文档库 最新最全的文档下载
当前位置:文档库 › 新能源汽车三电(电机电控电池)环境与可靠性试验-振动试验

新能源汽车三电(电机电控电池)环境与可靠性试验-振动试验

新能源汽车三电(电机电控电池)环境与可靠性试验-振动试验
新能源汽车三电(电机电控电池)环境与可靠性试验-振动试验

新能源汽车三电环境与可靠性试验-振动试验

一、电机电控正弦振动

1.1 试验标准:GB/T18488.1--2015

1.2 试验条件选择:依据装车部位选取条件,一般为“其他部位”。下图注释1中 X和Y 方向位移和加速度可以除2,但目前各大供应商均选择量级不除2来测试。

二、电机电控随机振动

依据装车类型分为纯电动乘用车,混合动力乘用车,商用车。

2.1 纯电动乘用车试验标准:ISO16750-3-2007

2.2 试验条件选择:试验IV-乘用车,弹性体(车身)

2.3 混合动力乘用车试验标准:ISO16750-3-2012

2.4 试验条件选择:试验II- 乘用车,变速箱

2.5 商用车试验标准:ISO16750-3-2012

2.6 试验条件选择:试验VII- 商用车,弹性体(固有频率小余30HZ以下需要追加测试,具体请查阅标准)

2.7 振动叠加温度选择(高温一般为105~125)

2.8 振动台选择,电机质量大,振动量级大,一般选择5吨以上推力振动台,台面最好为800mm*800mm以上。电控质量轻,尺寸小,一般选择3吨以上推力振动台,台面最好为600mm*600mm以上。

三、电池包随机振动

3.1 试验标准:GB/T31467-2015

3.2 Z方向试验条件

3.3 Y方向试验条件1

3.4 Y方向试验条件2

3.5 按电池包装车位置选取Y轴试验条件

3.6 X方向试验条件

3.7 试验顺序和方向定义:Z→Y→X 水平纵向X方向即为行车方向

3.8 振动台选择,电池包尺寸大,质量重,振动量级小,一般选择5吨以上推力振动台,台面1200mm*1200mm以上。

新能源汽车电机驱动系统关键技术展望[J]. 科学导报·学术, 2019年第32期

新能源汽车电机驱动系统关键技术展望新能源汽车电机驱动系统关键技术展望[J]. 科学导报·学术, 2019年第32期摘要:本文探讨了新能源汽车电机驱动系统的关键技术及发展趋势,包括驱动控制器中的功率半导体器件及封装、智能门极驱动、基于器件的系统集成设计,以及驱动电机中的扁铜线、多相永磁电机、永磁同步磁阻电机等关键技术。其中,着重介绍了当前车用电机驱动技术的发展趋势,并指出永磁同步电机在未来10年内将依然是新能源汽车市场的主流驱动电机。同时,通过横向比较指出当前我国在驱动电机发展道路上所面临的关键问题,可以为我国未来新能源汽车技术发展提供一定参考。 关键词:新能源汽车;电机驱动系统;永磁同步电机 1、前言 随着人们生活水平的提高,汽车逐渐走进千家万户,但是环境污染问题也随之加重。发展的问题只能靠发展来解决。汽车尾气是影响空气质量的重要因素,为了缓解能源紧缺,减少环境污染,新能源汽车应运而生。但是新能源汽车发展受到技术的掣肘,新能源汽车电机驱动系统控制技术作为新能源机车发展的关键技术,尚未成熟,仍需继续探索和优化。 2、新能源汽车技术的发展前景 2.1新能源汽车质量发展 未来,新能源汽车技术必然会向环保方向逐渐演变和深化,于是减少能耗就要求减少小汽车本身的质量。有研究数据显示,内燃机汽车减少10%的汽车质量就能减少燃油消耗量的7%,这也决定了新能源汽车将向轻量化发展,以提高新能源汽车续航能力与动力性。新能源汽车轻量化发展指的是汽车的车身设计,此外还有电池、传动设备等,今后的汽车制造还需使用更多新型的轻质材料,如铝合金、高性能钢、其他复合材料,而相关企业也要从新能源汽车结构上进行改进,确保轻量化的基础上保障汽车结构的完整和性能强度提升,进而提高新能源汽车生产率,使其受到更多消费者的青睐。 2.2新能源汽车电池发展 电池是新能源汽车的核心,其产生的动力均依靠电池,对电池的制造要注重工艺与成本的结合。实际上,不少电池制造企业在工艺与成本的新能源电池提供

电动汽车四轮独立驱动技术

电动汽车四轮独立驱动技术 第一章:绪论 1.1 引言 内燃机汽车自20世纪初出现至今,在其自身随人类科技的进步经历了巨大的变的过程中也给人类生活和生产带来了巨大方便,为人类社会的进步做出了巨大的贡献,但其消耗日益紧缺的石油并产生大量污染物也使人类赖以生存的环境恶化。因此近年来由于环境恶化及能源紧张等问题,迫切需要开发低能耗,无污染的汽车。因此,电动汽车成为21世纪汽车技术研究的热点。 混合动力汽车与纯电动汽车是电动汽车研究的两个分支。经过近些年的发展,电动汽车技术日趋成熟,部分产品已进入商业化应用如Toyota Prius。目前,电动汽车传动系统多数在传统内燃机汽车的传动系基础上进行一些改变,进而将电动机及电池等部件加入总布置中。这种布置难以充分发挥电动汽车的优势。为使电动汽车对传统内燃机汽车形成更大的竞争优势,设计出适合电动汽车的底盘系统势在必行。而四轮独立驱动技术则可使电动汽车底盘实现电子化,主动化,大大提高电动汽车的性能。使电动汽车与传统汽车相比具有更强的竞争力。 1.2 四轮独立驱动技术的特点 电动汽车四轮独立驱动系统是利用四个独立控制的电动机分别驱动 汽车的四个车轮,车轮之间没有机械传动环节。其电动机与车轮之间可以是轴式联接也可以将电动机嵌入车轮成为轮式电机,车轮一般带有轮边减速器。这种驱

动系统与传统汽车驱动系统相比有以下特点: (一)传动系统得到减化,整车质量大大减轻。由电动机直接驱动车轮甚至两者集成为一体。这样省掉了离合器、变速器及传动轴等传动环节,传动效率得到提高,也更便于实现机电一体化。传动系质量在汽车整车质量中占有很大比重,机械传动系的消失,使汽车很好的实现了轻量化目标。另外,由于动力传动的中间环节减少,传动系的振动及噪声得到改善。甚至在采用纯电力驱动时,可实现无声行驶。这是美国海军的"RST-V"侦察车及其新一代军用"悍马"汽车采用四轮独立驱动技术的重要原因。 (二)与传统汽车相比,四轮独立驱动系统可通过电动机来完成驱动力的控制而不需要其他附件,容易实现性能更好的、成本更低的牵引力控制系统(TCS)、防抱死制动系统(ABS)及动力学控制系统(VDC)。传统汽车的TCS 与ABS系统均须对发动机与制动系进行联合控制才能达到较好性能,由于机械系统的响应较慢,且受制动器,液压管路及电磁阀的延迟等因素影响,传统内燃机汽车的ABS系统与TCS系统的实际时间延迟达50~100ms。限制了TCS系统与ABS系统的性能提高,而且增加能耗。与内燃机相比,无论在加速还是减速,电动机转矩响应都非常快且容易获得其准确值,这对TCS、ABS、VDC系统来说是非常重要的。因此电动机作为ABS、TCS及VDC系统的执行器是非常理想的。 (三)对各车轮采用制动能量回收系统,则可大大提高汽车能量利用效率,且与采用单电动机驱动的电动汽车相比,其能量回收效率也获得显著增加。这对提高电动汽车续驶里程是很重要的。 (四)实现汽车底盘系统的电子化、主动化。现代汽车驱动系统布置

新能源汽电机电控最新深度分析

新能源汽电机电控最新深度分析 一、市场空间 新能源汽车电机、电控系统作为传统发动机(变速箱)功能的替代,其性能直接决定了电动汽车的爬坡、加速、最高速度等主要性能指标,电机电控系统其技术、制造水平直接影响整车的性能和成本。电控和电机占比约为20%至30%,整车制造及其他零部件占到30%以上。通常一辆新能源汽车搭载电机与电控各一个,高达96%的纯电动汽车电机与电控为配套供应,电机与电控的配套能够尽可能的实现零部件集成化,未来“三电”配套是行业共识。 市场测算2020年我国电驱动系统310亿元需求规模,预计2020年新能源汽车产量达到200万辆水平,其中新能源乘用车占比达到73%、新能源专用车占比14%、新能源客车占比12%。 图表1:新能源汽车成本拆解

二、电机电控行业发展现状 1.电机行业分析 国内车用驱动电机多用永磁同步电机,原材料成本的占比较高,主要包括铁芯叠片、驱动轴体等钢材,钕铁硼等稀土永磁材料,镁铝合金以及铜材等基本金属。永磁电机核心的原材料就是钕铁硼磁材,钕铁硼磁性材料是钕、氧化铁等的合金,2015年全球钕铁硼永磁材料产量为14.3万吨,中国产量占比达到88.8%。 图表2:永磁电机的成本构成 长期以来国外电机企业在高端电机领域处于主导地位,包括专业汽车零部件供应商,如采埃孚(ZF)、大陆(Continental)、博世(Bosch)国际汽车供应量巨头。台湾富田电机是特斯拉车用电机的独家供应商,并向宝马MiniE车型供应交流电机的定子与转子硅钢片。2013年,富田电机共向特斯拉供应驱动电机2.6万台,2015年产量突破5万台,2016年突破8万台,随着MODEL3的正式启动量产,电机独家供应商富田电机将深度受益。

新能源汽车三电(电机电控电池)环境与可靠性试验-振动试验

新能源汽车三电环境与可靠性试验-振动试验 一、电机电控正弦振动 1.1 试验标准:GB/T18488.1--2015 1.2 试验条件选择:依据装车部位选取条件,一般为“其他部位”。下图注释1中 X和Y 方向位移和加速度可以除2,但目前各大供应商均选择量级不除2来测试。 二、电机电控随机振动 依据装车类型分为纯电动乘用车,混合动力乘用车,商用车。 2.1 纯电动乘用车试验标准:ISO16750-3-2007 2.2 试验条件选择:试验IV-乘用车,弹性体(车身) 2.3 混合动力乘用车试验标准:ISO16750-3-2012 2.4 试验条件选择:试验II- 乘用车,变速箱

2.5 商用车试验标准:ISO16750-3-2012 2.6 试验条件选择:试验VII- 商用车,弹性体(固有频率小余30HZ以下需要追加测试,具体请查阅标准) 2.7 振动叠加温度选择(高温一般为105~125)

2.8 振动台选择,电机质量大,振动量级大,一般选择5吨以上推力振动台,台面最好为800mm*800mm以上。电控质量轻,尺寸小,一般选择3吨以上推力振动台,台面最好为600mm*600mm以上。 三、电池包随机振动 3.1 试验标准:GB/T31467-2015 3.2 Z方向试验条件 3.3 Y方向试验条件1 3.4 Y方向试验条件2

3.5 按电池包装车位置选取Y轴试验条件 3.6 X方向试验条件 3.7 试验顺序和方向定义:Z→Y→X 水平纵向X方向即为行车方向 3.8 振动台选择,电池包尺寸大,质量重,振动量级小,一般选择5吨以上推力振动台,台面1200mm*1200mm以上。

YUY-5034新能源汽车电机性能检测实验台(三合一)

YUY-5034新能源汽车电机性能检测实验台(三合一) 一.产品简介 选用纯电动车驱动电机及控制系统(包含三种电动车常用电机:60V2.2KW永磁同步电机,60V2.2KW交流异步电机,60V2KW直流无刷电机)真实器件制作,展示新能源车驱动电机及控制系统的结构与工作原理,配备电机性能检测系统(数显电压电流表、转速表、扭矩表、功率表、磁粉制动器、测试上位机软件)实现电机的主要性能数据测试。适合于各类院校对驱动电机及控制系统理论和维修实训的拆装与维护、结构与原理认知、系统操作、功能动态演示、故障检测与诊断、电机主要性能数据测试教学需要。 二.产品功能 1.安装纯电动车驱动电机及控制系统真实器件、包含充电机与充电插座、驱动电机、点火开关、电机控制器、档位开关、加速踏板、电源开关、DC-DC模块、仪表、继电器、电池等模块等,真实可操作运行的纯电动车驱动电机及控制系统,展示系统的结构与原理、动态演

示系统工作过程。 2.实现纯电动车驱动电机及控制系统结构及原理的认知,体验驾驶员的意图与电机运转之间的关系,可完成驱动电机及控制系统性能各项检测。 3.配备电机性能检测系统(数显电压电流表、转速表、扭矩表、功率表、磁粉制动器、测试上位机软件)实现电机的主要性能数据测试。电机测试上位机软件可以显示一段时间内电机扭矩,转速,功率的变化曲线,可以直观的显示这几项参数在电机加速,减速过程中的变化情况。 4.面板采用4mm厚铝塑板,立式安装面板UV平板喷绘打印有彩色完整标准系统图板;学员可直观对照图板和实物,认识和分析系统的工作原理。 5.面板上安装有检测端子、可直接在面板上检测系统电路元件的电信号,如电阻、电压、电流、频率信号等。 6.多功能仪表真实显示系统电流与电压、转速、档位等数据变化。 7.电机控制器具有诊断接口,通过上位机软件进行读取系统数据流信息(包含刹车开关、档位、电机转速与电压电流、电子油门等工作状态)与故障内容。 8.安装故障模拟系统,能实现低压电路系统故障设置及诊断排除,可设置常见故障的设置及考核故障点12个。 9.设备框架采用40mm×40mm和40mm×80mm两种一体化全铝合金型材搭建,耐油耐腐蚀并易于清洁,台面宽40CM,台面铺装32mm厚彩色高密度复合板,经久耐用不生锈,带4个带自锁装置万向脚轮,便于移动。 10.配套实训(实验)指导书等教学资料,包含工作原理、实训项目、故障设置及分析等要点说明。 11.安装安全保护装置:急停开关、机械式电源总开关、维修开关、转动部位防护保护罩、

最新新能源汽车电机逆变器Power-HiL测试方案

新能源汽车电机逆变器Power HiL测试方案 新能源汽车电驱动系统的开发对业界来说是一个新的挑战,因为以往在传统的驱动系统开发上积累的测试规范和测试循环的相关经验并不能直接套用,并且需要新的流程。这是因为高电压部件的出现以及其要遵从国内和国际法规(比如ECE-R 100)和标准(比如 IEC 61851)。汽车E/E 系统必须同时具备实用、耐久、安全、紧凑、轻量化以及高效的功率和低成本这些特点。这些要求施加了高复杂性,尤其在系统级别上。 随着测试技术的进步,Power-HiL的出现电子部件的LV-HiL及网络测试的之间的空缺。Power-HiL方法能够进行控制接口的仿真,和高电压、高电流、高功率的仿真,这些是与实际应用情况精确吻合的,并且是可以复现的。任何现实中缺失的部件都可以使用各种高电压的模拟器代替。它们能够按照特定模型、系统特定硬件和实际工作点,来生成相应的电压和电流。特别地,这种Power-HiL 的方法能够使得部件在不影响其他部件的情况下一直工作在特定工作点下。 德国Scienlab能够实现对电驱动系统从各模块到整个系统的递进式测试,而且是全电气化的功率级仿真测试。在过去的几年中,Scienlab的Power-HiL 测试环境成为了测试电力电子车辆部件系统的非常成功的产品。典型的应用领域包括能量存储、逆变器、充电技术以及车载电气系统和动力传动系统。 系统组成: 针对新能源汽车电机逆变器的实际特点和工作需求,Scienlab逆变器提供一个优化的测试方案,通过高品质的电机模拟器及电池模拟器仿真逆变器实际的交流和直流工作环境,对逆变器的软件和硬件进行功率级的测试,同时作为一个开放的平台,支持汽车行业主流的HiL系统(如dSPACE、ETAS、MicroNova等),支持主流的环境温仓。为了保护被测的逆变器、测试台架以及人员安全,Scienlab 还有专门的独立的安全保护系统来确保安全。

新能源汽车三大核心部件(锂电池、电机、电控系统)可研报告

新能源汽车及新能源汽车三大核心部件(锂电池、电机、电控系统) 可 行 性 研 究 报 告

目录 第一章总论.............................................................. 错误!未定义书签。第一节项目概况 ........................................................ 错误!未定义书签。第二节研究工作的依据和范围 ................................ 错误!未定义书签。第三节研究工作的概况 ............................................ 错误!未定义书签。第四节研究结论 . (2) 第二章项目提出的背景和建设的必要性 ................. 错误!未定义书签。第一节项目提出的背景 ............................................ 错误!未定义书签。第二节项目建设的必要性 ........................................ 错误!未定义书签。第三章市场预测与建设规模 ..................................... 错误!未定义书签。第一节市场预测 ........................................................ 错误!未定义书签。第二节建设内容和建设规模确定的依据................ 错误!未定义书签。第三节项目建设规模 ................................................ 错误!未定义书签。第四章建设条件与场址 ............................................. 错误!未定义书签。第一节建设条件 ........................................................ 错误!未定义书签。第二节场址 ................................................................ 错误!未定义书签。第五章工程技术方案 ................................................. 错误!未定义书签。第一节项目组成 ........................................................ 错误!未定义书签。第二节总平面布置 .................................................... 错误!未定义书签。第三节土方平整设计 ................................................ 错误!未定义书签。

新能源汽车三电系统详解(图文并茂)

新能源汽车区别于传统车最核心的技术是“三电”,包括电驱动,电池,电控。 下面详细讲解一下三电基础知识:

一、电池 电池是与化学、机械工业、电子控制等相关的一个行业。电池的关键在电芯,电芯最重要的材料便是正负极、隔膜、电解液。正极材料广为熟知的有磷酸铁锂、钴酸锂、锰酸锂、三元、高镍三元。 动力电池是非常“年轻”的产品, 1996年通用推出EV-1采用的是铅酸电池,它是现代电动汽车架构雏形,从铅酸电池到日系混动的镍氢电池,再到现在流行的锂电池,也才20多年。 从第四批《新能源汽车推广应用推荐车型目录》新能源乘用车配置电池来看,32款车型采用了17家企业的电池,其中16家是电池厂商,另外一家是长安新能源的,这说明其它乘用车的动力电池直接外购,包括电芯、电池组与电池管理系统等。

大部分自主品牌主机厂都没有自己的电芯与电池组设计能力 跨国车企,虽然没有自己的电芯,但是它们却坚持自己设计生产电池组件与管理系统,这是为了加强动力电池的核心竞争力。与大多自主品牌的差别是,即使不采用这家的电芯,它们可以换个电芯品牌照样能够设计电池组,核心技术还是掌握在自己手里。

但是我们更关心的是动力电池,也是就新能源汽车中的能量来源,目前动力电池中,镍氢电池面临淘汰,铅酸电池全凭保有量在支撑,故目前以锂电池最为主要。(如下图) 先介绍几个重要概念

能量密度方面电池肯定不如汽油,但是究竟差别多大呢?一箱50L的汽油可以大概跑600km,续航同样里程的电动车需要多少电池呢?(如下图)

下表列出了四类锂电池的主要性能指标差别。从表中可以看出,四类电池各有优劣。那各汽车厂商究竟是凭什么选择其中某种电池呢?哪种电池又将是未来的主流呢?

【最新整理】新能源车用电机供应商名录大全

【最新整理】新能源车用电机供应商名录大全 从2017年6批公告看新能源车的电机配套情况 2017年工信部共发布292~297批6批获得许可的《道路机动车辆生产企业及产品》目录。除292批公告中无新能源车外,在293~297批公告中共有1,743款新能源车入选。其中,新能源客车及底盘共有1,202款,占总数的69%;新能源专用车及底盘共有439款,占25.2%;新能源乘用车则有101款,占5.8%。在这1,743款新能源车中,参与配套的电机企业数目高达近130家。其中,珠海银隆电器主要为珠海广通汽车、石家庄中博汽车等企业提供配套,配套车型数量位列第一的位置;而上海大郡则以配套车型达到70余款的数量荣登第二的位置,主要配套车型有厦门金龙、中通、申龙客车、东风汽车等企业;中车时代、南京金龙、民富沃能则并列第三。整体来看,车企自配依旧占据着大部分的市场份额,占比接近50%,例如比亚迪、南京金龙、北汽福田、宇通客车等车企均为自己的车型配套电机产品。而在专业的第三方电机企业中,上海大郡、民富沃能、精进电动、苏州绿控等电机企业的市场份额较大,产品竞争力较强。 第六批新能源车推广目录中新能源乘用车的电机配套情况 7月6日,工信部正式发布《新能源汽车推广应用推荐车型目录(2017年第六批)》。本批推广目录中新能源乘用车共来

自11家企业的22个车型产品。这22款新能源乘用车搭载的电机来自13家企业。主要为:众泰汽车(3款款车型)、东风电动(2款车型)、杭州德沃仕(2款车型)、江铃新能源(2款车型)、长安新能源(2款车型)、北汽福田(1款车型)、大陆汽车系统(1款车型)、海马汽车(1款车型)、合普动力(1款车型)、江南汽车(1款车型)、华域汽车(1款车型)、大地和电气(1款车型)、新能微特利(1款车型)。从电机类型来看,搭载永磁同步电机的车型有17款,占比77.27%;搭载交流异步电机的车型有4款,占比18.18%;搭载外励磁同步电机的电池有一款,占比4.55%。国内45家驱动电机企业名录、区域分布及配套情况我国新能源汽车配套电机市场仍然是国内自给,国际竞争对手参与较少。现阶段新能源汽车电机及驱动系统市场主要有三类参与者:传统电机生产企业、汽车零部件供应商、整车企业内部配套。目前市场上的主要电机类型为交流异步电机和永磁同步电机,永磁同步电机由于效率高、功率密度高和体积小等优点占据国内电机市场最大份额,主要应用于乘用车领域。交流异步电机由于其较低的成本以及简单的结构相对更简单、控制技术也相对成熟,但其尺寸较大,重量较重等缺点都在一定程度上制约了其广泛应用,主要应用在新能源客车和部分乘用车。开关磁阻电机结构简单可靠、系统成本低是其主要优点。但由于开关磁阻电机有转矩波动大、噪

新能源汽车电机测试概述

新能源汽车电机测试概述 新能源汽车作为实现能源革命的重要手段之一,其中电动汽车已然成为最热门的交通工具,而作为电动汽车核心部件的电驱部分,其性能和稳定性决定了一台电动汽车的品质。 目前电动汽车已经走进人们的生活,其安全性能必须得到保障。因此,电动汽车电机的测试显得尤为重要,在其生产之前要进行严格的型式试验。新能源汽车动力系统一般都是变频电机驱动系统,由动力电池、变频器、电机组成。对此系统进行仿真测试,需要额外用负载给电机加载,模拟汽车实际运行中的状态。 整个动力系统主要分为两部分做测试:控制部分和传动部分。控制部分需要对整个动力系统中连接各设备的CAN总线网络进行监控、报文解码和分析,一般使用CAN总线分析仪来进行总线网络报文分析。传动部分需要对其的电力情况进行测量分析,一般使用功率分析仪来对电池输出、变频器输出和电机输出进行同步测量,了解汽车动力部分在实际运行时动力设备的运行情况和工作效率。 电动汽车电机的测试项目包括: 1. 电机功率测试需求:模拟负载、冲击负载、起动性能、四象限运行、再生能量回馈效率。 2. 可靠性试验:温升试验、过载能力、最高转速、超速试验、转矩给定动态响应时间测试、耐久性试验 3. 电机参数:电机转矩特性及效率测试、堵转转矩和堵转电流试验 以上是GB-T 18488.1-2006 《电动汽车用电机及其控制器第一部分技术条件》和GB-T 18488.2-2006《电动汽车用电机及其控制器第二部分试验方法》国标要求的。 此外,目前做的比较好的厂家,还会对电机的驱动器进行测试,做电机和驱动器的联调。测量项目包括:电机运行时驱动器的输入输出参数测量、转换效率测量、电机运行时整个电机驱动系统的效率测试等。 在测试过程中,对电动汽车电机做最高转速试验的做法比较简单,就是给被试电机提供额定电压运行1分钟或者5分钟,过程中用传感器实时采集其转速值,最后看测试过程中出现的最高转速是多少即可。电超速试验做法不一样,超速试验是通过给被试电机一个高于额定的供电频率,让被试电机运行在额定转速的120%下,做1分钟的空转,最后观察此电机是否出现工作异常或外形形变。 在新能源汽车测试项中,要实现电动汽车电机的路况循环测试,对设备的要求较高。路况循环是一种比较复杂的电机测试项目,需要整个电动汽车电机测试系统的联调性能比较高方可实现。以MPT电机测试系统为例,它会让用户在软件上设置循环工况曲线,然后测功台架上的负载就会根据曲线来对被测电机进行动态变化的加载,实现路况循环测试。 工程技术笔记?2015 Guangzhou ZHIYUAN Electronics Stock Co., Ltd. 1

新能源汽车驱动电机分析报告

新能源汽车驱动电机行业分析报告 一、驱动电机简介 目前市场上应用最广泛的新能源汽车驱动电机主要有三类:永磁同步电机、交流异步电机和开关磁阻电机。 永磁同步电机体积小、质量轻,功率密度大,可靠性高,调速精度高,响应速度快;但最大功率较低,且成本较高。由于永磁同步电机具有最高的功率密度,其工作效率最高可达97%,能够为车辆输出最大的动力及加速度,因此主要用在对能量体积比要求最高的新能源乘用车上。 交流异步电机价格低、运行可靠;但其功率密度低、控制复杂、调速范围小是固有限制。价格优势使得其在新能源客车中使用的较广泛。 开关磁阻电机价格低、电路简单可靠、调速范围宽;但震动、噪声大,控制系统复杂,且对直流电源会产生很大的脉冲电流,用于大型客车。

二、行业发展情况 (一)新能源汽车市场迅猛发展,驱动电机需求随之上涨 2013-2018年,新能源汽车的产销量基本维持供需平衡的发展状态,具体来看,新能源汽车的产量由2013年的1.75万辆增加至2018年的127万辆,年均复合增长率为135.59%;销量由2013年的1.76万辆增加至2018年的125.6万辆,年均复合增长率为134.8%。预计2019年新能源汽车产销量将突破150万辆。随着新能源汽车市场的迅猛发展,驱动电机市场空间潜力巨大。 (二)电机对比分析,永磁同步电机是主流 2018年全国新能源汽车驱动电机装机量超133万台,其中永磁同步电机装机量约占80%,交流异步电机装机量约占19%,其他类型电机装机量占比不超过1%。究其原因,目前新能源乘用车是新能源汽车主力产品,而永磁同步电机具备体积小、质量轻、工作效率高等优点,是新能源乘用车驱动电机首选类型,其在总装机量中的占比也最高;综合来看,新能源汽车电机技术要求较高,特别是续航里程作为一项极其重要的指标,永磁同步电机相比其他类型驱动电机更高的工作效率能最大程度提高电动汽车续航里

新能源汽车电机的测试

新能源汽车电机的测试 摘要:汽车换心行动是当下主流的趋势,汽车的动力来源将由电机取代传统的内燃机,今天我们就来做一次别开生面的“大手术”。 电动汽车的心脏——电机,它为汽车提供动力源,新能源汽车已成为当今最具有发展前景的汽车,通过此次的“手术”会有颠覆性的改变。 下面是纯电动汽车测试电机时的整个能量运行单元。静止时的充能过程:能量单向传输,通过电网——直流母线——蓄电池;在运动状态时:能量双向传输由蓄电池——直流母线——负载电机。这时候通过直流母线蓄电池的电能释放出来提供给负载做功,同时有电能回馈的时候会通过直流母线将能量传输给电网,更高效的利用了能源。 图1 纯电动汽车能量结构可分为四个部分: 1、电池充电系统:电池充电系统是将外界的充电桩、充电站等充电装置中的交流电转换为直流电,给纯电动汽车中的蓄电池充电,将电能存储在蓄电池。 2、电机驱动系统:电机驱动系统是纯电动汽车中将蓄电池输出的直流母线电压转化为交流电,并用交流电驱动电机运转,是电动汽车的核心部分。 3、直流稳压系统:蓄电池的电压由于经常充放电的缘故,其两端电压是一个在一定范围内浮动的电压,需要将这个范围内的电压稳定在一个稳定的直流母线电压,以供直接应用或做其它电压转换。 4、直流负载供电系统:直流负载供电系统的主要功能是将电动汽车中的蓄电池输出的直流母线的稳定的高压电转化为低压输出,为汽车中的低压直流负载供电。 图2 新能源车的心脏——电机的测试就变得尤为重要,这直接关乎到汽车的运行状态,只有满足相关功能项目测试的电机才能够胜任如此间距的任务。针对电机测试台,我们通常要完成T-N曲线、空载测试、堵转测试、效率云图、再生能量回馈试验电机测试、电动最高工作转速测试、电动超速试验、温升试验等。下图为效率云图的测试结果,可以找到效率最高时的工况匹配,方便了获取电机在任意工况下的效率特性,辅助用户设计最优的电机控制算法。

新能源汽车驱动电机发展趋势【干货】

新能源汽车驱动电机发展趋势【干货】

新能源汽车驱动电机发展趋势 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 随着全球汽车电动化渗透率的不断提高,驱动电机行业将会迎来整体规模的迅速扩张。在这一过程当中,具备规模效应和技术优势的第三方电机制造商将有机会迅速扩大市场份额,收获业绩的大幅增长。 全球驱动电机市场趋势 根据估测,随着全球汽车电动化快速推进,新能源汽车电机系统市场将随之快速扩张,市场规模有望从2015年的$23亿增长到2030年的$318亿。 新能源汽车电机系统主要包括电动机和逆变器两部分,虽然同其他大部分汽车零部件一样,这两部分部件长期都面临降价压力,但是由于新能源汽车总量的上升,行业总体还是具备较大上升空间。我们预期到2030年市场规模年均增速将在18%-20%左右。

系统单价方面,电机系统整体往高功率方向发展的同时也带来了装配价格的提升。 根据估测,在中性假设条件下,2030年电动车销量将达到2000万台,约占当年乘用车总销量的16%-18%。然而,如果放到乐观情景下,即电池价格大幅下滑,且环保政策更加严厉的条件下,电动车销量增长的速度有可能大幅上升,我们预期在乐观情况下新能源汽车年销总量有可能达到3000万台的水平,约占当年汽车销量的25%-27%。 预计单电机混动车的功率需求大约在30kw左右(平均价格约$200-$300),双电机插电混功率约为50-100kw(平均价格$800-$1000),纯电动车的电机功率约为200kw(平均价格$1000-$1500)。 电动机市场情况

YUY-5034新能源汽车电机性能试验台

YUY-5034新能源汽车电机性能试验台 一、产品简介 电机性能试验台由实训台架、新能源汽车电池组、三种新能源汽车常用电机(直流永磁、交流异步、开关磁阻)、三种新能源汽车配套电机控制器、加速踏板、档位器、数显电压电流表、转速表、扭矩表、功率表、台式机电脑(外配套)等模块组成。 二、功能特点 1、设备可以模拟电动汽车在匀速,加速,减速,上坡,下坡状况下电机的状态,操作与真实电动汽车相一致。 2、实训台可以显示电机转动过程中的动态参数,如电压,电流,扭矩,转速,功率等。 3、电机测试上位机软件可以显示一段时间内电机扭矩,转速,功率的变化曲线,可以直观的显示这几项参数在电机加速,减速过程中的变化情况。 4、设备安装有故障考核装置,可以对线路进行故障设置,训练学生排除线路故障的能力,同时老师可以用设备对学生的能力进行考核。 三、实训项目 1.电动汽车用直流永磁电机,在车辆匀速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 2.电动汽车用直流永磁电机,在车辆加速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。

3.电动汽车用直流永磁电机,在车辆减速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 4.电动汽车用交流异步电机,在车辆匀速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 5.电动汽车用交流异步电机,在车辆加速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 6.电动汽车用交流异步电机,在车辆减速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 7.电动汽车用开关磁阻电机,在车辆匀速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 8.电动汽车用开关磁阻电机,在车辆加速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 9.电动汽车用开关磁阻电机,在车辆减速工况下,电机转速、电压、电流、扭矩、功率等参数的变化关系。 10.电机不转动情况的故障分析及排除。 四.基本配置(每台)

年产10万台新能源汽车电机控制器项目立项报告

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.wendangku.net/doc/041564460.html, 国华新能源汽车项目 电机控制器子项目立项报告

https://www.wendangku.net/doc/041564460.html, 目录 一.总论 (4) 1.1.项目概况 (4) 1.2.项目背景 (4) 1.3.建设单位概况 (4) 1.4.可研报告编制依据 (4) 1.5.项目预期目标 (5) 1.6.可研报告范围 (5) 1.7.项目建设必要性 (6) 1.8.项目建设可行性 (6) 1.9.结论 (7) 二.市场发展趋势及项目定位 (7) 2.1.新能源汽车总体市场规模 (7) 2.2新能源汽车市场细分 (8) 2.3.电机控制器市场需求预测 (8) 2.4.电机控制器行业竞争态势 (9) 2.5.产品及技术发展趋势 (9) 2.6.项目产品定位 (11) 2.7.产品开发策略 (11) 2.8.项目产品优势分析 (11) 2.9.结论 (12) 三.项目建设实施计划 (12) 3.1.建设规模 (12) 3.2.建设方案 (12) 3.2.1.主要建、构筑物 (12) 3.2.2.总图布置 (13) 3.2.3.运输 (13) 3.2.4.物料储存方式 (14) 3.3.建设工期和实施进度 (14) 四.工艺流程及设备 (15) 4.1.生产技术 (15) 4.2.主要生产设备 (15) 4.3.生产工艺流程图 (18) 4.4.质量控制 (23) 4.5.主要原辅材料、外协供应商 (24) 4.5.1.主要原附料品种及来源 (24) 4.5.2.外协件来源、用量和供应 (25) 五.循环经济及资源综合利用 (25) 5.1.依据 (25) 5.2.主要节能节水措施 (25) 5.3.能源供应 (26) 5.4.公用工程 (26)

新能源汽车电机驱动系统关键技术解析【干货】

新能源汽车电机驱动系统关键技术解析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 近年随着我国交通事业的飞速发展,交通领域成为我国能耗增长最快的领域。能源危机和环境污染的加剧,使电动汽车研发成为世界汽车工业可持续发展的战略性项目,世界各国也普遍将发展电动汽车确立为保障能源安全和转型低碳经济的重要途径。1881 年,第一辆电动汽车由法国工程师古斯塔夫. 士维(GustaveTrouve)制造问世,它是采用铅酸蓄电池供电,由0.1 hp(英制马力,1 hp=745.7 W)的直流电机驱动的三轮电动汽车,整车及其驾驶员的重量约160 kg。两位英国教授在1883年制成了相似的电动汽车。因当时该应用技术尚未成熟到足以与马车竞争,因此这些早期构造并没有引起公众很多的注意。 20 世纪40 年代之后,半导体技术快速发展,随后出现的晶闸管、三极管,尤其是在20 世纪80年代问世的绝缘栅双极型晶体管(IGBT)为电机调速与控制提供了便利,同时伴以电力电子技术的快速发展,为以电能为能源的电机取代以石油为能源的内燃机提供了技术基础。 一、电动汽车分类 根据国标GB/T 19596-2004 电动汽车术语,电动汽车可分为由动动力电池提供能源的纯电动汽车、电机和内燃机共存的混合动力汽车和以燃料电池为能源的燃料电池

电动汽车,这三类电动汽车均采用一个及以上的电机驱动系统将电能转换为机械能,进而驱动汽车,同时回收刹车的制动能量,从而实现了能量利用率的提升。 1. 纯电动汽车 纯电动汽车由电机驱动汽车,能量完全由二次电池(如铅酸电池、镍镐电池、镍氢电池或锂离子电池)提供。由于一次石化能源的日趋匮乏,纯电动汽车被认为是汽车工业的未来。典型的纯电动汽车动力结构如图1 所示。电池组的电能通过充电系统在车辆行驶一定里程后进行补充。纯电动汽车的特点是车辆 实现零排放,不依赖汽油,完全采用电能驱动车辆,但是由于蓄电池的能量密度和功率密度比汽油或柴油低很多,因此纯电动汽车的连续行驶里程有限。 2. 混合动力汽车 混合动力汽车按动力总成结构及能量流传递方案不同,可分为串联、并联及混联三种混合动力方式。串联混合动力车辆中,发动机动力与电动机动力通过电气系统传递;并联和混联混合动力车辆中,发动机动力与电动机动力通过一个专门的机电耦合机构实现向车轮的传递,常用的机电耦合机构包括行星齿轮耦合、变速器耦合及离合器耦合等。 串联式混合动力系统的动力总成,发动机的机械能通过发电机转化为电能,电动机将电能转换为机械能传到驱动桥,驱动桥和发动机之间没有直接的机械连接。该方案的优点是系统控制简单,缺点是难以应对复杂路况,电池充放电压力较大,电池寿命要求较高。

电池、电机和电控已成为新能源汽车的三大核心

电池、电机和电控已成为新能源汽车的三大核心 11月26日,财政部在官方网站公布了第一批新能源汽车推广应用城市,其中包括北京、天津、太原、大连、上海、合肥、郑州、武汉等28个城市,以及河北省城市群、浙江省城市群、福建省城市群、江西省城市群、广东省城市群在内的5个区域。 就在同一天,国内最大的客车制造商宇通客车在大本营郑州发布了其代表未来汽车的核心技术——睿控(英文名为Rectrl)技术。 这绝非巧合,而是“蓄谋已久”的行动。宇通内部人士透露,已经准备了好几个月的睿控技术发布,“就在等待这一天,在政策出来的时候,能够把我们的优势拿出来,集中发力。” “睿控是什么?睿控是宇通在新能源汽车技术领域的抢先占位,是一套全方位、一体化的新能源客车技术平台,是我们的核心技术,它将广泛适用于普通混合动力、插电式混合动力、纯电动客车等节能与新能源客车。”宇通客车新能源技术部副部长朱光海对记者表示。 而宇通客车品牌部部长徐超则认为,除了领先行业,完成技术占位,“睿控”还将扩大“宇通”品牌的内涵,成为一个技术品牌,就如同“创驰蓝天技术”之于马自达,“地球梦技术”之于本田。 记者从发布会现场了解到,睿控系统由“电动四化”和“智能四化”组成,能精确判断车辆的实时状态,智慧匹配最佳的动力组合方案,实现节能减排“3-9”效应——比传统能源车辆节省燃料30%以上,PM排放值降低90%以上。“今后搭载睿控技术的车辆,我们会在车辆尾部贴上绿色的睿控标识。”徐超告诉本报记者。 技术占位睿控概略 众所周知,当下影响节能与新能源汽车技发展的三大核心技术是电机、电池和电控。目前来看,电机技术和产品在汽车机电一体化发展的多年过程中,已相对成熟;而电池作为目前全球发展的瓶颈,经历了铅酸电池和诸多种材质的锂电池之后,孰优孰劣目前还在探索和研发当中,“但总体来看电池问题是上游零部件行业共同研究的问题,一旦有了突破,那也是开放性的。” “只有电控技术,是由主机厂来解决,所以主机厂在电控技术上软硬件的解决方案属于核心技术,对电控技术的拓展和占有是未来汽车企业能否获得先导性优势的关键。睿控便是在这种情况下应运而生的。”徐超表示。 “这项技术已经在我们的普通混合动力客车上广泛应用并经过验证,现在我们加以提升,使它也可以应用到插电式混合动力和纯电动客车上。”朱光海介绍说。 节能减排更胜一筹 提到睿控技术,技术达人朱光海有说不完的话,记者发现,这些话最后的落脚点在于我们烂熟于耳、却十分关注的“节能减排”。 朱光海介绍,搭载睿控系统的车辆,可以实现驱动、冷却、转向与制动四方面的电动化。以转向电动化和冷却电动化为例,可分别通过先进的动态变频技术和电子风扇控制器做到能量的按需分配,从而最大程度避免能源浪费。 同时,睿控的制动电动化功能,能在车辆减速滑行或刹车过程中,自动回收

纯电动轿车三电匹配研究

纯电动轿车三电匹配研究 发表时间:2020-01-15T14:25:02.123Z 来源:《基层建设》2019年第27期作者:陈志文 [导读] 摘要:对于纯电动汽车动力部件的设计匹配来说,深刻的影响到电动汽车的行驶里程以及经济性和动力性能等等。 江西江铃集团新能源汽车有限公司江西南昌 330000 摘要:对于纯电动汽车动力部件的设计匹配来说,深刻的影响到电动汽车的行驶里程以及经济性和动力性能等等。本文主要是严格的遵循纯电动车的实际开发需求,实施参数匹配计算整车三电,按照相应的标准,实施动力系统总成参数的合理匹配,同时提出科学的减速器速比选择策略。 关键词:纯电动轿车;驱动电机;动力电池;性能 当前随着对各种资源的保护,在研究电动汽车方面具有了更高的重视度。科学的突破动力电池以及其他技术前,研究电动汽车动力传动系部件的设计参数,属于将电动汽车性能有效增强的关键性方式。本文采取实例分析的方式,选取某型号的传统轿车将其改装成一款纯电动轿车,对于动力系统参数实施重新的设计,之后进行合理性的验证。 1 电池参数 1.1 电池电量匹配 对电池的电量进行确定的因素较多,即包含有整车续航里程和电机、电池效率、电控等等。首先,匀速行驶里程的电池电量需求。水平路面上,电池电量进行匀速行驶方程Wb={[(m×g×f+Cd×A×V2/21.15)×S1/(3600× 1× 2)]+P0×S1/V}/ 3。其中,S1指的是车辆续航里程,P0指整车附件耗电量, 1指传动系统效率(92%), 2指电机控制器系统效率(88%), 3指电池的放电效率(100%)。其次,NEDC下电池电量需求情况。由于此项目设计中,每小时120km是最高车速,所以进行计算期间,应该对于城市工况、城郊工况进行充分的掌握和分析。依照加速过程中行驶方程获得匀加速工况下电机所做的功和匀速行驶下的电机所做工,即分别为形W2l=[(m×g×f+ ×m×a)(V o+a×t)+0.6128×Cd×A×(V0+a×t)3]/( 1×3600)dt(Wh)、W22=[(m×g×f×V)+0.6128×Cd×A×V3]/( 1×3600)×t(Wh)。其中,加速度表示成a,初始车速表示成V0,匀速行驶车速表示为V。计算所得如果NEDC工况整车续航里程满足250km标准,动能量回馈率,电池电量范围是36.99kWh至40.1l kWh,电池电量是37 kWh。另外,初步明确了符合整车续航条件的电池电量是37kWh。 1.2 电池功率及放电倍率匹配 首先,在电池功率匹配方面。先计算出电池的持续及峰值放电功率。电池的放电功率平衡计算为Pbdc=(Pm/ 2+PV)/ 3,其中,电机的输出功率表示成Pm,整车附件功率表示成PV,电机电控的系统效率表示成 2,电池放电效率表示成 3。假设电池持续放电倍率是l,则(Pm额/ 2+2.5)/ 3,进而得到Pm额值是28.6 kW。再计算电池的脉冲峰值馈电功率估。电机的馈电峰值功率是电机峰值发电功率50kW,此结果属于一个估算值,电机发电效率最大值、控制器的峰值效率分别是0.92以及0.97,获得电池峰值馈电功率 Pbfmax=50×0.92×0.97,最终估算结果是45kW。另外,估算出峰值馈电时间。峰值馈电时间的构成包括恒制动扭矩减速时间、恒功率减速时间、扭矩响应时间,各自表示为t1、t2、t0。T0取估值0.5s时,峰值馈电功率下最长馈电时间T1≥t0+t1=13.8s。 其次,在电池放电倍率的匹配方面。参数项包括了电池峰值放电功率、持续放电功率、峰值馈电功率,参数值分别是74kW、35kW、45kW,放电倍率分别是2、1和1.3。电池持续放电功率为连续性的,峰值馈电功率持续13.33s。 2 电机参数匹配计算 2.1 电机峰值扭矩与减速比的关系 首先,计算路面附着允许的电机最大输出扭矩。此车型属于前轮驱动,前轴轴荷是645kg(mf),同时附着系数取沥青以及水泥路面附着系数经验值为0.8()。水平路面电机最大允许输出扭矩Tm1max=1572×i-1(Nm),最大爬坡度a=30%最大允许输出扭矩Tm2max=1506i-1(Nm)。其次,计算满足最大爬坡度的电机峰值扭矩Tm3max=1342×i-1。 2.2 电机最高转速的匹配 确定好减速器减速比,通过电机转速(n)跟车速(v)之间的关系式,得到整车设计最高车速Vmax=120km/h,Nmax=1112.95×I,电机最高转速Nmax=8500r/min。 2.3 电机峰值扭矩的匹配 选取减速器i=7.3,获得电机的取整峰值扭矩是183Nm。对扭矩控制精度、车辆整备质量偏差问题等,最终电机最高扭矩是Tmax=200Nm。 2.4 电机峰值功率的匹配 在满足加速性能要求的匹配方面,电机峰值功率对于整车加速性能设计要求进行决定性的作用。其中,全油门加速过程的电机基速转速ne=Pm1max×9549/Tmax。基速关系方程为Ve=0.7lPm1max(km/h)。依照整车O-100km/h的加速时间在18s及以下的标准,选择的电机峰值功率为50kw左右的范围,最终明确初步选取电机功率是Pm2max=50kW。 2.5 电机峰值转速与额定功率 整车的经济车速进行明确电机的额定转速,最终得到电机的额定转速是ne=4100r/min。在电机额定功率的匹配方面,汽车的功率平衡方程推算出电机额定输出功率Pe(kW),Pe=[m×g×f×cos(arctg(a))+Cd×A×V2/21.15+m×g×sin(arctg(a))]×V/(3600× 1)。水平路面车辆匀速行驶最高车速是每小时120km时,电机输出功率Pe1=23.05kw。为对整车设计要求进行顺应,电机额定功率取值是 Pe=25kw。 结语 纯电动汽车动力部件设计匹配,深刻的影响到电动汽车的经济性,而且会显著的影响着行驶里程以及动力性等方面。此项研究中,严格的依照纯电动车的开发需求,落实参数匹配计算其整车三电。同时按照整车性能目标需求,对于驱动电机和动力电池动力系统总成参数实施合理匹配,提出如何科学合理的选用减速器速比,对于实践工作具有重要的指导意义。 参考文献: [1]牛欢欢,王志海,陈琳等.纯电动轿车三电匹配研究[J].汽车电器,2019,(3):1-5. [2]殷允朝,宋述明,王垠皓.电动轿车三挡AMT传动系统参数匹配与性能仿真[J].农业装备与车辆工程,2019,57(5):108-112.

相关文档
相关文档 最新文档