文档库 最新最全的文档下载
当前位置:文档库 › 活用条件巧变换,找准关键求最值

活用条件巧变换,找准关键求最值

活用条件巧变换,找准关键求最值
活用条件巧变换,找准关键求最值

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

求最值问题的几种方法

浅谈求最值问题的几种方法 摘要:最值问题综合性强, 涉及到中学数学的许多分支, 因而这类问题题型广, 知识面宽,而且在解法上灵活多样, 能较好体现数学思想方法的应用. 在历年的高考试题中, 既有基础题, 也有一些小综合的中档题, 更有一些以难题的形式出现. 解决这类问题要掌握多方面的知识, 综合运用各种数学技巧, 灵活选择合理的解题方法, 本文就几类最值问题作一探求. 关键词:数学;函数;最值;最大值;最小值 1. 常见函数的最值问题. 1.1 一次函数的最大值与最小值. 一次函数b kx y +=在其定义域(全体实数)内是没有最大值和最小值的, 但是, 如果对自变量 x 的取值范围有所限制时, 一次函数就可能有最大值和最小值了. 例1. 设0>a 且 a ≠1,)1(1 x a ax y -+=,(0≤x ≤1),求y 的最大值与最小值. 解: )1(1x a ax y -+=可化为:.1 )1(a x a a y +-=下面对一次项系数分两种情况讨论: (1)当a >1时,a -a 1>0,于是函数a x a a y 1 )1(+-=的函数值是随着x 的增加而增加的,所 以 当x =0时,y 取最小值 a 1; 当x =1时,y 取最大值a . (2)当0<a <1时,01<-a a ,于是函数a x a a y 1 )1(+-=的函数值是随着x 的增加而减少的,所以 当x =0时,y 取最大值 a 1; 当x =1时,y 取最小值. 例2. 已知z y x ,,是非负实数,且满足条件 .503,30=-+=++z y x z y x 求z y x u 245++=的最大值和最小值. 分析: 题设条件给出两个方程,三个未知数z y x ,,,当然, z y x ,,的具体数值是不能求出的.但是,我们固定其中一个,不防固定x ,那么z y ,都可以用x 来表示,于是u 便是x 的函数了(需注意x 的取值范围),从而我们根据已知条件,可求出u 的最大值与最小值.

直角坐标系中图形的两次平移与坐标的变化(20200719184846)

直角坐标系中图形的两次平移与坐标的变化导学案 【学习目标】[ 1.在学习一次平移坐标的变化特点的基础上,继续探究依次沿两个坐标轴方向平移 后坐标的变化特点及根据坐标的变化探究图形变化特点? 2.经历探究依次沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系,提高学生的探究能力和方法,发展空间观念? 【学习过程】 一、复习导入 1、平移的定义:在平面内,将一个图形沿着____________ 移动 _________ 的距离,这样 的图形运动称为平移。平移不改变图形的_________ 和________ ,改变的是位置。 原图形上点的坐标平移方向平移距离对应点的坐标 (x,y) 沿x轴方向 向右平移 a个单位长度 (a > 0) x a, y 沿y轴方向 向上平移 x,y a 内容1:将图中鱼F”先向右平移3个单位长度,再向下平移2个单位长度,得到新 “鱼F'”,请在平面直角坐标系中画出平移后的图形解:(1)在平面直角坐标系中画出“鱼F'”。 (2)能否将“鱼F'”看成是“鱼F”经过一次平移得到的?如果 能,请指出平移的方向和平移的距离。 (3)在“鱼F”和“鱼F'”中,对应点的坐标之间有什 么关系?

内容2:如果将“鱼” F向右平移4个单位长度,再向下平移3 个单位长度,得到“鱼” N, 上面问题的探究结果又是什么情 况呢? 内容3、议一议: 一个图形依次沿x轴方向、y轴方向平移后所得图形与原来的图形相比,位置有什 么变化? 规律归纳:设(x,y)是原图形上的一点,当它沿x轴方向平移a(a > 0)个单位长度、沿y轴方 原图形上的点平移方向和平移距离对应点 的坐标 坐标的变化 (x, y) 向右平移a个单位长度,向上平移b个单位长度 向右平移a个单位长度,向下平移b个单位长度 向左平移a个单位长度,向上平移b个单位长度 向左平移a个单位长度,向下平移b个单位长度 归纳如下: 在平面直角坐标系中,一个图形先沿X轴方向平移a( a >0)个单位长度, 再沿丫轴方向平移b( b>0)个单位长度,可以看成是由原来的图形经过一次平移 得到的,则图形沿对应点连线方向平移______________ 单一位长度。

【新青岛版】八年级数学下册专题讲练:巧解最值问题试题(含答案)

巧解最值问题 利用函数性质求最值 1. 利用图象求最值: 如:若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降。当人日均用水量低于10千克时,政府将向当地居民送水。那么政府应开始送水的最合适号数为几号? 答案:24号。 2. 利用几何图形变化求最值: 如:在矩形ABCD 中,动点E 从点B 出发,沿BADC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,AB =4,AD =5时,则当x 的值在什么范围时,△BCE 面积最大? 答案:49x ≤≤。 3. 根据实际问题中条件求最值: 如:某市出租车价格是这样规定的:不超过2公里,付车费5元,超过的部分按每千米 1.6元收费,已知李老师乘出租车行驶了x (x >2)千米,付车费y 元,则所付车费y 元与出租车行驶的路程x 千米之间的函数关系为 。如果李老师有22元,那么他所乘车的最远距离是多少? 答案: 1.6 1.8y x =+,12.625千米。 4. 利用函数解析式中自变量的求值范围求最值: 如:某商场欲购进A 、B 两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元。 ⑴求y 关于x 的函数关系式? ⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何才能获利最多?(注:利润=售价-成本 答案:(1)y

(2)购进A 种饮料125箱,购进B 种饮料375箱。 总结: 从一次函数的基本性质来看,当自变量 x取全体实数时,它没有最值,但如果自变量x的取值不是全体实数,那么它可能有最值,因此,解决有关一次函数的最值问题时。关键是求出自变量x的取值范围,然后用一次函数的性质去处理。 解析:弹簧在一定的称重范围内弹簧的长度与物体重量满足一次函数关系,设出一次函数关系式,根据图中提供的数据求得函数关系式,令x =10代入求得y 的值即可。 答案:由表中关系可以得到,弹簧长度y (厘米)与称重x (千克)的关系是一次函数关系, ∴设弹簧长度y (厘米)与称重x (千克)的关系式为y =kx +b , 根据表格中提供的数据得当x =1时,y =4.5;当x =2时,y =5.5;∴ 4.52 5.5 ???k b k b +=+=, 解得:13.5??? k b ==,∴解析式为y =3.5+x ,当弹簧最长时就是所挂重物最重时,此时x =10,∴y=3.5+10=13.5,故弹簧最长为13.5厘米。故选B 。 点拨:本题考查了用待定系数法确定函数的解析式及如何求函数值的问题,把实际问题抽象成数学知识解决,是解决此类问题的关键。 利用自变量取值范围求最值 利用自变量取值范围求解最值问题,关键是正确寻找题目中的不等关系,列不等式组求得最佳方案。 例题 为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本。若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,请你设计一种组建方案,使总费用最低,最低费用是( ) A. 22300元 B. 22610元 C. 22320元 D. 22650元 解析:设组建中型图书角x 个、小型图书角(30-x )个,由于组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本。若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,因此可以列出不等式组80x +30(30?x )≤1900 50x +60(30?x )≤1620,解不等式组然后去整数即可求解。 答案:设组建中型图书角x 个、小型图书角(30-x )个,

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

均值不等式定理求最值

均值不等式定理求最值 复习目标:熟练掌握均值不等式求最值的思想方法和实际应用 一、 基础知识 1、 均值不等式定理 (1)、ab b a b a 2R,22≥+∈、 (当且仅当b a =时取“=”) (2)、 ab b a R b a 2,≥+∈+、 (当且仅当b a =时取“=”) (3)、2 2,,2 2b a b a ab R b a +≤+≤∈+ (当且仅当b a =时取”=”) 此定理六个方面的应用要多体会掌握。 (4)、abc c b a R c b a 3,333≥++∈+、、 (当且仅当c b a ==时取“=”) (5)、3 3,abc c b a R c b a ≥++∈+、、 (当且仅当c b a ==时取”=”) 2、 均值不等式定理求最值的基本原则 (1)、“一正”:要求在正数条件下或能转化为正数条件的情况下才用均值不等式定理。 (2)、“二定”:即“和定积大与积定和小”原则,这一原则要求:求某些变量的和的最小值问题应使变量的乘积为定值;而求变量的乘积的最大值问题应转化到变量的和为定值。反之,变量的和为定值必转化为求变量积的最大值问题,变量的积为定值必转化为求变量和的最小值问题。总之,使用均值不等式定理后使变量消去成常数是均值不等式定理求最值的指导思想,也是产生各种技巧的力量源泉。 (3)、“三相等”:即“二”成立原则,这一原则要求验算“二”成立的充要条件,这是保证所求最值正确与否的关键。完成这一步骤主要看两点:一看“二”成立的充要条件是否有解;二看“二”成立的充要条件有解时的解是否在函数定义域内。如这两点均符合要求,所求函数最值就正确无疑了。 3、均值不等式定理及在求函数最值中的应用是高考热点之一。均值定理的运用最为灵活,往往需灵活变形才能使用。用均值不等式求最值应着重注意三原则:一正、二定、三相等,其中“三相等”就是等号成立的充要条件,这是求解变量取什么值可有最值的唯一途径,应该注意求得的变量是否在函数的定义域内或满足题中的限制条件下,这也是验证这种方法是否可行的唯一办法。如不满足三相等条件,要及时调整解题思路,另寻解题方法。而转到函数单调性和数型结合是常见和有效的方法。其中函数x b ax y += )0,0(>>b a 型(对a 、b 其它情况可类似讨论)在求函数最值中的应用要掌握,该函数是奇函数且在],0(a b 单调递减,在),[+∞a b 单调递增。 二、基础训练 1、 函数)0(16>+=x x x y 的最小值是____________,相应=x _____________ 2、 函数1222++=x x y 的最小值是____________,相应=x _____________

求式子最值的几种常见的方法

求式子最值的几种常见的方法 我任教新教材已有二个轮回了,通过这几年教学和学习中,总结了几种求式子最值的常用方法,式子最值主要还是求函数最大值和最小值。 第一种方法是熟练利用基础函数的一些性质,基础函数包括指数函数、对数函数、幂函数、三角函数,这此函数图像和性质,学生必须牢牢记住掌握。比如二次函数在实数内求最值,只求对称轴函数值即可。再加上开口方向就定出最大或最小值。比如:y=sinx 有实数内求最大或最小值,掌握正弦函数性质,直接指出最大值是1,最小值是-1。若求基础函数在定义域内某一个区间内最值,就得看此区间函数单调情况再求最值。 方法二:利用单调性求最值,比如:y=1x-2在区间[3,4]上最值,先证明y=1x-2在[3,4]上是单调递减的,所以x=3时,y最大1,x=4时,y最小1/2。 方法三:利用线性规划求最值 例如:若变量x,y满足y≤1x+y≥0x-y-2≤0 则z=x-2y取值范围点。 A.[-1,3) B.[-3,1)

C. [-3,3) D. [-1,1) 先画可行域,画直线x-2y=0,平移直线x-2y=0在可能域内求使,z= x-2y产生最值的最优解,代入z= x-2y,选C。 有些函数最值还可以把线性规划问题加深求非线性目标函数最值,常利用式子几何意义来求,如:已知实数x,y满足约束条件x≥-1y≥0x+y≥1 则(x+2)2+y2最小值是 解决这个问题利用几何意义在可行域内找一点到(-2,0)点距离平方最小,最后得9/2,这些类型还有利用斜率意义等。 方法四:利用不等式求最值 利用不等式求最值,常用基本不等式2,a>0,b>0,则a+b≥2ab这个式子必须有一个固定值,当a+b确定能求出,ab积最大值,当ab积固定时能求出a+b的最小值,但在a=b前提下。老师在教学中给同学总结一正、二定、三相等,例如:设a>b>c,n∈N且1a-b+1b-c ≥na-c恒成立,求n的最大值是() A. 2 B. 3 C. 4 D. 6 解决这道题实际上就是求(a-c)(1a-b+1b-c)的最小值,上式变形[(a-b)+(b-c)][ 1a-b+1b-c]展开后利用重要不等式求出选C,利用不等式2求最

精选初中数学常见8种最值问题

初中数学最值问题常见的8种解题方法一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则的最大值为________。 解:设,易知 由,得

从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为() A. 3 B. C. D. 6 解:设,则 从而可知,当时,取得最小值。故选(B)。

三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法

例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。设,记为m的最小值,y为m的最大值。则__________。 解:由得 解得 由是非负实数,得 从而,解得。 又, 故

于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。 解:设矩形B的边长为x和y,由题设可得。从而x和y可以看作是关于t的一元二次方程 的两个实数根,则 因为, 所以, 解得

所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为 _________。 解:由得,代入得。 而由和可知的整数。 所以,当时,取得最大值,为。 七. 借助几何图形法 例8. (2004年四川省初中数学联赛)函数 的最小值是________。 解:显然,若,则。因而,当取最小值时,必然有。

平面直角坐标系下的图形变换

平面直角坐标系下的图形变换 王建华 图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。 在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的 关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活 平移: 上下平移横坐标不变,纵坐标改变 左右平移横坐标改变,纵坐标不变 对称: 关于x轴对称横坐标不变,纵坐标改变 关于y轴对称横坐标不变,纵坐标不变 关于中心对称横坐标、纵坐标都互为相反数 旋转:改变图形的位置,不改变图形的大小和形状 旋转角旋转半径弧长公式L=nπR/180 一、平移 例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化? 解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2). 向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2). 比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度. 友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。 析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B 反思:①根据平移的坐标变化规律: ★左右平移时:向左平移h个单位) , ( ) , (b h a b a- → 向右平移h个单位) , ( ) , (b h a b a+ → ★上下平移时:向上平移h个单位) , ( ) , (h b a b a+ → 向下平移h个单位) , ( ) , (h b a b a- → 二、旋转 例3.如图2,已知△ABC,画出△ABC关于坐标原点 0旋转180°后所得△A′B′C′,并写出三角形各顶点的 坐标,旋转后与旋转前对应点的坐标有什么变化? 解析:△ABC三个顶点的坐标分别是: A(-2,4),B(-4,2),C(-1,1). △A′B′C′三个顶点的坐标分别是: 图2 图1 B/ 图 2 图1

均值定理在函数最值问题中的应用

龙源期刊网 https://www.wendangku.net/doc/091494964.html, 均值定理在函数最值问题中的应用 作者:李学芳 来源:《文理导航》2017年第05期 【摘要】在中职数学的教学过程中,函数是当中最重要也是最难的知识点,利用均值定理求解函数的最大值和最小值是中职数学的重要教学内容之一。如何将这一知识点具体、准确地讲解也成为很多数学老师的研究方向。笔者具有多年的数学教学经验,主要针对一些典型的例题来分析均值定理在函数最值问题中的教学技巧和今后改善的教学方向,更好地调控实际教学的方向。 【关键词】中职数学;均值定理;函数;最值问题 俗话说得好:“学好数理化,走遍天下全不怕”,我们在讲解数学知识的过程中也要充分和实践相结合。综合分析多年来的单招高考试题,不难发现,试卷的重难点大多集中在函数这一章节。函数知识点灵活,和中职所学的很多知识都有关联,均值定理是中职数学的重要组成部分,在单招高考中占有一定的比重,成为单招高考的高频考点,总能以各种形式出现在单招高考的舞台上,成为考验学生综合能力素养的体现。因而,我们教师如何将均值定理运用于函数最值这一个知识点讲得通透准确显得尤为关键,下面给出常规的例题讲解和教学方法。 一、指导学生多种解题思路,避免出题陷阱 例1 求函数f(x)=+x(x 对于均值问题,最常规的解题思路是直接套用公式,但是很多学生往往忽视使用公式的前提条件,忽视“一正,二定,三相等”这一前提,因此在解答这道题时很多初学者会犯一类错误,直接由均值定理得出答案是2,但很明显,当x 例2 如果a>b,ab=1,求的取值区间。 这类题我们首先应该观察所求表达式本身的分子与分母的关系,通过使用配凑法以及取公因式得到新的函数,根据题目所给条件,确定a>b,a-b>0确保了“一正,二定,三相等”的 使用原则,令x=a-b=a-,则f(x)==x+(x>0),很快利用公式可以算出取值区间。在解决此类题的过程中,最重要的是引导学生简单地分析题目的条件,根据所给关系式运用配凑法等找出解决题目的核心,然后判断题目所给的既定条件是否符合均值定理的使用原则,找出核心的关系式是解决此类问题的关键。其实之所以均值问题会成为单招高考中的杀手锏,是因为学生不能够根据题目条件很迅速地确定答题关键,找出核心的关系式。因此,我们针对学生出现的这类问题,需要适时地调整我们的教学方法,尽量做到一题多解,并且指导学生掌握正确的学习方法,这对后期的学习会有更大地帮助。

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

创设乐学情境,激发学习兴趣

创设乐学情境,激发学习兴趣 当前许多教师在"教"与"学"的关系上,主要以教师传授为主,采取填鸭式、注入式的方法,反映在数学教学中则是重灌轻导、重讲轻练,强调一致性,忽视学生个性发展,造成学 生被动学习,对数学学科缺乏兴趣,甚至苦学、厌学,对双基的掌握和能力的培养更无法谈及。为改变这些弊端,我在数学教学中开展了“创设乐学情境,激发学习兴趣”的操作,即通 过教师运用多变的手段,精心设计、创设愉快的学习情境,营造良好的学习氛围,有效地激 发学生的学习动机,使学生自觉自主地学习,提高教学效益。 下面就将我在小学数学教学中的一些具体作法小结如下: 一、创设人际和和谐的情境,是激趣乐学的前提 教学是教师"教"和学生"学"的双边活动,因此创设和谐的师生关系,能最大限度地提高 教学效果。在教学中我非常重视师生人格上的平等,发扬学问中的自由和组织管理上的民主(如在分组教学中大胆让小组长自己主持对学习的讨论),力争体现学生的主体地位,让学 生认识到自己就是学习的主人,从而自觉、自主地学习。 二、创设轻松的学习环境,是激趣乐学的关键 在应试教育的影响下,课堂教学仿佛套上了枷锁。因此只有创造轻松的学习环境,使学 生从应试中解放出来,才能活泼主动地学习。在教学中,我首先减轻了分数对学生的压力, 针对优、中、差三类生建立了分类学习目标,通过注重提问、练习、测查等方式使各类生均 享受到成功的喜悦;其次是不布置家庭作业,尽力使学生在课堂上就掌握所学知识;第三是 运用多变的教学方法,尽可能创造轻松、愉快、和谐的学习环境,使学生轻松地掌握所学知识。 三、创设浓郁的趣味情境,让学生体会到学习兴趣之乐 寓教学于游戏中,符合儿童的身心特点,特别是低年级儿童更喜爱游戏活动。十九世纪 德国著名教育家弗里克.福培尔曾说过,小孩的工作就是游戏。因此,在教学中适当彩游戏 的方式,学生十分欢迎,兴趣更浓,教学效果也更好。如在低年级教学中用开火车、开房门、找朋友、夺红旗、放鞭炮等游戏,使学生在轻松、愉快的气氛中学到了数学知识。 四、创设主动参与的情境,让学生体会到参与之乐 在数学教学中,根据学生的"好奇心",充分发动学生动手实践或亲身制作学具是提高学 习兴趣的一种方法,它会使学生在实践操作中发现问题,手脑并用,通过自身的探索后获得 成功,体验到参与之乐。如在教学《长方体的表面积》时,可让学生在先课前自制一个长方体,通过各种感官理解什么是长方形的表面积,然后让学生把模型拆开,成显一个组合图形,让学生动手量出长方体的长、宽、高,引导学生仔细观察,鼓励学生用多种方法来计算长方 体的表面积,师最后通过比较、分析、归纳,得出长方形的表面积公式,学生不仅兴趣更浓,积极性高,而且通过亲身参与,印象更加深刻,记忆更加牢固。 五、创设探索、研究的情境,让学生体会到求知之乐 即:创设问题的情境,让学生带着疑问,在师的诱导下探索研究,从而激起学生求知的 需要。如:师在教学"能被 2.5整除的数"这课时,在导入新课时,师让学生任意说一个整数,师马上就能说是否能被2.5整除,这一现象使学生感到十分惊奇、羡慕,就急于知道这是为 什么,于是在师的诱导下,逐步发现能被2.5整除数的特征",从而体验到了求知之乐。 六、创设竞争的情境,让学生得到进取之乐

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

运用均值定理求最值的几点注意和常用技巧-EOL

运用均值定理求最值的:几点注意和常用方法与技巧 著名的平均值不等式,,,,"212121n n n n a a a n a a a R a a a 则 若 仅当n a a a 21),2(N n n 时等号成立”是一个应用广泛的不等式,许多外形与它截然相异的函数式,常常也能利用它巧妙地求出最值。且运用均值定理求最值是历年来高考的热点内容。因此必须掌握用重要不等式求函数的最值。 一、重视运用过程中的三个条件:“正数、取等、定值”。 (1) 注意“正数”。 例1、求函数x x y 4 的值域 。 误解:44 24 x x x x (仅当2 x 时取等号),所以值域为 ,4。 这里错误在于使用均值定理ab b a 2 时忽略了条件: R b a , 正确解法:)2(44 24,0)(时取等号当时当 x x x x x x a ; 4 4 )2(4)4)((2)4()(0,0)( x x x x x x x x x b 时取等号当而时当所以函数的值域是 44 y y y 或。 (2) 注意“取等” 例2、设 R x ,求函数2 1 3x x y 的最小值。 误解:拿到很容易想到用均值定理,所以有 3min 3322232312312, y x x x x x x y R x 。 这里的错误是没有考虑等号成立的条件。显然要2 1 2x x x ,这样的不存在x ,故导致错误。此题用均值定理,需要拆项,同时要等号成立,需要配一个系数, 正确解法:时取等号)23322123(182312323312323x x x x x x x x y 。 所以2 183,3183min 3 y x 。 例3、的最大值求且有设by ax y x b a R y x b a ,6,3,,,,2 2 2 2

如何创设服装专业课的乐学情境

如何创设服装专业课的乐学情境 创设服装工艺课的乐学情境,是需借助于情感、意志的作用来完成的,我国古代教学家孔子曾说过:“知之者不如好之者,好之者不如乐之者,”兴趣是最好的老师,它对于一个人追求事业的成功及其能力的发展是极其重要的。职业学校服装专业的学生大多是女生,在专业的选择上,大多是单从爱美,即从学会服装设计与制作这门手艺来打扮自己这种美好的情感出发的,如何唤起学生的学习热情和创造动力就要求教师根据教学特点,采用不同的教学方式和方法,依据教材内容来创设乐学情境,使学生在逐步深入探讨的过程中产生掌握知识、形成技能的强烈欲望,从而实现“教学相长”。十几年来我试着从以下几方面来进行授课,受到了良好的效果。 一、感情迁徙是创设乐学情境的基础 人的认识活动是伴随着人的情感因素的,情感是追求真理的动力,是智力发展的翅膀,积极的情感是人的认识活动的内驱力,能够催人奋进。由于学生生理和心理上的特点,他们往往是情感支配理智,促进行动。他们对待学科的态度,并非完全由这一学科重要与否而取舍,而在一定程度上取决于和教师的亲疏关系,老师的为人品德,往往影响他们学习情绪的稳定。他们喜欢某位老师也往往喜欢这位老师所教的学科而努力学习,所谓“亲其师,信其道”。这说明课堂乐学情境的创设不仅和当堂课的教学内容和方法有关,而且和教师与学生的关系有关。职高学生基础较差,思想包袱沉重,他们有着属于自己的烦恼,我们不能因为他们差而过多责备、埋怨,而应主动接触他们,关心、热爱、尊重他们,真正走进学生的心灵,心灵之门只能用心灵的钥匙来开启,情感之火只能用情感的火种来点燃,教师只有发自内心的关爱学生,才能换来学生爱的回应。从根本上理解他们,从而树立起他们的自尊心和自信心。激发他们的学习乐趣,建立起真正融洽和谐的师生人际关系,通过师生之间的信息传递,情感交流与思维碰撞,从而让每个学生学会学习、学会思考。教师则通过认真研究教材和学生,营造融洽和谐的课堂教学氛围,潜心启发、精心引导、诱发学生积极思维,鼓励学生大胆提问、质疑、积极参于问题的评价与陈述、总结等。并对学生的积极探索的表现及时给予充分的肯定,让每个学生通过参与、体验成功、增强自信心,做到“课上是师生,课下是朋友”,才能为学生创设乐学情境打下基础。 二、精巧的开头,是创设乐学情境的前提

求函数最值的方法归纳

求函数最值的常用以下方法: 1.函数单调性法 先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现. 例1 设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为1 2,则a =________. 【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a 的值. 【解析】 ∵a >1,∴函数f (x )=log a x 在区间[a,2a ]上是增函数,∴函数在区间[a,2a ]上的最大值与最小值分别为log a 2a ,log a a =1.∴log a 2=1 2 ,a =4.故填4. 【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m ,n ]上的最值:若函数f (x )在[m ,n ]

上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.2.换元法 换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.如可用三角代换解决形如a2+b2=1及部分根式函数形式的最值问题. 例2 (1)函数f(x)=x+21-x的最大值为________. 【解析】方法一:设1-x=t(t≥0), ∴x=1-t2, ∴y=x+21-x=1-t2+2t

图形在坐标系中的平移专题训练

图形在坐标系中的平移 【知识要点】 1.点的平移变换与坐标的变化规律是:点(x ,y )右(左)移m 个单位,得对应点(x ±m ,y ),点(x ,y )上(下)移n 个单位,得对应点(x ,y ±n ). 2.图形的平移变换与坐标的变化规律一般是通过从图形中特殊点,转化为点的平移变换解决. 【温馨提示】 1.平移只改变物体的位置,不改变的物体的形状和大小,因此,平移前后图形的面积不变. 2.一个图形进行平移,这个图形上所有的点的坐标都要发生相应的变化;反之,如果图形上的点的坐标发生变化,那么这个图形进行了平移. 【方法技巧】 1.点的平移与其坐标的变化规律是解决平移问题的关键,平移的方向决定了坐标是加还是减,平移的距离决定了加(或减)的数值. 2.作平移后的图形时,可先作出平移后图形中某些特殊点,然后再连结即可得到所需要的图形. 专题一 图形平移中的规律探究题 1.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示. (1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向. O 1 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 x y

2.如图所示,矩形ABCD 的顶点坐标分别为A (1,1),B (2,1),C (2,3),D (1,3). (1)将矩形ABCD 向上平移2个单位,画出相应的图形,并写出各点的坐标; (2)将矩形ABCD 各个顶点的横坐标都减去3,纵坐标不变,画出相应的图形; (3)观察(1)、(2)中的到的矩形,你发现了什么? 3.在直角坐标系中,△ABC 的三个顶点的位置如图所示,现将△ABC 平移使得点A 移至图中的点A ′的位置. (1)在直角坐标系中,画出平移后所得△A′B′C′(其 中B ′、C ′分别是B 、C 的对应点). (2)计算: 对应点的横坐标的差:=-A A x x ' , =-B B x x ' ,=-C C x x ' ; 对应点的纵坐标的差:=-A A y y ' ,=-B B y y ' ,=-C C y y ' . (3)从(2)的计算中,你发现了什么规律?请你把发现的规律用文字表述出来. (4)根据上述规律,若将△ABC 平移使得点A 移至A ″(2,-2),那么相应的点B ″、C ″(其中B ″、C ″分别是B 、C 的对应点)的坐标分别是 、 . 专题二 图形平移中的规律探究题 4.初三年级某班有54名学生,所在教室有6行9列座位,用(m ,n )表示第m 行第n 列的座位,新学期准备调整座位,设某个学生原来的座位为(m ,n ),如果调整后的座位为(i ,j ),则称该生作了平移[a ,b ]=[m - i ,n - j ],并称a+b 为该生的位置数.若某生的位置数为10,则当m +n 取最小值时,m ?n 的最大值为 .

相关文档
相关文档 最新文档