文档库 最新最全的文档下载
当前位置:文档库 › 插值法实验报告

插值法实验报告

插值法实验报告
插值法实验报告

实验二插值法

1、实验目的:

1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。

2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。

2、实验要求:

1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法;

2)编写上机实验程序,作好上机前的准备工作;

3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果);

4)分析和解释计算结果;

5)按照要求书写实验报告;

3、实验内容:

1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。

已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。

2) 求满足插值条件的插值多项式及余项

1)

4、题目:插值法

5、原理:

拉格郎日插值原理:

n次拉格朗日插值多项式为:L

n (x)=y

l

(x)+y

1

l

1

(x)+y

2

l

2

(x)+…+y

n

l

n

(x)

n=1时,称为线性插值,

L 1(x)=y

(x-x

1

)/(x

-x

1

)+y

1

(x-x

)/(x

1

-x

)=y

+(y

1

-x

)(x-x

)/(x

1

-x

)

n=2时,称为二次插值或抛物线插值,

L 2(x)=y

(x-x

1

)(x-x

2

)/(x

-x

1

)/(x

-x

2

)+y

1

(x-x

)(x-x

2

)/(x

1

-x

)/(x

1

-x

2

)+y

2

(x

-x

0)(x-x

1

)/(x

2

-x

)/(x

2

-x

1

)

n=i时,

Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n)

(X-X0)……(X-X i-1)(x-x i+1) ……(x-x n)

6、设计思想:

拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。

7、对应程序:

1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值

#include"stdio.h"

#define n 5

void main()

{

int i,j;

float x[n],y[n];

float x1;

float a=1;

float b=1;

float lx=0;

printf("\n请输入想要求解的X:\n x=");

scanf("%f",&x1);

printf("请输入所有点的横纵坐标:\n");

for(i=1;i

{

printf("x[%d]=",i);

scanf("%f",&x[i]);

printf("y[%d]=",i);

scanf("%f",&y[i]);

}

for(i=0;i

{

for(j=0;j

{

if(j!=i)

{

b=b*(x1-x[j]);

a=a*(x[i]-x[j]);

}

}

lx=lx+b*y[i]/a;

a=b=1;

}

printf("\n求得的解是l(%f)=%f",x1,lx);

}

2 ) 满足插值条件的插值多项式及余项

#include

#define m 0

#define n 1

float L0(float a,float x1,float x0)

{

return (a-x1)/(x0-x1);

}

float L1(float a,float x1,float x0)

{

return (a-x0)/(x1-x0);

}

float H(float x0,float x1,float y0,float y1,float m0,float m1,float a) {

float b;

b=y0*(1-2*(a-x0)/(x0-x1))*L0(a,x1,x0)*L0(a,x1,x0)+y1*(1-2*(a-x1)/ (x1-x0))*L1(a,x1,x0)*L1(a,x1,x0)+m0*(a-x0)*L0(a,x1,x0)*L0(a,x1,x0)+m1 *(a-x1)*L1(a,x1,x0)*L1(a,x1,x0);

return b;

}

void main()

{

float x0=1,x1=2,y0=2,y1=3,m0=0,n1=-1,a1=1.5,a2=1.7;

float k1,k2;

printf("input a1: \n");

printf(" %f\n",a1);

k1=H(x0,x1,y0,y1,m0,n1,a1);

printf("%f的函数值为:%f\n\n\n",a1,k1);

printf("input a2: \n");

printf(" %f\n",a2);

k2=H(x0,x1,y0,y1,m0,n1,a2);

printf("%f的函数值为:%f\n\n",a2,k2);

}

8、实验结果:

x=0.5635时函数近似值为0.826116

9、图形(如果可视化)

三次拉格朗日插值多项式求x=0.5635时函数近似值

满足插值条件的插值多项式及余项

10、实验体会:

经过本次实验,让我清楚了整个运算过程我对C语言的编程更加熟练,对拉格朗日插值和Hermite函数插值法的运用更加熟练,也牢牢的记住了这两个公式的使用。

插值与拟合实验报告

学生实验报告

了解插值与拟合的基本原理和方法;掌握用MATLAB计算插值与作最小二乘多项式拟合和曲线拟合的方法;通过范例展现求解实际问题的初步建模过程; 通过动手作实验学习如何用插值与拟合方法解决实际问题,提高探索和解决问题的能力。这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。 二、实验仪器、设备或软件:电脑,MATLAB软件 三、实验内容 1.编写插值方法的函数M文件; 2.用MATLAB中的函数作函数的拟合图形; 3.针对实际问题,试建立数学模型,并求解。 四、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件; 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 五、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)。 1.天文学家在1914年8月的7次观测中,测得地球与金星之间距离(单位:米),并取得常用对数值,与日期的一组历史数据如下表: 由此推断何时金星与地球的距离(米)的对数值为9.93518? 解:输入命令

days=[18 20 22 24 26 28 30]; distancelogs=[9.96177 9.95436 9.94681 9.93910 9.93122 9.92319 9.91499]; t1=interp1(distancelogs,days,9.93518) %线性插值 t2=interp1(distancelogs,days,9.93518,'nearest') %最近邻点插值 t3=interp1(distancelogs,days,9.93518,'spline') %三次样条插值 t4=interp1(distancelogs,days,9.93518,'cubic') %三次插值 计算结果: t1 = 24.9949 t2 = 24 t3 = 25.0000 t4 =

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

拉格朗日插值实验报告

实验名称: 实验一拉格朗日插值 1引言 我们在生产生活中常常会遇到这样的问题: 某个实际问题中,函数f(x)在区间[a,b ]上存在 且连续,但却很难找到其表达式,只能通过实验和观测得到有限点上的函数表。显然,根据 这些点的函数值来求其它点的函数值是非常困难的。有些情况虽然可以写出表达式,但结构 复杂,使用不方便。所以我们总是希望根据已有的数据点(或函数表)来构造某个简单函数 P(x)作为f(x)的近似值。插值法是解决此类问题的一种比较古老的、 但却很常用的方法。它不 仅直接广泛地应用于生产实际和科学研究中,而且也是进一步学习数值计算方法的基础。 2实验目的和要求 运用Matlab 编写三个.m 文件,定义三种插值函数,要求一次性输入整函数表,并利用 计算机选择在插值计算中所需的节点。分别通过分段线性插值、分段二次插值和全区间上拉 格朗日插值计算 f(0.15),f(0.31),f(0.47)的近似值。已知函数表如下: 3算法原理与流程图 (1)原理 设函数y=在插值区间[a,b ]上连续,且在n+1个不同的插值节点a^X o ,x 1,…,x wb 上分别取 值 y o ,y 1,…,y n 。目的是要在一个性质优良、便于计算的插值函数类 ①中,求一简单函数P(x), 满足插值条 件P(X i )=y i (i=0,1,…”n)而在其他点x I 上,作为f(x)近似值。求插值函数P(x)的 方法称为插值法。在本实验中,采用拉格朗日插值法。 ①分段低次插值 当给定了 n+1个点X 0VXK …

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

插值与拟合实验报告

一、给定函数y=sinx的函数表如下表,用拉格朗日插值求sin0.57891的近似 值 M文件: function yh=lagrange2(x0,y0,xh) n = length(x0); m = length(xh); yh=zeros(1,m); for k = 1:m for i = 1:n xp = x0([1:i-1 i+1:n]); yp = prod((xh(k)-xp)./(x0(i)-xp)); yh(k) = yh(k) + yp*y0(i); end end 执行:>> x0=[0.4,0.5,0.6,0.7] x0 = 0.4000 0.5000 0.6000 0.7000 >> y0=[0.38942,0.47943,0.56464,0.64422] y0 = 0.3894 0.4794 0.5646 0.6442 >> lagrange2(x0,y0,0.57891) 执行结果: ans = 0.5471

二、 1. 给定sin110.190809,sin120.207912,sin130.224951,o o o ===构造牛顿 插值函数计算'sin1130o 。 M 文件: function fp = newpoly(x,y,p) n = length(x); a(1) = y(1); for k = 1 : n - 1 d(k, 1) = (y(k+1) - y(k))/(x(k+1) - x(k)); end for j = 2 : n - 1 for k = 1 : n - j d(k, j) = (d(k+1, j - 1) - d(k, j - 1))/(x(k+j) - x(k)); end end d for j = 2 : n a(j) = d(1, j-1); end Df(1) = 1; c(1) = a(1); for j = 2 : n Df(j)=(p - x(j-1)) .* Df(j-1); c(j) = a(j) .* Df(j);

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

数学实验-实验2 插值与拟合

广州大学学生实验报告 开课学院及实验室: 2014年 月 日 学院 数学与信息科学学院 年级、专业、班 姓名 学号 实验课程名称 数学实验 成绩 实验项目名称 实验2 插值与拟合 指导老师 一、实验目的 1、掌握用MATLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。 2、掌握用MATLAB 作线性最小二乘拟合的方法。 3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。 二、实验设备 电脑、MATLAB 三、实验要求 1..选择一些函数,在n 个节点上(n )不要太大,如5~11)用拉格朗日,分段线性,三次样条三种插值方法,,计算m 各插值点的函数值(m 要适中,如50~100).通过数值和图形的输出,将三种插值结果与精确值进行比较.适当增加n ,再作比较,由此作初步分析.下列函数供选择参考: a. y=sin x ,0≦x ≦2π; 2.用 1 2 y x =在x=0,1,4,9,16产生5个节点15,...,P P .用不同的节点构造插值公式来计算x=5处的插值(如用 15,...,P P ;14,...,P P ;24,...,P P 等)与精确值比较进行分析。 5.对于实验1中的录像机计数器,自己实测一组数据(或利用给出的数据),确定模型2 t an bn =+中的系数a,b. 6.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为 0()()t v t V V V e -τ =--,其中 0V 是电容器的初始 电压,τ是充电常数。试由下面一组t ,V 数据确定0V 和τ. t/s 0.5 1 2 3 4 5 7 9 V/V 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 8. 弹簧在力F 的作用下伸长x ,一定范围内服从胡克定律:F 与x 成正比,即F=kx,k 为弹性系数.现在得到下面一组x ,F 数据,并在(x,F )坐标下作图(图13).可以看出,当F大到一定数值(如x=9以后)后,就不服从这个定律了。试由数据拟合直线F=kx,并给出不服从胡克定律时的近似公式(曲线)。 1)要求直线与曲线在x=9处相连接。 2)要求直线与曲线在x=9处光滑连接. 四、实验程序 预备: function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=s+p*y0(k); end y(i)=s; end 五、实验操作过程 当n=5时 clear; n=5; %在n 个节点上进行插值 m=75; %产生m 个插值点,计算函数在插值点处的精确值,将来进行对比 x=0:4/(m-1):2*pi; y=sin(x); z=0*x; x0=0:4/(n-1):2*pi; y0=sin(x0); y1=lagr1(x0,y0,x); % y1为拉格朗日插值 y2=interp1(x0,y0,x); % y2为分段线性插值 y3=spline(x0,y0,x); % y3为三次样条插值 [x' y' y1' y2' y3'] plot(x,z,'k',x,y,'r:',x,y1,'g-.',x,y2,'b',x,y3,'y--') gtext('Lagr.'), gtext('Pieces. linear'), gtext('Spline'), gtext('y=sin(x)') hold off; %比较插值所得结果与函数在插值点处的精确值 s = ' x y y1 y2 y3' [x' y' y1' y2' y3'] 结果 ans = 0 0 0 0 0 0.0541 0.0540 0.0495 0.0455 0.0611 0.1081 0.1079 0.0999 0.0910 0.1207 0.1622 0.1615 0.1510 0.1365 0.1787 0.2162 0.2145 0.2025 0.1819 0.2350 0.2703 0.2670 0.2541 0.2274 0.2896 0.3243 0.3187 0.3054 0.2729 0.3425 0.3784 0.3694 0.3563 0.3184 0.3936 0.4324 0.4191 0.4066 0.3639 0.4429 0.4865 0.4675 0.4559 0.4094 0.4904 0.5405 0.5146 0.5040 0.4548 0.5359 0.5946 0.5602 0.5508 0.5003 0.5796 0.6486 0.6041 0.5961 0.5458 0.6212 0.7027 0.6463 0.6396 0.5913 0.6609 0.7568 0.6866 0.6812 0.6368 0.6985 0.8108 0.7248 0.7208 0.6823 0.7341 0.8649 0.7610 0.7583 0.7278 0.7675

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

数值分析实验一——拉格朗日插值算法报告

拉格朗日插值算法的实现 实验报告 姓名:** 年级:****专业:计算机科学与技术科目:数值分析题目:拉格朗日插值算法的实现 实验时间: 2014年5月27日实验成绩: 实验教师: 一、实验名称:拉格朗日插值算法的实现 二、实验目的: a. 验证拉格朗日插值算法对于不同函数的插值 b. 验证随着插值结点的增多插值曲线的变化情况。 三、实验内容: 拉格朗日插值基函数的一般形式: 也即是: 所以可以得出拉格朗日插值公式的一般形式: 其中, n=1时,称为线性插值,P1(x) = y0*l0(x) + y1*l1(x) n=2时,称为二次插值或抛物插值,精度相对高些,P2(x) = y0*l0(x) + y1*l1(x) + y2*l2(x) 四、程序关键语句描写 double Lagrange(int n,double X[],double Y[],double x) { double result=0; for (int i=0;i

for(int j=0;j #include using namespace std; int main() { double Lagrange(int n,double X[],double Y[],double x); //插值函数double x;//要求插值的x的值 double result;//插值的结果 char a='n'; double X[20],Y[20]; do { cout<<"请输入插值次数n的值:"<>n; cout<<"请输入插值点对应的值及函数值(xi,yi):"<>X[k]>>Y[k]; } cout<<"请输入要求值x的值:"<>x; result=Lagrange(n,X,Y,x); cout<<"由拉格朗日插值法得出结果:"<>a; }while(a=='yes'); return 0; }

用多项式模型进行数据拟合实验报告(附代码)

实验题目: 用多项式模型进行数据拟合实验 1 实验目的 本实验使用多项式模型对数据进行拟合,目的在于: (1)掌握数据拟合的基本原理,学会使用数学的方法来判定数据拟合的情况; (2)掌握最小二乘法的基本原理及计算方法; (3)熟悉使用matlab 进行算法的实现。 2 实验步骤 2.1 算法原理 所谓拟合是指寻找一条平滑的曲线,最不失真地去表现测量数据。反过来说,对测量 的实验数据,要对其进行公式化处理,用计算方法构造函数来近似表达数据的函数关系。由于函数构造方法的不同,有许多的逼近方法,工程中常用最小平方逼近(最小二乘法理论)来实现曲线的拟合。 最小二乘拟合利用已知的数据得出一条直线或曲线,使之在坐标系上与已知数据之间的距离的平方和最小。模型主要有:1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型等,根据应用情况,选用不同的拟合模型。其中多项式型拟合模型应用比较广泛。 给定一组测量数据()i i y x ,,其中m i ,,3,2,1,0Λ=,共m+1个数据点,取多项式P (x ),使得 min )]([020 2=-=∑∑==m i i i m i i y x p r ,则称函数P (x )为拟合函数或最小二乘解,此时,令 ∑==n k k k n x a x p 0 )(,使得min ])([02 002=??? ? ??-=-=∑∑∑===m i n k i k i k m i i i n y x a y x p I ,其中 n a a a a ,,,,210Λ为待求的未知数,n 为多项式的最高次幂,由此该问题化为求),,,(210n a a a a I I Λ=的极值问题。 由多元函数求极值的必要条件:0)(200 =-=??∑∑==m i j i n k i k i k i x y x a a I ,其中n j ,,2,1,0Λ= 得到: ∑∑∑===+=n k m i i j i k m i k j i y x a x )(,其中n j ,,2,1,0Λ=,这是一个关于n a a a a ,,,,210Λ的线 性方程组,用矩阵表示如下所示:

插值与多项式逼近的数组计算方法实验讲解

插值与多项式逼近的数组计算方法实验 郑发进 2012042020022 【摘要】计算机软件中经常要用到库函数,如) cos,x e,它们 (x (x sin,) 是用多项式逼近来计算的。虽然目前最先进的逼近方法是有理函数(即多项式的商),但多项式逼近理论更适于作为数值分析的入门课程。在已知数据具有高精度的情况下,通常用组合多项式来构造过给定数据点的多项式。构造组合多项式的方法有许多种,如线性方程求解、拉格朗日系数多项式以及构造牛顿多项式的方分和系数表。 关键字泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近 一、实验目的 1.通过具体实验,掌握泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近的编程技巧。 2.比较各插值方法的优劣并掌握。 二、实验原理 1.泰勒级数 在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。 如果在点x=x 具有任意阶导数,则幂级数 称为在点x 处的泰勒级数。 =0,得到的级数 在泰勒公式中,取x 称为麦克劳林级数。函数的麦克劳林级数是x的幂级数,那么这种展开

是唯一的,且必然与的麦克劳林级数一致。 2.拉格朗日插值法 如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。 在平面上有(x 1,y 1)(x 2,y 2)...(x n ,y n )共n 个点,现作一条函数f (x )使其图像经过这n 个点。 作n 个多项式p i (x),i=1,2,3...,n,使得 最后可得 3.牛顿插值法 插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化, 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 牛顿插值通过求各阶差商,递推得到的一个公式: 10121()()()()()()N N N N P x P x a x x x x x x x x --=+---- 牛顿插值与拉格朗日插值具有唯一性。 4.帕德逼近 它不仅与逼近论中其他许多方法有着密切的关系,而且在实际问题特别是许多物理问题中有着广泛的应用。设是在原点某邻域内收敛的、具有复系数的麦克劳林级数。欲确定一个有理函数,式中,使得前次方的系数为0,即使得 此处约定qk =0(k>n )。虽然所求得的Pm(z)和Qn(z)不惟一,但是比式却总是惟一的。有理函数称为F(z)的(m,n)级帕德逼近,记为(m/n)。由(m/n)所形成的阵列称为帕德表。

相关文档
相关文档 最新文档