1:cn; disp1=0; accel1=0; for j=1:cn disp0=zhcan(j)*dlt(j,:)*x(i,j); accel0=zhcan(j)*dltacceler(j,:)*x(i,j); disp1=disp1+disp0; accel1=accel1+accel0; end disp(i,:)=disp1; accel(i,:)=accel1; end

相关文档
相关文档 最新文档