文档库 最新最全的文档下载
当前位置:文档库 › 十 直线形的割补

十 直线形的割补

十 直线形的割补
十 直线形的割补

十直线形的割补

在第五节,我们介绍了一些拼拼画画的知识.今天我们将专门介绍直线形的割、补技巧.

由于多边形是直线形的主体,许多数学家对多边形的割、补作了深入的研究.关于这一问题最辉煌的成果是当代伟大的数学家希尔伯特证明的如下奇妙定理:

定理两个面积相等的多边形,可以将任意一个切开成有限的块数,然后拼成另一个.

这一定理告诉我们:任意一个多边形一定能拼成一个正多边形,但是定理并没有告诉如何去拼.寻找割、拼的方法就成为几何学中一个非常有趣的课题,引起了许多学者的兴趣.

有人认为.没告诉方法的定理价值一定不大,这是不公正的.在数学中,有两类非常重要的问题,它们是存在性问题和构造性问题.一般说来,一个事物或状态,若能指出它存在,问题就解决了一大半.至于能否构造出来只是个时间问题.例如,历史上著名的“三等分角的问题”(即只准用圆规和直尺把一个已知角三等分).开始许多人绞尽脑汁一想正面解决它,但都失败了.后来.有位聪明人证明了“用尺规三等分角是不可能的”(即状态不存在).人们才恍然大悟.原来,以往千百万人所作的全部努力都徒劳无功.以后再也不会有人在此问题上白费气力了.有了前面的定理作保证.我们把任意多边形拼成一个正多边形一定有希望成功,不会产生像三等分角那样的情况.这里足见解决存在性问题的重要性.

另外.把任意多边形先进行切割,然后再拼(构造)出正多边形的过程可以增强我们对几何图形的直观感觉和判断能力,丰富对图形的想象力,从而提高数学思维能力和创造力.

这类问题不仅趣味性强,而且有相当的实用价值.例如工厂里下料(锯木板、割钢板等),工艺美术的图案设计,土地划分乃至生活中切豆腐等都要用到割补知识.

问题10.1 某商业城有一皮货店,生意萧条.一天,店老板想出了一条妙计,他在店门前挂起两块光面朝外的皮(如图10-1),并写着:“若哪位顾客能用三角毛皮补好另一块皮毛的洞,则可任选一件皮货,只收半价”.

同学们:你能动动你聪明的大脑,使自己用较少的钱买件漂亮的皮大衣吗?

分析图中三角形皮块与洞形状、大小都一样,但方向相反,若直接补上去则毛面朝外,显然不行.那么,要补好洞必须把三角形皮先割破,再重新拼接.

解如图10-2,分别过三角形皮块和洞的顶端A和A?作底边的垂线AD、A'D';分别连接D、D'与另外两边的中点.即把原来的两个三角形各分成了两个三角形和一个四边形.然后把△1、△2平行移动到△1′、△2'的位置.最后把四边形3旋转1800后,平行移动到四边形3'的位置即补合.

问题10.2 前进生产大队有一正方形的池塘,四角上有4棵大树(图10-3).在改革大潮中,他们要扩大池塘养鱼、植藕,计划将原塘扩大1倍,并要求扩建后的池塘仍呈正方形且不动树也不准将树淹在水中.这该怎么办?

分析初看来这个问题确实有些难.可是只要你开动脑筋,这个问题又是可以解决的.按如图10-4中的a'b'c'd'开拓池塘就能使池塘面积扩大1倍后仍保持正方形的形状,且大树也不必搬动.

可是你能证明扩大的正方形面积是原正方形的两倍吗?

问题10.3 图10-5(1)所示的卡片上有两个长方形孔.只准切一刀就能拼成图10-5(2)的形状,你能办到吗?

解按图10-6(1)中虚线切开,然后把剪下的三角形在空中翻转1800(即翻一个面),再接上去即得.见图10-6(2).

如果你掌握了以上切拼的技巧(切成45°),你就可以想出一些类似的拼图去变“小魔术”给小朋友看.

问题10.4 蓬莱小学的花园别具一格,它是一块如图10-7所示的梯形.花园中有四棵月桂树.

云仙老师要把此花园分成四块给班上的四个组管理.

她还要求四块的形状和大小都相同并要求每块保留一棵月桂树.

你说怎么分才好?

本题是希腊哲学家苏格拉底出的题.他并作了这样的提示:

“要把梯形分割。应设法找到梯形的相似形.要做到这一步,就需要深入地思考.这当然是一个涉及…内在联系?的问题”.

请同学们根据苏格拉底的提示按要求把梯形分成四块.

问题10.5 有一块长24米、宽15米的长方形地毯.现要把它移到长20米、宽18米的新房里去.请找一种剪裁方法.使剪后的各块拼合后正好能铺满新房间的地面.为了使剪后的地毯尽量完整,一个十分自然的要求即是还要使裁剪的块数尽可能地少.

分析地毯的面积为24×15=360(平方米).新房间面积为18×20=360(平方米).两者面积相等,但长、宽不等.因为24比20多4.18比15多3.这里我们自然想到要根据这多出的3和4在原地毯上画出30个3×4(平方米)的小长方形组成的长方形网,如图10-8(1)中虚线,再把最前(或最后)一列的五个小长方形割下来.补到上(或下)一排上去,即补成了图10-8(2)的形状.它正好铺满新房间的地面.

但这样分割得割成6块才可拼成(为什么?).能否剪更少的块数而拼成18×20的长方形呢?如图10-8可见,图(1)比图(2)无非是宽了一小格(的长)和矮了一小格(的宽),故自然产生了把长减短4米,并使高增加3米的想法.这并非难事.事实上把地毯按图10-8(1)中的实折线剪开成两块,然后把左边的一块先往上方平行移动3米,再往右边平行移动4米,即得图10-8(2).

由于一块不可能铺满新房间,故两块是块数最少的剪法.

问题10.6 小红的爸爸在街上卖边角布料的布摊上买回了一块三角形的绸布,小红的妈妈想用它来做窗帘(长方形).但为了不把布剪得太碎,她要求最多裁3块.妈妈不会画线,就把这任务交给了小红,请问小红应怎么画线才能达到要求?

分析题中没说三角形的形状和大小,故我们应该用任意的△ABC来解决这一问题.

动手试验一番,并开动脑筋想一想就会发现:把三角形割、拼成长方形所采用的方法及割成最少块数的数目与三角形的形状有关.

下面仅解决△ABC为锐角三角形的情形.

可以用倒推法卿从结果入手分析,也叫分析法)来思考:假若按某种剪法分成的3块正好拼成了一个长方形,现在反过来寻求△ABC的一种切割方法.

另外,要使剪的块数少,必须剪的刀数少.那么就要尽量让长方形的边多与三角形的边叠合.但三角形是锐角三角形,故最多只能有一边与长方形重合.如图10-9(1),不妨设拼好的长方形以BC为一边长,则我们要设法把△AB'C'再分成两块补到△1和△2的位置上.由于△1、△2都是直角三角形,故△AB'C′应分成两个直角三角形,这只要过它的一个顶点作对边的垂线即可.取A点作B′C'的垂线AD.

此外,我们还要使分得的两个直角三角形AB'D与ADC′分别与△1和△2全等才行.显然只要取B、C′厂分别为AB、AC的中点即满足要求.

解对于锐角△ABC,如图10-9(2),连接AB、AC的中点B'、C',过A作B'C'的垂线AD.把△AB'C'分成直角△3和直角△4,然后将△3和△4分别绕B'、C'点向逆、顺时针方向旋转180°即得合乎要求的长方形.

显然,B'C'是△ABC中与BC平行的中位线.对于锐角三角形,还可取与AB或AC 平行的中位线去解决,故按这种思路共有三种解法.

问题10.7 在问题10.6中:(1)若△ABC为直角三角形,按上述思路求解有几种解法?最少割成几块?(2)若△ABC为钝角三角形呢?(3)问题10.6除以上思路外还有没有新的思路和解法?

在直线形的割补中,把一个图形割开拼成正方形是非常重要的问题.这一问题不但内容最为丰富,而且有许多精彩的应用.

问题10.8 图10-10是一个空心的正方形,你能用剪刀将它分成四块,然后拼出一个实心的正方形吗?

分析初看起来这个题难以入手,但仔细一想,实心正方形一定有4个直角,我们要从空心正方形中割出它们.另外,切割时,显然应该沿着图10-10内小正方形的边沿切割.再试验几次,即可切成图10-11(1)的形状,然后再拼成图10-11(2)的形状即可.

注意:以上求解中用到“试验”一词.其实试验也是数学中一种非常有用的方法.

问题10.9 图10-12是边长分别为1、4、8的三个正方形方格网叠在一起组成的阶梯式图形.若只准按网线切割.问最少切成几块拼在一起后正好是一个正方形?

分析因为12+42+8=81=92,所以无论分多少块,拼成后的正方形边长总是9.

先退一步,暂不考虑最少分几块.只考虑能拼成正方形.因为边长为9的正方形可视为边长为8的正方形的下边和右边各镶一条(共17个)小正方形而得到.这样,一个最自然的想法是不动边长为8的正方形而把上面的17个小正方形分割成如图10-12中粗线所示的五块,再拼成图10-13的正方形,边长即为9.

现在的问题是能否使块数更少?

由上述镶边拼法知道.所镶的两条边都是由两段接成的.能否不接而变成通长条呢?我们知道所镶的两条边可视为一个1×9长方形和一个1×8长方形.为了不接,可先在最高的那一列割下一个1×9长方形,再挨着割下一个1×8长方形分别镶到原边长为8的正方形下边和右边,发现中间缺了一个2×4的长方形块,而上面正好多了一个2×4长方形块,再割下来一个嵌入其内即得1个9×9的正方形.这样只分成了4块,减少了一块.但这是不是块数最少的分法呢?这要看所切的四块是否能“合并”.通过考察不难发现,那个互1×8长方形和2×4长方形是可以并在一起的,这样就只有3块了.

按图10-14(1)的粗线分割并拼成图10-14(2)即得.

问题10.10 图10-15(1)中两个正方形的边长分别为a和b(b>a).请将边长为b的正方形切成四块一样的图形,再与另一个正方形拼在一起组成一个大正方形.

分析拼成的大正方形的面积为a2+b2,设大正方形的边长为c,则c适合等式c2=a2+b2.又因为要把边长为b的正方形切分为四个全等图形,那么划线一定要经过此正方形的中心.我们仍用“倒推法”思考.如因10-15(2),假定过O的割线段EF就是拼成大正方形的边长,那么EF2=a2+b2,过F作FG垂直于AB,就有FG=b.△EGF为直角三角形,

这样就可确定EF.由于拼成的大正方形四个角应为直角,故将EF绕O旋转90°就可得到另一条割线.

解如图10-16(1),我们在AB上取一点E,使AE=1/2(b— a).过E和中心O画一条直线交CD于F,再过O作MN垂直于EF分别交AD、BC于M、N,则以EF、MN为两条割线可把边长为b的正方形分成全等的四块.按图10—16(2)进行拼合即得所求的大正方形.

注意:若本题不要求分成全等的四块,你又怎样分析出割线来?此时,你能否想出更多的割拼方法?

在一个直角三角形中,人们喜欢把两个直角边分别叫勾和股,而把斜边称作弦.勾、股和弦之间有一个很重要的联系,就是:勾的平方加股的平方等于弦的平方.这就是著名的勾股定理.我国很早就发现了这一定理,在《周髀算经》这本古老的数学书中就有“勾三、股四、弦五”的记载.意思是说:在一个直角三角形中,两条直角边长分别为3和4,那么斜边长一定是5,显然32+42=52.

由图10-17易见,若以勾、股、弦分别作三个正方形,那么两个小正方形的面积之和正好等于大正方形的面积.

证明

勾股定理,即证明直角三角形的两直角边长分别为a和b,斜边长为c,那么a2+b2=c2.

分析图10-17已经给了证明思路.事实上,可以先以a、b和c为边作三个正方形,然后只要用“问题10.10”所提供的方法(即割补法)把以a、b为边长的两个正方形切拼成一个大正方形,而这个大正方形的边长正好为c就证明了勾股定理.无疑地,这是割补法的一个非常精彩的应用.

练习10

1.图10-18中是一个底角为60°且上底与腰相等的等腰梯形.请你把它分割成全等的4个部分.

2.有一个由36个小方格组成的正方形棋盘,如图10-19,里面放着黑、白子各4颗.现要把它分割成形状和大小都相同的四块,并使每块里都有一颗白子和一颗黑子.问应怎样分割?

3.老赵有一块长方形的木板.长2米5分米,宽1米6分米.如图10-20.他请木工王师傅给他做一个正方形的桌面.问王师傅怎么锯才能保证锯的块数最少?

4.把图10-21分成两块.然后拼成一个正方形,怎么分?怎么拼?

5.图10-22是一块90厘米×120厘米的长方形木板,正中间有一个10厘米×80厘米的长方形孔,想将它锯开后拼成一个正方形桌面.如何分块数最少?桌面面积为多少?

6.图10-23是一张十字形的塑料片,请剪两剪刀.然后再(1)拼成一个长方形;(2)拼成两个并列的正方形.

7.如何证明图10-24中正方形Ⅰ、Ⅱ的面积之和等于正方形Ⅲ的面积?

四年级上册奥数讲义-第十一讲 割补法巧算面积-冀教版(无答案)

四年级第十一讲割补法巧算面积 ◆温故知新: 1. 用割补法把不规则图形变成规则图形计算面积。 2.正方形、等腰直角三角形、等边三角形、正六边形等已知图形分割成小块,与所求图形 面积相联系。 ◆练一练 1、在图中,五个小正方形的边长都是2厘米,求三角形ABC的面积。 2、图中小正方形和大正方形的边长分别是4厘米和6厘米。阴影部分的面积是多少平方厘 米? ◆例题展示 例题1图中的数字分别表示对应线段的长度,试求这个多边形的面积。(单位:厘米)

练习1如图所示,在正方形ABCD内部有一个长方形EFGH。已知正方形ABCD的边长是6厘米,图中线段AE AH 、都等于2厘米。求长方形EFGH的面积。 例题2如图所示,大正方形的边长为10厘米。连接大正方形的各边中点得到一个小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连。 请问:图中阴影部分的面积总和等于多少平方厘米? 练习2如图所示,大正方形的边长为10厘米。连接大正方形的各边中点得到一个小正方形,再连接大正方形的两条对角线。请问:图中阴影部分的面积总和 等于多少平方厘米?

例题3如图所示,正六边形ABCDEF的面积是6平方厘米,M是AB中点,N是CD中点,P是EF中点。请问三角形MNP的面积是多少平方厘米? 练习3 如图所示,正六边形ABCDEF的面积是36平方厘米,M、N、P、Q、R、S分别是AB、BC、CD、DE、EF、FA的中点。请问:阴影正六边形MNPQRS的面积是 多少平方厘米? 例题4 如图,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点。 已知图a中阴影部分的面积是294平方分米。请问:图b中阴影部分的面积 是多少平方分米?

“割补法”求解不规则几何体体积

“割补法”求解不规则几何体体积 我们通常把不是棱柱、棱锥、棱台和圆柱、圆锥、圆台等的几何体,称为不规则几何体.而解决不规则几何体的方法,常用割补法,即通过分割或补形,将它变成规则的几何体.我们可以从不规则几何体的来源上,即它是由何种常见的几何体所截得的来分类. 一、来自三棱柱的截体 例1 如图1,正四面体A BC D -中,E F G H ,,,分别是棱 A B A C B D C D ,,,的中点,求证:平面EFH G 把正四面体分割成 的两部分几何体的体积相等. 分析:显然正四面体被分割成的两部分都是不规则的几何体, 因此我们可使用割补法来推导.那么我们应选择割,还是补呢? 如果选择补,那么补成什么样子呢?显然只能是正四面体,这就 说明我们应该选择割. 证明:连结C E C G A G A H ,,,,左右两个不规则几何体都被分割成了一个四棱锥和一个三棱锥,如图1.易证左右的两个四棱锥的体积相等,两个三棱锥的体积也相等,于是两部分体积相等. 当然此题还有其他的分割方法,比如分成一个三棱柱和一个三棱锥等,也同样好证. 二、来自正方体的截体 例2 如图2,已知多面体ABC D EFG -中,A B A C A D ,,两两互相垂 直,平面ABC ∥平面D E F G ,平面BEF ∥平面A D G C , 2AB AD D C ===,1AC EF ==,则该多面体的体积为( ) A.2 B.4 C.6 D.8 解法一(割):如图3,过点C 作C H D G ⊥于H ,连结EH ,这样就 把多面体分割成一个直三棱柱D EH ABC -和一个斜三棱柱BEF C H G -. 于是所求几何体的体积为: DEH BEF V S AD S DE =?+?△△11212212422????=???+???= ? ?????. 解法二(补):如图4,将多面体补成棱长为2的正方体,那么显然 所求的多面体的体积即为该正方体体积的一半. 于是所求几何体的体积为31242V = ?=. 三、来自圆柱的截体 例3 如图5,如图5,一圆柱被一平面所截,已知被截后几何体的 最长侧面母线长为4,最短侧面母线长为1,且圆柱底面半径长为2,则 该几何体的体积等于_______. 解法一(割):如图6,该几何体的体积等于下面的圆柱的体积与上

(完整版)活用割补法求面积1

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面

(3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。

用割补法求面积

用割补法求面积 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第25讲用割补法求面积 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′面积分别相等,所以甲、乙两个矩形的面积相等。乙的面积是4× 6=24,所以甲的面积,即所求矩形的面积也是24。 例5下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。求乙正方形的面积。 分析与解:如果从甲正方形中“挖掉”和乙正方形同样大的正方形丙,所剩的A,B,C三部分之和就是40厘米2(见左下图)。 把C割下,拼补到乙正方形的上面(见右上图),这样A,B,C三块就合并成一个长20厘米的矩形,面积是40厘米2,宽是40÷20=2(厘米)。这个宽恰好是两个正方形的边长之差,由此可求出乙正方形的边长为(20-2)÷2=9(厘米),从而乙正方形的面积为9×9=81(厘米2)。 练习22 1.求下列各图中阴影部分的面积:

割补法巧算面积

割补法巧算面积

————————————————————————————————作者:————————————————————————————————日期: ?

割补法巧算面积 知识精讲: 分割法:把不规则的的大图形化为规则的小图形 添补法:把不规则图形周围添上规则的小图形,使总面积便于计算 例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米) 练习1 如图中的每个数字分别表示所对应的线段的长度(单位:米).这个图形的面积等于多少平方 米? 例题2 如图,在正方形ABCD内部有一个长方形.EFGH.已知正方形ABCD的边长是6厘米,图中线段AE、AH都等于2厘米.求长方形EFGH的面积. 练习2 正方形ABCD的边长是8厘米,它的内部有一个三角形AEF(如图),线段DF=3.6厘米,BE=2.8厘米,那么三角形AEF的面积等于平方厘米. 例题3 如图中,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等份,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?

练习3. 1.如图所示,正方形ABCD的边长acm,则图中阴影部分的面积为cm2. 例题4. 如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点.已知图1中阴影部分的面积是294平方分米.请问:图2中的阴影部分的面积是多少平方分米? 练习4 7.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几? 选做题 例5 如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A的面积是36平方厘米,那么正方形B的面积是多少平方厘米? 例6.

割补法求面积

割补法求面积 阴影面积的计算是本章的一个中考热点,计算不规则图形的面积,首先应观察图形的特点,通过分割、接补将其化为可计算的规则图形进行计算. 一、补:把所求不规则图形,通过已知的分割线把原图形分割成的图形进行适当的组合,转化为可求面积的图形. 例题1 如图1,将半径为2cm 的⊙O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连接PM ,则图中阴影部分的面积是_____cm 2(结果用π表示). 解析:如图1,根据对称性可知:S 1=S 2,S 3=S 4,S 5=S 6,S 7=S 8,因此阴影部分的面积占整个圆面积的 21,应为:ππ222 12=?(cm 2). 练习:如图2,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为_______. 答案:2π. 二、割:把不规则的图形的面积分割成几块可求的图形的面积和或差. 例题2 如图3,在Rt △ABC 中,已知∠BCA=90°,∠BAC=30°,AB=6cm ,把△ABC 以点B 为中心旋转,使点C 旋转到AB 边的延长线上的点C′处,那么AC 边扫过的图形(图中阴影部分)的面积是_______cm 2(不取近似值). 解析:把所求阴影部分的面积分割转化,则 S 阴影=(S 扇形BAA′+S △A′C′B )-(S △ACB +S 扇形BCC′)

=S 扇形BAA′-S 扇形BCC′ 360 312036061202 2?-?=ππ=π9. 练习:如图4,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点,∠MEN =60°.则图中阴影部分的面积是_________. 答案:4361-- π. 三、先割后补:先把所求图形分割,然后重新组合成一个规则图形. 例题3 如图5,ABCD 是边长为8的一个正方形,EF 、HG 、EH 、FG 分别与AB 、AD 、BC 、DC 相切,则阴影部分的面积=______. 解析:连接EG 、FH ,由已知可得S 1=S 2,S 3=S 4,所以可把S 1补至S 2,S 3补至S 4. 这样阴影部分的面积就转化为正方形面积的21,因此阴影部分的面积为3282 12=?. 练习:如图6,AB 是⊙O 的直径,C 、D 是AB 上的三等分点,如果⊙O 的半径为1,P 是线段AB 上的任意一点,则图中阴影部分的面积为( ) A .3π B .6π C .2π D .3 2π 答案:A .

五年级奥数:第22讲 用割补法求面积

五年级奥数:第22讲用割补法求面积在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。

(1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。

小学奥数——用割补法求面积

小学奥数解析十三用割补法求面积 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角

(2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′

割补法巧算面积

割补法巧算面积知识精讲: 分割法:把不规则的的大图形化为规则的小图形 添补法:把不规则图形周围添上规则的小图形,使总面积便于计算 例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积. (单位:厘米) 8 2 练习1 如图中的每个数字分别表示所对应的线段的长度(单位:米)?这个图形的面积等于多少平 例题2 如图,在正方形ABCD内部有一个长方形. EFGH .已知正方形ABCD的边长是6厘米, 图中线段AE、AH都等于2厘米.求长方形EFGH的面积. 练习2 正方形ABCD的边长是8厘米,它的内部有一个三角形AEF (如图),线段DF=3.6厘米, BE=2.8厘米,那么三角形AEF的面积等于_______________ 平方厘米. B 例题3 如图中,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等份,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?

练习3. 2 1如图所示,正方形ABCD的边长acm,则图中阴影部分的面积为______________________ cm ? A D 例题4.如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分 点.已知图1中阴影部分的面积是294平方分米. 请问:图 2中的阴影部分的面积是多少平 方分米? 练习4 7.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几? 例6. 选做题 例5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形平 方厘米,那么正方形B的面积是多少平方厘米? A的面积是36

用割补法求面积

第25讲用割补法求面积 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′面积分别相等,所以甲、乙两个矩形的面积相等。乙的面积是4×6=24,所以甲的面积,即所求矩形的面积也是24。 例5下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。求乙正方形的面积。 分析与解:如果从甲正方形中“挖掉”和乙正方形同样大的正方形丙,所剩的A,B,C三部分之和就是40厘米2(见左下图)。 把C割下,拼补到乙正方形的上面(见右上图),这样A,B,C三块就合并成一个长20厘米的矩形,面积是40厘米2,宽是40÷20=2(厘米)。这个宽恰好是两个正方形的边长之差,由此可求出乙正方形的边长为(20-2)÷2=9(厘米),从而乙正方形的面积为9×9=81(厘米2)。 练习22

高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

第五讲割补法巧算面积 在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.

例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米) 「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢? 练习1 图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米) 我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法. 例题2 如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积. 「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢? 1 2 2 3 4 5 3 2 4 3 4 12 4 9 D G

如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积. 例题3 如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米? 「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯? 练习3 如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米? 例题4 如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米? 「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一 样的,你能求出大正三角形的面积吗? D 图2

割补法

知识点练习 一、选择题 1. 三平面,,两两互相垂直且交于点,空间一点到,,的距离分别为,,,则,两点间的距离为 A. B. C. D. 2. 已知三个平面两两互相垂直且交于一点,若空间一点到三个平面的距离分别为、、,则的长为 A. B. C. D. 3. 某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为的正方形,正视图中两条虚线互相垂直,则该几何体的体积是 A. B. C. D. 4. 一个几何体的三视图如图所示(单位:),则该几何体的体积是

A. B. C. D. 5. 已知某几何体的三视图如图所示,则该几何体外接球的表面积为 A. B. C. D. 6. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是

A. B. C. D. 7. 已知在半径为的球面上有、、、四点,若,则四面体的体积的最大值为 ( ) A. B. C. D. 二、填空题 8. 自半径为的球面上一点,作球的互相垂直的三条弦,,,则(用表示). 9. 若构成教室墙角的三个墙面记为,,,交线记为,,,教室内一点到三墙面,,的距离分别为、、,则与墙角的距离为. 10. 如图是一个长方体截去一个角后的多面体的三视图,在这个多面体中,,, .则这个多面体的体积为.

11. 若三角形内切圆半径为,三边长分别为、、,则三角形的面积,根据类比思想,若四面体内切球半径为,其四个面的面积分别为、、、,则四面体的体积. 12. 已知正方形的一个面在半径为的半球底面上,,,,四个顶点都在此半球面上,则正方体的体积为. 13. 在正四面体中,其棱长为,若正四面体有一个内切球,则这个球的表面积为. 14. 如图,已知底面半径为的圆柱被一个平面所截,剩下部分母线长的最大值为,最小值为,那么圆柱被截后剩下部分的体积是.

割补法巧算面积

割补法巧算面积 知识精讲: 分割法:把不规则的的大图形化为规则的小图形 添补法:把不规则图形周围添上规则的小图形,使总面积便于计算例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积. (单位:厘米) 3 练习1 如图中的每个数字分别表示所对应的线段的长度(单位:米)?这个图形的面积等于多少平 5 2| 3 31 4 方米?-------------------- 例题2 如图,在正方形ABCD内部有一个长方形. EFGH .已知正方形ABCD的边长是6厘米, 图中线段 AE、AH都等于2厘米.求长方形EFGH的面积. 练习2 正方形ABCD的边长是8厘米,它的内部有一个三角形AEF (如图),线段DF=3.6厘米, BE=2.8厘米,那么三角形AEF的面积等于_______________ 平方厘米. 例题3 如图中,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等 份,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和 等于多少平方厘米?

例题4.如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分 点.已知图1中阴影部分的面积是 294平方分米.请问:图2中的阴影部分的面积是多少平 方分米? 练习4 7.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各 取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几? 例6. 练习3. 1如图所示,正方形 ABCD 的边长acm ,则图中阴影部分的面积为 2 ____________ cm ? 选做题 例5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形 A 的面积是36 平方厘米,那么正方形 B 的面积是多少平方厘米 ?

小学奥数割补法、差不变原理求面积

分割法 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到分割、拼补的方法。 例题2、五边形的三条边的长和四个角的度数,如下图所示,那么它的面积是多少? 例题3、下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的 面积大40厘米2。求乙正方形的面积。

例题4、如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长 5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 例题 5、在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段 (见右图),求图中阴影部分的面积占整个图形面积的几分之几?

练习2.求下图(单位:厘米)中四边形ABCD的面积。 练习3.下图是甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45厘米2。求甲、乙的面积之和。 练习4.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。已知梯形的面积为36厘米2,上底为3厘米,求下底和高。 练习5、如图,三个正方形的边长分别为5厘米、6厘米、4厘米拼在一起,求阴影部分的面积?

练习6、下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?

等差法 解题关键:找出组合图形的公共部分 解题技巧:利用差不变原理进行等量代换: 例题1、如图ABCG是的长方形,AB=7,AG=4,DEFG是的长方形,GF=2,FE=10。那么,三角形BCM的面积与三角形DCM面积之差是多少? 练习1如图ABCG是的长方形,AB=5,AG=3,DEFG是的长方形,GF=1,FE=9。那么,三角形BCM的面积与三角形DCM面积之差是多少?

割补法巧算面积

割补法巧算面积 Revised by BETTY on December 25,2020

割补法巧算面积 知识精讲: 分割法:把不规则的的大图形化为规则的小图形 添补法:把不规则图形周围添上规则的小图形,使总面积便于计算 例题1 图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米) 练习1 如图中的每个数字分别表示所对应的线段的长度(单位:米).这个图形的面积等于多少 平方米? 例题2 如图,在正方形ABCD内部有一个长方形.EFGH.已知正方形ABCD的边长是6厘米,图中线段AE、AH都等于2厘米.求长方形EFGH的面积. 练习2 正方形ABCD的边长是8厘米,它的内部有一个三角形AEF(如图),线段DF=厘米,BE=厘米,那么三角形AEF的面积等于平方厘米. 例题3 如图中,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等份,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米 练习3. 1.如图所示,正方形ABCD的边长acm,则图中阴影部分的面积为cm2. 例题4. 如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点.已知图1中阴影部分的面积是294平方分米.请问:图2中的阴影部分的面积是多少平方分米? 练习4 7.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几? 选做题 例5 如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A的面积是36平方厘米,那么正方形B的面积是多少平方厘米? 例6. 已知一个四边形ABCD的两条边的长度和三个角(如下图所示),求四边形ABCD的面积是多少? 作业:

数学思想和数学方法之割补法第2课

图1-1 图1-2 A' 中学数学解题思想方法--割补法(2) 1 内容概述 在求不规则的几何体的体积时,有些题目采用“补形法”比较容易;有些题目采用“分割法”更为恰当;还有些题目既能采用“补形法”解决,也能采用“分割法”解决;还有些题目既要采用“补形法”,同时采用“分割法”才易解决.本讲将重点讲解割补法的灵活应用以及专题总结. 2 例题示范 例1 如图1-1,A A '⊥底面ABC ,////AA BB CC ''',且345AB BC AC ===,,, 624AA BB CC '''===,,,求几何体C B A ABC '''-的体积 解:补上一个相同的几何体如图1-2所示,则新几何体的体积等于两个原几何体的体积.即 =2V V 新原.因为A A '⊥底面ABC ,////AA BB CC ''',所以新几何体ABC DEF -为直三棱柱,且 因为624AA BB CC '''===,,,所以 新几何体底面ABC 的高8AD =. 345AB BC AC ===,,, 222AB BC AC ∴+=, 90ABC ?∴∠= 1 =S 482 ABC V AD AB BC AD ?∴?= ??=新 所以原几何体的体积为24.

图1-3 图1-4 图 2-1 解:(法二)在AA '上取一点D 使2AD BB '==,在CC '上取一点E 使2CE BB '==, 连结DB ',B E ',DE 平面如图1-3所示, ////AA BB CC ''',A A '⊥底面ABC ABC DB E '∴-为直三棱柱 345AB BC AC ===,,, 222AB BC AC ∴+=, 90ABC ? ∴∠= 1 =S 122 ABC DB E ABC V AD AB BC AD '-?∴?= ??=, 过点B '作B F DE F '⊥于,如图1-4所示, A A '⊥底面ABC , A A D B E ''∴⊥底面 A A B F ''∴⊥ A A DE D '?= B F DE C A '''∴⊥平面 所以四棱锥B DEC A '''-的体积为 111=S ()12332 B DE C A DEC A V BF A D C E DE BF '''''-''?=?+??= 所以几何体C B A ABC '''-的体积为24B DEC A ABC DB E V V ''' '--+= 评析:本题所给几何体不是一个规则的几何体, 可以看成一个直三棱柱被一个平面所截而成的.根据题目特点我们既可以选择“补形法”补成直三棱柱,如图1-2所示,计算出直三棱柱的体积,再利用直三棱柱和已知几何体的关系求解;也可以采用“分割法”,把所给几何体分割成直三棱柱和四棱锥,如图1-3所示来解决 . 本题解法一采取的解题方法为补形法,解法二 所采取的解题方法为分割法.两种方法都比较自然,由于题目所给条件,本题采用解法一较为简捷. 例2 如图2-1,A A '⊥平面ABC ,//////AA BB CC DD '''',四边形ABCD 为正方形,且 213AB AA CC BB ''''=====,,DD ,求几何体D C B A ABCD ''''-的体积

割补法、差不变原理

割补法、差不变原理

分割法 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到分割、拼补的方法。 例题1.在直角三角形ABC中,四边形DECF为正方形,若AD=5,DB=6,则ADE 与BDF的面积之和是多少? 例题2、五边形的三条边的长和四个角的度数,如下图所示,那么它的面积是多少? 例题3、下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的 面积大40厘米2。求乙正方形的面积。

例题4、如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 例题5、在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几? 练习1.在直角三角形ABC中,四边形DECF为正方形,若AD=7,DB=8,则ADE 与BDF的面积之和是多少?

练习2.求下图(单位:厘米)中四边形ABCD的面积。 练习3.下图是甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45厘米2 。求甲、乙的面积之和。 练习4.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。已知梯形的面积为36厘米2,上底为3厘米,求下底和高。

练习5、如图,三个正方形的边长分别为5厘米、6厘米、4厘米拼在一起,求阴影部分的面积? 练习6、下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大? 等差法 解题关键:找出组合图形的公共部分 解题技巧:利用差不变原理进行等量代换: 例题1、如图ABCG是的长方形,AB=7,AG=4,DEFG是的长方形,GF=2,FE=10。那么,三角形BCM的面积与三角形DCM面积之差是多少?

小学五年奥数第22讲用割补法求面积

第22讲用割补法求面积 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。 例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角

(2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面 (3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。 分析与解:题中给出了两个似乎毫无关联的数据,无法沟通与矩形的联系。我们给这个直角三角形再拼补上一个相同的直角三角形(见右上图)。因为A与A′,B与B′面积分别相等,所以甲、乙两个矩形的面积相等。乙的面积是4×6=24,所以甲的面积,即所求矩形的面积也是24。 例5下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40厘米2。求乙正方形的面积。

高考物理解题方法例话7割补法(新)

1 7割补法 就是对研究对象进行适当的分割、补充来处理问题的一种方法。下面举例说明。 [例题1]如果将质量为m 的铅球放于地心处,再在地球内部距地心R/2(R 为地球半径)处挖去质量为M 的球体,如图所示,则铅 球受到地球引力的大小为多少? 解析:如果将挖去质量为M 的球体补上, 这一个完整的球体,一个完整的质量均匀 的球体放入其中心处的铅球的引力为0, 由此可见挖去的质量为M 球体对铅球的力与剩下部分对铅球的力相平衡,即224) 2(R GMm R Mm G F F = ==挖去剩下 方向为沿挖去小球与地球球心连线向左。 [例题2]现有半球形导体材料,接成如图所示的两种形式,则两种接法的电阻之比为多 少? 解析:如果将 a 、 b 图中的两半球平分,如图所示,设1/4球形材料的电阻为R ,a 是两个1/4球形材料的并联,所以2R R a =而b 是两个1/4球形材料的串联,所以R R b 2=,所以4:1:=b a R R [例题3]一带电粒子以速度V 沿半径为a 的圆形磁场的半径方向射入磁场,穿越磁场的时间为1t ;该粒子又以相同的速度V 从边长为a 的正方形磁场一边的中点垂直于该边射入磁场,穿越磁场的时间为2t ,则1t 2t 的大小关系为( ) A 、1t =2t B 、1t ?2t C 、1t ?2t D 、都有可能 解析:如果将b 图 中正方形磁场挖 去一个半径为a 的 圆形磁场,再将a 图中的半径为a 的 圆形磁场补上,如 图c 所示,假设电 荷带负电,如果从 切点射出,则时间 相同1t =2t ,如果不从切点射出,则时间相同1t ?2t ,正确的选项为A 、C

相关文档