文档库 最新最全的文档下载
当前位置:文档库 › 致密砂岩油藏直井体积压裂技术研究与实

致密砂岩油藏直井体积压裂技术研究与实

致密砂岩油藏直井体积压裂技术研究与实
致密砂岩油藏直井体积压裂技术研究与实

致密砂岩油藏直井体积压裂技术研究与实践

林海霞

(中国石油吉林油田公司采油工艺研究院)

摘要本文借鉴国内外体积压裂理念与改造经验,在大安北扶杨和高台子油层开展了体积压裂探索研究与实践,分析了体积压裂改造机理、对储层条件的要求和在大安北致密砂岩油藏开展体积压裂改造的可行性,探索了体积压裂选井原则、压裂技术措施,在现场成功应用并取得好的改造效果和压后投产效果,为同类致密砂岩油藏改造提供了有益的借鉴。

主题词致密砂岩体积压裂滑溜水压裂扶杨油层

0.引言

吉林油田大安北地区扶杨和高台子油层储层特征为物性差(ф4.6-14%;k0.01-1.2md)、中等偏强水敏、塑性强(平均模量39366MPa,平均水平两项主应力差7.7MPa,平均泥质含量16.93%),采用常规压裂改造措施难以满足生产需求,需通过技术创新改变开发现状,这就使得直井体积压裂技术应用成为可能。

1.体积压裂作用机理

吴奇等人结合国外研究给出了“体积压裂”的定义及作用[1]。通过压裂的方式对储层实施改造,在形成一条或者多条主裂缝的同时,通过分段多簇射孔、高排量、大液量、低粘液体以及转向材料和技术的应用,实现对天然裂缝、岩石层理的沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生裂缝上继续分枝形成二级次生裂缝,以此类推,尽最大可能增加改造体积,让主裂缝与多级次生裂缝交织形成裂缝网络系统,将可以进行淋巴液的有效储集体“打碎”,使裂缝壁面与储层基质的接触面积最大,极大地提高储层整体渗透率,实现对储层在长、宽、高三维方向的全面改造,增大渗流面积及导流能力,广义的体积压裂包括以下3种模式[2]:①使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,将可以渗流的有效储层打碎,使裂缝壁面与储层基质的接触面积最大。②采用多种方法在有限的井段内增加水力裂缝条数和密度(天然裂缝也可能开启),这些裂缝累积控制的泄流面积随裂缝的条数、缝长、缝宽、缝高等因素变化而变化。③利用储层水平两向应力差与裂缝延伸净压力的关系,实现裂缝延伸净压力大于两个水平主应力差值与岩石抗张强度之和,形成以主缝和分支裂缝相组合的枝状裂缝。

2.实现体积压裂的条件

2.1岩石的脆性指数

储层岩性具有显著的脆性特征,是实现体积改造的物质基础。大量研究及现场试验表明:不同区域,储层岩石矿物组分差异较大,富含石英或者碳酸盐岩等脆性矿物的储层有利于产生复杂缝网,粘土矿物含量高的塑性地层不易形成复杂缝网[2]。脆性指数越高,岩石越容易形成复杂裂缝。一般来说,要形成复杂的网络系统,岩石的脆性指数要不低于50%。

目前,岩石脆性指数的计算有几种方法,一种方法是根据岩石矿物组成判断[3],即取岩石中石英含量与岩石中石英、碳酸盐及粘土总含量的比值作为该岩石脆性指数。一般石英含量超过30%便数据库认为岩石具有较高的脆性指数。

岩石脆性指数的计算第二种方法则是根据岩石力学特性判断,由杨氏模量及泊松比计算得到。

见公式(1)。

(1)

其中,Br为脆性指数,E为杨氏模量,Pr为泊松比,a和b为常数,a=1,b=0.4。

综合脆性指数即泊松比、均一化杨氏模量(无量纲)和脆性矿物的平均值,可综合反应岩石力学特征以及岩石矿物特征对岩石脆性的影响。以往计算表明,砂岩段的综合脆性指数明显高于页岩段,更有利于形成复杂裂缝。

对红87区块59层储层数据进行计算,得到扶杨油层和高台子油层脆性指数分别为53.12%和51.79%,岩石脆性指数可以满足体积压裂对储层特征的要求。

表1 红87区块致密砂岩储层岩石力学特征

2.2天然裂缝发育状况

储层发育良好的天然裂缝及层理是实现体积压裂改造的前提条件。压裂形成缝网的难易程度与天然裂缝和水平层理的自然状态(天然裂缝发育程度,是否为潜在缝或张开缝,裂缝内是否有填充物等)密切相关[3]。天然裂缝的开启所需要的缝内净压力与施工排量及压裂液的粘度密切相关。

通过成像测井分析,储层以垂直裂缝为主,纵向延伸长度3-8m,一般不穿层。裂缝倾角大,近于直立,与东西向夹角一般小于12度,分析裂缝性质为潜在缝。通过岩心观察,红岗北扶杨油层裂缝密度0.92条/米,天然裂缝发育,有利于形成缝网系统。

图1 红97井泉四段成像测井图

2.3地应力分析

两向应力差小,有利于裂缝的转向和弯曲,进而可能形成复杂的缝网系统。对于裂缝较发育油藏,形成缝网压裂的力学条件可在天然裂缝扩展基础上分析,缝网示意图如力2所示。

图2 缝网示意图

根据W和T的破裂准则及二维线弹性理论,发生张性断裂所需裂缝缝内净压力按式(2)计算。发生剪切断裂所需裂缝缝内净压力按式(3)计算。

(2)

发生张性断裂所需裂缝缝内净压力为

(3)

式中,p net为裂缝内净压力,Mpa;δH和δh分别为水平最大和最小主应力,Mpa;θ为天然裂缝与人工主裂缝的夹角,(o);το为天然裂缝内岩石的粘聚力,Mpa;K f为天然裂缝面的摩擦因数,无因次。

在压裂过程中,当主裂缝内净压力满足式(2)、式(3)时,才能形成缝网系统。而根据式(2)得到,当θ=π/2时有最大值,最大值为δH-δh。同理,根据式(3)得到,当θ=π/2时有最大值,最大值为p max=το/K f+(δH-δh。),天然裂缝一般το=0。因此,天然裂缝或地层弱面发生张性断裂和剪切断裂的最大值均为水平主应力差值δH-δh。即当主裂缝内的净压力大于δH-δh时,便可以形成缝网系统。因此,储层两向水平主应力差值越小,越有利于形成缝网系统。

表2 红87区块岩石力学参数及地应力计算

3.红岗北砂岩油藏体积压裂实践

3.1选井原则

通过对体积压裂机理和实现体积压裂条件的分析,结合红岗北致密砂岩储层特点,认为红岗北直井体积压裂选井就遵循以下原则:①储层渗透率越低,单井可采储量采出程度低、剩余油资源量大,常规压裂效果差;②在平面上,井距、排距越大越有利于开展体积压裂技术;③在纵向上,砂岩厚度大于3.0m,且夹层厚度要小于1.0m,采用体积压裂可有效提高动用程度;④在含石英高的脆性储层开展体积压裂,有利于产生复杂缝网,岩石的脆性指数要不低于50%;⑤储层天然裂缝越发育,越有利于缝网形成;⑥改造井岩石水平主应力差值越小,越容易形成复杂裂缝网络;⑦避开水区且目的层纵向可能扩展范围内上下无水层;⑧固井质量好,无套损,套管钢级高,使排量提高成为可能。

3.2技术措施

根据体积压裂实现条件,针对致密油藏以“提高净压力,开启和支撑次生裂缝,进而形成树形网络裂缝”为关键点,在脆性指数、微裂缝发育程度、三向应力分析、抗张抗剪切强度研究基础上,在红岗北红扶杨和高台子油层有针对性地开展体积压裂实践。

3.2.1大排量、大液量、低砂比压裂工艺

对于天然裂缝发育的储层,大量高滤失液体的注入有利于天然裂缝的开启,低砂比加砂可以支撑压开的天然裂缝。大量高滤失液体的注入同时使近井应力场重新分布,使水平两向应力差减小,应用大排量提高缝内净压力,一旦净压力大于水平两向应力差和岩石抗张强度之和,新的压裂裂缝就有可能产生。红岗北体积压裂研究模式为:排量10-17m3/min注入滑溜水,单层滑溜水用量1200-2900m3,平均1616m3,单层总液量1220-3776m3,平均1959m3,单层砂量20-70m3,平均35m3。

3.2.2采用低粘、低伤害液体体系造复杂缝网

当液体类型为牛顿流体时,压裂液粘度越小,缝内压力变化越小,压力传导越远,能沟通更多的天然裂缝,且易使微裂缝产生错位和滑移,有效地增加缝网的波及面积,而小粒径支撑剂则更易进入到细小的裂缝中起到支撑作用,也会提高裂缝导流能力。

由于致密砂岩储层特点和体积压裂入地液量巨大的特点,要求压裂液要具有较低伤害、高返排能力的特点。在压裂的不同阶段分别采用滑溜水、线性胶、交联胍胶作为工作液,具有较低伤害、低粘度特点,同时采用了高性能的助排剂和粘土稳定剂,达到了强化排液的目的。

滑溜水配方由清水添加0.10%减阻剂、0.2%粘土稳定剂和0.2%破乳助排剂组成。滑溜水综合性能:减阻剂的清水减阻率60.12%,粘土稳定剂防膨率41.18-58.26%,破乳助排剂的表面张力24.41mN/m,界面张力0.08mN/m。

表3 滑溜水体系性能指标评价(数据来自实验中心)

3.2.3组合粒径低密度陶粒支撑缝网系统

在前置液阶段先采用大排量注入滑溜水,开启天然裂缝,采用段塞方式加入40-70目陶粒支撑天然裂缝;之后以线性胶携带部分40-70目陶粒,较高砂比阶段注入胍胶和20-40目低密度陶粒支撑主裂缝,

表4 低密度陶粒性能指标表

3.2.4 高强度水溶性裂缝转向剂

利用裂缝转向剂可以产生新的主裂缝和次生裂缝。高强度水溶性裂缝转向剂不但具有很好的封堵效果,并且溶解性好,不会对地层造成新的伤害。这种水溶性裂缝转向剂封堵强度>18MPa/m,在地层中22-30小时可以完全溶解。根据使用目的不同,有两种粒径类型,粒径5-8mm的用于缝口转向,粒径1-2mm的用于缝内转向。

表5 高强度水溶性裂缝转向剂性能指标

3.2.5 研发丢手式大通径分层压裂工具,实现套管压裂满足大排量注入

表6 大通径封隔器技术参数

图3 井下管柱示意图

丢手式大通径封隔器分层压裂管柱特点:①管柱设有抗阻机构,遇软、硬阻工具中途不坐封;

②管柱下井时内外连通,下井到位后可洗井、顶替;③每级压裂滑套上都设有反扣丢开机构,一旦砂卡,正旋管柱可将遇卡工具丢到井里,以便进行二次作业(冲砂、打捞);④管柱通径大、压裂滑套喷砂口大、压裂滑套及喷砂口采用耐磨处理,压裂时磨阻小可实现大排量体积压裂改造;⑤一次管柱压裂三段,工作压力70Mpa,温度90℃;⑥采用Y445+341封隔器组合形式管柱压裂,压裂时采用套管内压裂,排量大、磨阻小,更适合于中、深井压裂;⑦套管压裂可降低施工压力,为大规模体积改造提供优化空间。

3.2.6 裂缝监测检验体积压裂改造效果

大45-18-24井F3-5号小层2013年10月28日施工,油管压裂,施工排量5.75-6.37m3/min,破裂压力63.3Mpa,加砂35m3,滑溜水900m3,总用液量1161m3。本井进行了井下微地震监测,监测结果证明压裂产生了主裂缝和次生裂缝,主裂缝带长278m,带宽77m,裂缝网络高度100m,主裂缝方向为北偏东107度;次生裂缝带长211m,带宽37m,裂缝网络高度100m,次裂缝方向为北偏东173度。监测结果显示,当液量达到534m3时,裂缝达到最大宽度;当液量达到1021m3时,裂缝达到最大长度。从监测结果看,压裂产生的裂缝网络系统波及地质体体积达到214.7万方,实现了体积改造的目的。

图4 大45-18-24井压裂微地震井监测结果

表7 大45-18-24井裂缝监测结果表

3.3现场应用

红岗北红87区块为致密砂岩油藏,井距400-425m,扶余和高台子油层裂缝较发育且上下无水层,适合应用体积压裂改造技术。采用大排量、大液量、低砂比设计思路,前置液使用滑溜水,支撑剂使用组合陶粒,丢手式大通径封隔器分层压裂工具使套管分层压裂成为可能,压后闷井蓄能,增加地层能量,实现滑溜水与原油置换。2014年红岗北红87区块直井体积压裂现场已实施14口井,最高施工排量15m3/min,单层最大入井液量2616m3,单层最大砂量60m3。统计压后投产的5口井,平均单井日产液16.8m3/d,日产油6.3m3/d,明显好于同区块常规压裂井。

表8 红87区块施工参数及压后投产数据表

4.结论与认识

(1)对红岗北致密砂岩岩石脆性、储层天然裂缝发育状况、岩石抗张强度与三向应力等方面进行了研究,认为有开展体积压裂的物质基础和实现条件。

(2)结合红岗北致密砂岩储层特点,通过对体积压裂机理和实现体积压裂条件的分析,提出了致密砂岩油藏体积压裂选井原则。

(3)针对红岗北致密砂岩油藏,采用丢手式大通径封隔器实现套管分层压裂,满足大液量、大排量施工,支撑剂使用40-70目和20-40目组合粒径陶粒,压裂液体系采用滑溜水和交联冻胶组合方式,可怜满足体积压裂施工需求。

(4)红87区块致密砂岩储层直井体积压裂实践取得较好效果,进一步验证了体积压裂在该类储层的可行性。

参考文献

[1]李进步,白建文,朱李安等.苏里格气田致密砂岩气藏体积压裂技术与实践.天然气工业,2013,33(9):65-69.

[2]唐勇,王国勇,李志龙等.苏53区块裸眼水平井段内多裂缝体积压裂实践与认识.石油钻采工艺,2013,35(1):63-67.

[3]石道涵,张兵,何举涛等.鄂尔多斯长7致密砂岩储层体积压裂可行性评价.西安石油大学学报(自然科学版),2014,29(1):52-55.

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

致密砂岩油藏直井体积压裂技术研究与实

致密砂岩油藏直井体积压裂技术研究与实践 林海霞 (中国石油吉林油田公司采油工艺研究院) 摘要本文借鉴国内外体积压裂理念与改造经验,在大安北扶杨和高台子油层开展了体积压裂探索研究与实践,分析了体积压裂改造机理、对储层条件的要求和在大安北致密砂岩油藏开展体积压裂改造的可行性,探索了体积压裂选井原则、压裂技术措施,在现场成功应用并取得好的改造效果和压后投产效果,为同类致密砂岩油藏改造提供了有益的借鉴。 主题词致密砂岩体积压裂滑溜水压裂扶杨油层 0.引言 吉林油田大安北地区扶杨和高台子油层储层特征为物性差(ф4.6-14%;k0.01-1.2md)、中等偏强水敏、塑性强(平均模量39366MPa,平均水平两项主应力差7.7MPa,平均泥质含量16.93%),采用常规压裂改造措施难以满足生产需求,需通过技术创新改变开发现状,这就使得直井体积压裂技术应用成为可能。 1.体积压裂作用机理 吴奇等人结合国外研究给出了“体积压裂”的定义及作用[1]。通过压裂的方式对储层实施改造,在形成一条或者多条主裂缝的同时,通过分段多簇射孔、高排量、大液量、低粘液体以及转向材料和技术的应用,实现对天然裂缝、岩石层理的沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生裂缝上继续分枝形成二级次生裂缝,以此类推,尽最大可能增加改造体积,让主裂缝与多级次生裂缝交织形成裂缝网络系统,将可以进行淋巴液的有效储集体“打碎”,使裂缝壁面与储层基质的接触面积最大,极大地提高储层整体渗透率,实现对储层在长、宽、高三维方向的全面改造,增大渗流面积及导流能力,广义的体积压裂包括以下3种模式[2]:①使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,将可以渗流的有效储层打碎,使裂缝壁面与储层基质的接触面积最大。②采用多种方法在有限的井段内增加水力裂缝条数和密度(天然裂缝也可能开启),这些裂缝累积控制的泄流面积随裂缝的条数、缝长、缝宽、缝高等因素变化而变化。③利用储层水平两向应力差与裂缝延伸净压力的关系,实现裂缝延伸净压力大于两个水平主应力差值与岩石抗张强度之和,形成以主缝和分支裂缝相组合的枝状裂缝。 2.实现体积压裂的条件 2.1岩石的脆性指数 储层岩性具有显著的脆性特征,是实现体积改造的物质基础。大量研究及现场试验表明:不同区域,储层岩石矿物组分差异较大,富含石英或者碳酸盐岩等脆性矿物的储层有利于产生复杂缝网,粘土矿物含量高的塑性地层不易形成复杂缝网[2]。脆性指数越高,岩石越容易形成复杂裂缝。一般来说,要形成复杂的网络系统,岩石的脆性指数要不低于50%。 目前,岩石脆性指数的计算有几种方法,一种方法是根据岩石矿物组成判断[3],即取岩石中石英含量与岩石中石英、碳酸盐及粘土总含量的比值作为该岩石脆性指数。一般石英含量超过30%便数据库认为岩石具有较高的脆性指数。 岩石脆性指数的计算第二种方法则是根据岩石力学特性判断,由杨氏模量及泊松比计算得到。

煤层气井压裂技术现状研究及应用

煤层气井压裂技术现状研究及应用 摘要:煤层气其主要成分为高纯度甲烷。煤层气开发的主要增产措施是压裂,而压裂设计是实施压裂作业的关键。本文介绍了煤层气储层的特征,并根据美国远东能源公司煤层气井压裂工艺技术,对其在山西寿阳区块几口井的压裂设计进行了分析。讨论了煤层气井压裂设计的主要参数如施工排量、压裂液、支撑剂、加砂程序的优化措施。 关键词:煤层气储层压裂设计小型压裂测试树脂涂层砂 1 引言 美国是率先进行煤层气开采的国家,其煤层气工业起步于70年代,大规模的发展则是在80年代。我国是世界上煤炭资源最丰富的国家之一,经测算煤层甲烷总资源量为30~351012 m3,约是美国的三倍。我国煤层气目前处于商业化生产的阶段。至今已在全国各煤矿区施工600多口煤层气井、10余个井组,大部分进行了压裂增产等措施。煤层气是我国常规天然气最现实、最可靠的替代能源,开发和利用煤层气可以有效地弥补我国常规天然气在地域分布上的不均和供给量上的不足。山西省是中国煤层气储量最丰富的地区之一,开发利用煤层气的优势十分突出,如何坚持科学发展的指导思想,解决开发利用过程中遇到的难点和瓶颈问题,达到合理有效地开发利用是我们当前应该着重思考的问题。 2 煤层气概况 煤层气俗称瓦斯,其主要成分为高纯度甲烷,是成煤过程中生成的、并以吸附和游离状态赋存于煤层及周岩的自储式天然气体,属于非常规天然气。在亿万年漫长的煤炭形成过程中,都有以甲烷为主的气体产生,如果它较多地从母质煤炭岩层中游离迁移出来并进入具有孔隙性和渗透性均良好的构造中储存积聚,则被称为煤成气(即煤基天然气),其开采方式与常规天然气较相似。 2.1 煤层气的赋存特点 煤层气藏与常规气藏最大的差异就是煤层甲烷不是以简单的游离状态储存于煤岩的孔隙中,煤层气中90%以上均是吸附状态附着于煤的内表面上,少量的煤层气是以游离状态储存于煤岩的割理、裂隙和孔隙中,还有部分煤层气是以溶解状态储存于煤层水中。煤是一种多孔介质,其中微孔隙特别发育,形成了异常巨大的内表面面积,据测定每吨煤的内表面面积可达0.929亿m2 。煤的颗粒表面分子通过范德华力吸引周围气体分子,这是固体表面上进行的一种物理吸附过程。压力对吸附作用有明显影响,国内外的研究均表明,随着压力增加,煤对甲烷的吸附量逐渐增大。 2.2 煤层气储层特征

致密砂岩油藏与常规砂岩油藏开发的地质主控因素差异

致密砂岩油藏与常规砂岩油藏开发的地质主控因素差异随着世界油气工业勘探开发领域从常规油气向非常规油气延伸,非常规油气的勘探和研究日益受到重视。20世纪90年代以来,中国出现深盆气、根源气、深盆油、向斜油、非稳态成藏、致密油、致密气、页岩气、页岩油、源岩油气等概念。油气地质基础研究呈现出由常规油气向非常规油气发展的新趋向(图 1 )。 图1中国陆上主要非常规油气有利区分布图(据邹才能等,2013C) 致密油是一种重要的非常规资源,是指夹在或紧邻优质生油系的致密储层中,未经过大规模长距离运移而形成的石油聚集,是与生油岩系共生或紧邻的石油资源。储层致密、油气在运移、聚集、成藏等方面与常规砂岩油藏存在较大差异,导致致密砂岩油藏与常规砂岩油藏开发上地质主控因素存在较大差异,本文主要从储层特征、流体性质、边界条件进行简要分析。 一、储层特征 非常规油气储层以纳米、微米孔喉为主,微观孔喉结构复杂,决定了其低孔低渗的储集特征,控制了油气聚集机制、富集规律等基本地质特征。

(一)储层质量 1?宏观 致密砂岩储层以纳米级孔喉系统为主,导致其储层致密物性较差,一般孔隙度小于透率小于 10%,渗O.ImD,而常规砂岩储层物性相对较好,如表1-1。 致密砂岩油藏储层总体致密是其与常规油气储层的最大区别。 2?微观 (1)孔隙结构 孔隙结构:岩石中所具有的孔隙和喉道的几何形状、大小、分布及其相互连通的关系。微米 与纳米尺度是通过扫描电镜与微-纳米CT扫描可以识别的微观孔隙形态与空间特征,如图 1-1。

非常规油气储层孔隙微观结构复杂,孔喉多小于 1 pm 。 图1-1微观孔隙形态与空间特征(据于清艳, 2015) 500 pm 毫米尺度 微岸尺度 訥米尺度

水平井体积压裂技术的探讨

水平井体积压裂技术的探讨 摘要:我国重要的石油开采基地大庆,其外围的储油层渗透率较低(为4—5)×10-3μm2,丰度也低(10~20)×104km2,厚度也薄(单层的厚度大约在50cm),若用直井的方式开采效益很低甚至没有效益,若用水平井的方式开采,则能较好的解决外围的低渗透油田的多井的地产问题,可达到高效开采的目的。随着我国对石油需求量的增大和油价的居高不下,国家加大了对石油领域的投入和科研攻关的力度,水平井的攻关技术日臻成熟,得到了新的突破,特别是水平井的压裂的技术提高更明显,刚开始实行的是全井笼统限流法压裂,通过攻关则发展到现在的以下几种:1、段内限流多段压裂;2、胶塞压裂;3、双封单卡分段压裂;4、水力喷砂压裂;5、机械桥塞分段压裂。共5种方式和工艺。在提高水平井的开发效果方面,虽然这些新技术和新工艺取得了明显的效果,但是还存在一些问题和不足,使水平井压后产量的增加受到限制。 关键词:水平井;体积压裂;水泥加固 1. 关于在水平井压裂方面面临的技术难题 水平井压裂方面面临着两大技术难题:第一、由于通过压裂后裂缝的形成种类单一,使得油层的改造不够充分。由于所开发的水平井的位置地质条件不好,存在低孔和储层低渗透,并且油层所处的地质环境不好。像AN油田,砂岩单层的平均厚度只有80公分,而有效厚度只有30公分,并且平均孔隙度只有17%不到,且渗透率只有渗透率13.3×10-3μm2,含油的饱和度只有区区的51%。在此区做得无用功较多,钻遇率低,单层砂岩的平均钻遇率只有36%,而有效的钻遇率刚刚达到13.8%。面对这样的水平井,有效的处理方法就是在投产前需要压裂处理,但是运用常规的压裂技术一段段进行压裂,每段压裂段只能出现一条主要裂缝,使得储层的渗流面积受到很大限制,这样一来,对低渗透储层以及特低渗透储层而言远远达不到开采的要求。并且因为储层的渗透性能较差不好,常出现如下情况:刚刚开始时候,产能还不错,但时间不长产能下滑的很快,造成前高后低的现象。第二、为防止井崩,必须用水泥加固井壁。对低渗透以及特低渗透储层的处理方式,就是用水泥进行加固,但是水泥古井也会带来弊端,就是固井伤害,并且对油层的污染很严重。油井钻探完毕后,水泥固井的周期大约在两昼夜以上,这样一来,由于水泥浆浸泡长时间浸泡油层,会对储层造成很大伤害。同时,由于受到以重力为主的诸多因素的影响,水平段的固井质量难以得到有效保障,施工中常发生因油套环形空间不均匀导致窜槽、套变等事故,对随之而来的分段压裂施工造成很大安全隐患。同时,由于水泥固井后还要实施射孔后才能做到压裂,故大大增加了施工的成本。 2 水平井的体积压裂施工技术商榷

低渗砂岩油藏压裂改造技术

低渗砂岩油藏压裂改造技术 低孔、低渗、低压、非均质性强、油水关系复杂是制约低渗油田改造的难点。经多年研究及矿场试验,我公司已形成了从压裂地质研究-室内试验-压裂液支撑剂优化-优化设计及实施-压裂实时监测控制-压后评估完备的技术模式。技术水平上也由单项工艺发展到整体压裂技术并引入开发压裂成功实施了ZJ60井区开发压裂,形成了一套具有长庆特色的低渗砂层油藏压裂改造技术。 岩石力学参数、地应力及裂缝方位测试技术 通过围绕储层进行的岩石力学参数测定、地应力测试、以及现场微型压裂测试和压裂动态监测等试验和现场测试,为方案设计提供科学翔实的基础数据。 压裂液优化技术 针对储层地质特点,压裂液重点研究胍胶水基冻胶液配方系列。对于各区块和层位提出的压裂液配方,在室内进行了伤害试验,形成一系列水基压裂液体系。 油田压裂施工现场 压裂支撑剂评价及导流能力试验 对兰州石英砂和低密度中强度的宜兴陶粒进行不同压力下的破碎率试验。为压裂支撑剂的选择提供科学依据。 优化设计技术 通过试井解释、软件分析、图版拟合和历史拟合等,并结合实际地层参数、压裂施工数据监测对裂缝穿透比、裂缝导流能力、压裂施

工参数(加砂量、排量、砂比、前置液量)、压裂工艺方式进行优选。整体压裂技术 1.通过油藏地质研究,结合油田开发要求,制定整体压裂方案。 2.开展室内相关试验及现场测试,并根据油田开发井网,采用系统工程方法,进行目标设计,编制油田整体压裂方案。 3.现场实施与方案完善。 整体压裂技术已在安塞、靖边等油田全面推广。 开发压裂技术 开发压裂是将水力压裂裂缝先期介入油田开发井网的部署中,以压裂开发为出发点,进行井网优化,使压裂裂缝与井网相匹配,以达到提高单井产量和区块整体开发效果的目的。 该技术达到国内先进水平,通过应用达到了提高单井产量、降低成本目的,在油田开发中取得了实效,为探索提高低渗、特低渗油田单井产量和开发效益创出了一条实用科学途径。

致密砂岩油气成藏机理

致密砂岩油气成藏机理 摘要:致密砂岩油气储量丰富、可采资源量可信度高,已成为我国非常规油气勘探开发的首选领域。 关键字:致密砂岩油气成藏条件生储盖组合成藏过程 0 引言 随着常规油气勘探开发程度的不断提高,油气勘探开发领域从常规油气向非常规油气跨越,是石油工业发展的必然趋势(邹才能等,2012)。非常规油气资源量巨大,全球非常规石油资源规模达4495×108t,全球非常规天然气资源规模达3921×1012m3,是常规天然气资源的8倍(邹才能等,2012)。近年来,国内外非常规油气的勘探开发取得了重大突破。美国已发现的储量排名前100的气藏中有58个是致密砂岩气藏(Baihly,et al,2009);我国2010年底共发现储量大于1000×108m3的大气田18个,其中9个为致密砂岩大气田,总探明地质储量25777.9×108m3,占18个大气田的53.5%(戴金星等,2012)。美国圣胡安盆地向斜轴部白垩系致密砂岩气田可采储量为7079×108m3(Bruce et al,2006);Bakken 致密油含油面积7×104km2,资源量达到566×108t,可采资源量68×108t(USGS,2008);Eagle Ford致密油含油面积约4×104km2、目前产油量为560t/d(Lucas et al,2010)。2011年苏里格致密砂岩大气区实现探明储量超3.0×1012m3,四川盆地须家河组致密砂岩大气区发现三级储量1.0×1012m3;鄂尔多斯盆地晚三叠世仅长6、长7段致密油资源量达20×108t以上,四川盆地侏罗系致密油探明地质储量8118×104t(邹才能等,2012)。 致密油气作为非常规油气的重要组成部分,以其储量丰富、分布范围广、可采资源量可信度高、相关技术理论研究早、发展迅速等诸多优点已成为中国近期非常规油气首选的重要勘探领域(戴金星等,2012;贾承造等,2012;邹才能等,2012)。截止目前统计数据表明,我国致密气地质资源量为(17.4-25.1)×1012m3,可采资源量为(8.8-12.1)×1012m3;已形成鄂尔多斯盆地与四川盆地致密气现实区,松辽盆地、渤海湾盆地、吐哈盆地、塔里木盆地、准噶尔盆地5个致密气潜力区(如图1)。截至2010年底,中国致密砂岩气的探明储量30109.2×108 m3,占全国天然气总探明储量的39.2%,致密砂岩气产量为232.96×108 m3,占全国天然气总产量的24.6%(戴金星,2012),预测2015年中国致密气产量将达到(300-400)×108m3,2020年产量将达到(500-600)×108m3。我国致密油地质资

致密油气藏体积压裂技术

致密油气藏体积压裂技术(Stimulated Reservoir Volume)致密油气藏由于其储层本身具有低孔、低渗、低压等特点,因此储层的自然产能很低,相要实现高效商业化开发,必须采用压裂技术对储层进行改造。由于储层基质向裂缝供液能力太差,仅靠单一压裂主缝的常规压裂技术很难取得预期的增产效果,因此必须探索研究新型的压裂改造技术,“体积压裂技术”的提出具有深刻意义。 国外已将此技术成功应用于页岩气、致密砂岩气以及页岩油的开发,国内也对体积压裂开展了初步研究,部分超低渗透区块已经成功实现了体积压裂技术对储集层的改造。体积压裂技术必将逐步成为致密油藏经济有效开发的关键技术。 体积压裂技术(Stimulated Reservoir V olume)是指在水力压裂过程中,使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,从而增加改造体积,提高初始产量和最终采收率。 体积压裂改造的对象是基质孔隙性储层,天然裂缝不发育,低渗、超低渗油气藏。这类油气藏的压裂裂缝仅扩大了井控面积,但由于垂直于人工裂缝壁面方向的渗透性很差,不足以提供有效的垂向渗流能力,导致压裂产量低或者压后产量递减快等问题。通过体积压裂在垂直于主裂缝方向形成多条人工裂缝,改善了储层的渗流特性,提高了储层改造效果和增产有效期。 作用机理: 在水力压裂的过程中,当裂缝延伸净压力大于两个主应力的差值与岩石的抗张强度之和时,容易形成分叉的裂缝,多条分叉裂缝相交就会形成一个“缝网”的系统,如图1所示,其中,以主裂缝为“缝网”系统的主干,分叉缝可能在距离主裂缝延伸一定长度后,又恢复到原来的裂缝方位上,最终形成了以主裂缝为主干的纵横“网状缝”系统。 图1 “缝网”形成示意图

致密砂岩储层评价研究现状

致密砂岩储层评价研究现状 致密砂岩油气藏作为一种特殊非常规油气藏,已受到石油工业界的高度关注。目前致密砂岩储层的评价主要是在地层层组划分的基础上,依据测井解释、岩心物性分析、X-衍射分析、显微薄片鉴定等分析和实验资料,结合产能情况,对储层岩性、储层的物性下限、脆性、厚度和分布范围等多个方面进行评价。 标签:致密砂岩储层储层评价研究现状 0引言 致密砂岩油气藏作为一种特殊非常规油气藏,已受到石油工业界的高度关注。自20世纪80年代以来多位石油地质专家提出了深盆气(Masters,1979)、盆地中心气(Rose,1986)和连续型油气藏(Schmoker,1995)等新概念,就是针对非常规储层用新的思维以及创新的技术方法[1~3]。中国致密储层天然气的分布十分广泛勘探潜力巨大,形成了以四川盆地须家河组、鄂尔多斯盆地苏里格地区二叠系为代表的致密砂岩大气区[4]。 目前致密砂岩储层的评价主要是在地层层组划分的基础上,依据测井解释、岩心物性分析、X-衍射分析、显微薄片鉴定等分析和实验资料,结合产能情况,对储层岩性、储层的物性下限、脆性、厚度和分布范围等多个方面进行评价。 1岩性评价 岩性评价是致密砂岩储层评价的重要组成部分之一,且较常规储层评价的要求更高。致密砂岩储层储集空间小,测井信息中所包含的孔隙部分贡献相对较低,因此,为了求准测井孔隙度,要求更加精细的岩性组分以保障骨架参数的准确性。此外,岩性评价能够十分有助于致密砂岩储层的压裂设计,如可根据岩性类别及其组分确定出的脆性指数以及黏土矿物类型及其各种黏土相对含量,均是压裂设计着重考虑的因素。 常规测井评价岩性的方法主要为:以自然伽马测井计算泥质含量,以密度、中子和声波孔隙度测井确定岩性骨架类别及其比例大小。如果有自然伽马能谱测井资料,可进一步确定出黏土类型。最后以岩性实验分析(如X衍射)刻度测井计算结果。近年来,斯伦贝谢公司研发的新一代地球化学元素测井技术-元素俘获谱测井(ECS)已在我国推广应用,丰富了测井岩性评价的内容,提升了岩性组分的计算精度[5~7] [14](如图1)。 2有效储层物性下限评价 有效储层物性下限是指储集层能够成为有效储层应具有的最低物性。有效储层是指在现有工艺技术及经济条件下能够产出具有商业价值油气流的储层。有效储层的物性下限值主要包括储层孔隙度、渗透率和含油饱和度下限值。有效储层

致密砂岩薄层压裂工艺技术研究及应用

第30卷第1期2018年2月 岩性油气藏LITHOLOGIC RESERVOIRS V ol.30No.1Feb.2018 收稿日期:2017-09-26;修回日期:2017-11-28 基金项目:国家重大科技专项“复杂地层储层改造关键技术”(编号:2011ZX05031-004-003)和中国石化科技攻关项目“鄂南致密油藏两级 裂缝高导流复合压裂技术研究”(编号:P17005-5)联合资助 作者简介:刘建坤(1984-),男,工程师,主要从事储层改造工艺技术及理论方面的研究工作。地址:(100101)北京市朝阳区北辰东路8号 北辰时代大厦6层。Email :jiankliu@https://www.wendangku.net/doc/0c1623694.html, 。 文章编号:1673-8926(2018)01-0165-08DOI :10.3969/j.issn.1673-8926.2018.01.017引用:刘建坤,蒋廷学,万有余,等.致密砂岩薄层压裂工艺技术研究及应用.岩性油气藏,2018,30(1):165-172. Cite :LIU J K ,JIANG T X ,WAN Y Y ,et al.Fracturing technology for thin layer in tight sandstone reservoir and its application . Lithologic Reservoirs ,2018,30(1):165-172. 致密砂岩薄层压裂工艺技术研究及应用 刘建坤1,2,蒋廷学1,2,万有余3,吴春方1,2,刘世华1, 2(1.页岩油气富集机理与有效开发国家重点实验室,北京100101;2.中国石化石油工程技术研究院, 北京100101;3.中国石油青海油田分公司钻采工艺研究院,甘肃敦煌736202) 摘要:针对致密砂岩薄层压裂面临缝高难控、改造体积小、裂缝支撑效率低及导流能力保持较差等难题,从压裂工程角度出发,通过压裂工艺参数优化模拟研究了不同黏度压裂液在不同的压裂施工参数下对裂缝延伸参数的影响规律,分析了薄层体积压裂存在的问题及难点,得出了主控因素,并在此基础上提出了薄层压裂控缝高措施及提高裂缝支撑效率工艺方法。研究表明:压裂液黏度是影响裂缝扩展、延伸的主要因素,其次是排量、液量;薄层压裂应以控缝高为前提,充分利用天然裂缝的作用,提高改造体积及裂缝支撑效率;低黏度压裂液能兼顾薄层压裂控缝高及造缝长的作用,有利于开启及扩展天然裂缝,进一步降低储层伤害,适宜作为薄层体积压裂的前置液;施工不同泵注阶段采用多黏度组合的压裂液体系,既可以扩大有效造缝体积及形成多尺度的裂缝系统,又能兼顾前置液阶段控缝高及携砂液阶段加砂的要求;采取变密度支撑剂结合多尺度组合加砂方式可实现不同粒径支撑剂与不同尺度裂缝系统的匹配,提高多尺度裂缝系统及远井地带裂缝的支撑效率。研究成果在龙凤山薄层气藏及江陵凹陷薄层油藏的多口井进行了试验,压裂后增产及稳产效果显著高于常规改造工艺,且稳产有效期明显增长,提高了该类储层压裂的有效性。 关键词:致密砂岩;薄层压裂;裂缝参数;正交模拟;裂缝缝高;多尺度裂缝;支撑效率 中图分类号:TE357.1文献标志码:A Fracturing technology for thin layer in tight sandstone reservoir and its application LIU Jiankun 1,2,JIANG Tingxue 1,2,WAN Youyu 3,WU Chunfang 1,2,LIU Shihua 1, 2(1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development ,Beijing 100101,China ; 2.Sinopec Research Institute of Petroleum Engineering ,Beijing 100101,China ; 3.Research Institute of Drilling & Production Technology ,PetroChina Qinghai Oilfield Company ,Dunhuang 736202,Gansu ,China ) Abstract :In order to solve the fracturing problems in the thin layer of tight sandstone reservoir ,such as difficul-ty of controlling fracture height ,low stimulated reservoir volume,low proppant supporting efficiency ,the main-taining of flow conductivity etc.,the difficulties of fracturing in such reservoir were analyzed by the means of simulating how different kinds of fracturing fluid under different fracturing construction parameters affect the 万方数据

致密砂岩油藏与常规砂岩油藏开发的地质主控因素差异

致密砂岩油藏与常规砂岩油藏开发的地质主控因素差异 随着世界油气工业勘探开发领域从常规油气向非常规油气延伸,非常规油气的勘探和研究日益受到重视。20 世纪90 年代以来,中国出现深盆气、根源气、深盆油、向斜油、非稳态成藏、致密油、致密气、页岩气、页岩油、源岩油气等概念。油气地质基础研究呈现出由常规油气向非常规油气发展的新趋向(图1)。 图1 中国陆上主要非常规油气有利区分布图(据邹才能等,2013C)致密油是一种重要的非常规资源,是指夹在或紧邻优质生油系的致密储层中,未经过大规模长距离运移而形成的石油聚集,是与生油岩系共生或紧邻的石油资源。储层致密、油气在运移、聚集、成藏等方面与常规砂岩油藏存在较大差异,导致致密砂岩油藏与常规砂岩油藏开发上地质主控因素存在较大差异,本文主要从储层特征、流体性质、边界条件进行简要分析。 一、储层特征 非常规油气储层以纳米、微米孔喉为主,微观孔喉结构复杂,决定了其低孔低渗的储集特征,控制了油气聚集机制、富集规律等基本地质特征。

(一)储层质量 1.宏观 致密砂岩储层以纳米级孔喉系统为主,导致其储层致密物性较差,一般孔隙度小于10%,渗透率小于0.1mD,而常规砂岩储层物性相对较好,如表1-1。 致密砂岩油藏储层总体致密是其与常规油气储层的最大区别。 表1-1 致密砂岩储层与常规砂岩储层宏观储层质量对比 2.微观 (1)孔隙结构 孔隙结构:岩石中所具有的孔隙和喉道的几何形状、大小、分布及其相互连通的关系。微米与纳米尺度是通过扫描电镜与微-纳米CT扫描可以识别的微观孔隙形态与空间特征,如图1-1。 图1-1 微观孔隙形态与空间特征(据于清艳,2015)

致密砂岩气国内外现状

致密砂岩气研究现状 根据中国近年来发现的大型致密砂岩气藏的开发地质特征,可将致密砂岩气划分为3 种主要类型。透镜体多层叠置致密砂岩气,以鄂尔多斯盆地苏里格气田为代表。发育众多的小型辫状河透镜状砂体,交互叠置形成了广泛分布的砂体群,整体上叠置连片分布,但气藏内部多期次河道的岩性界面约束了单个储渗单元的规模,导致储集层井间连通性差,单井控制储量低。苏里格气田砂岩厚度一般为30~50 m,辫状河心滩形成的主力气层厚度平均10 m 左右,砂岩孔隙度一般4%~10%、常压渗透率为(0.001~1.000)×10-3μm2,含气饱和度55%~65%,埋藏深度3 300~3 500 m,异常低压,平均压力系数0.87,气藏主体不含水。鄂尔多斯盆地上古生界天然气藏,鄂尔多斯盆地构造简单稳定。成熟源岩面积13×104平方千米,烃源岩成熟度0.6%~3%,砂岩平均孔隙度8.3% ,平均渗透率小于1*103 μm2; 四川盆地上三叠统须家河组平均孔隙度4. 77% , 平均渗透率小于1*103μm2;为致密-超致密砂岩储层,储层总体表现为低孔低渗高含水,强非均质性的特征。孔喉直径均值0.313μm2;成熟度1.0%~3.6%,源岩分布面积(1.4~1.7)×104㎞2(大于100m),连片砂体面积超过1×104㎞2,砂体普遍含气,以川中地区须家河组气藏、松辽盆地长岭气田登娄库组气藏为代表的多层状致密砂岩气,砂层横向分布稳定。川中地区须家河组气藏发育3 套近100 m 厚的砂岩层,横向分布稳定,但由于天然气充注程度较低,构造较高部位含气饱和度较高,而构造平缓区表现为大面积气水过渡带的气水同层特征。须家河组砂岩孔隙度一般为4%~12%,常压渗透率一般为(0.001~2.000)×10-3μm2,埋藏深度为2 000~3 500 m,构造高部位含气饱和度55%~60%,平缓区含气饱和度一般为40%~50%,常压—异常高压,压力系数1.1~1.5。长岭气田登娄库组气藏砂层横向稳定,为砂泥岩互层结构,孔隙度4%~6%,常压渗透率一般小于0.1×10-3 μm2,天然气充注程度较高,含气饱和度55%~60%,埋藏深度3 200~3 500 m,为常压气藏。 块状致密砂岩气,以塔里木盆地库车坳陷迪西1井区为代表,侏罗系阿合组厚层块状砂岩厚度达200~300 m,内部泥岩隔夹层不发育,孔隙度4%~9%,常压渗透率一般小于0.5×10-3μm2,埋藏深度4 000~7 000 m,为异常高压气藏,压

致密砂岩油藏与常规砂岩油藏开发的地质主控因素差异

致密砂岩油藏与常规砂岩油藏开发得地质主控因素差异 随着世界油气工业勘探开发领域从常规油气向非常规油气延伸,非常规油气得勘探与研究日益受到重视。20 世纪90年代以来,中国出现深盆气、根源气、深盆油、向斜油、非稳态成藏、致密油、致密气、页岩气、页岩油、源岩油气等概念、油气地质基础研究呈现出由常规油气向非常规油气发展得新趋向(图1)、 图1 中国陆上主要非常规油气有利区分布图(据邹才能等,2013C) 致密油就是一种重要得非常规资源,就是指夹在或紧邻优质生油系得致密储层中,未经过大规模长距离运移而形成得石油聚集,就是与生油岩系共生或紧邻得石油资源。储层致密、油气在运移、聚集、成藏等方面与常规砂岩油藏存在较大差异,导致致密砂岩油藏与常规砂岩油藏开发上地质主控因素存在较大差异,本文主要从储层特征、流体性质、边界条件进行简要分析、 一、储层特征 非常规油气储层以纳米、微米孔喉为主,微观孔喉结构复杂,决定了其低孔低渗得储集特征,控制了油气聚集机制、富集规律等基本地质特征。

(一)储层质量 1、宏观 致密砂岩储层以纳米级孔喉系统为主,导致其储层致密物性较差,一般孔隙度小于10%,渗透率小于0。1mD,而常规砂岩储层物性相对较好,如表1-1、 致密砂岩油藏储层总体致密就是其与常规油气储层得最大区别。 表1-1 致密砂岩储层与常规砂岩储层宏观储层质量对比 致密储层常规储层 ?纳米级孔喉系统导致储集 层致密、物性差,一般孔隙 度小于10%, ?渗透率小于0.1mD ?孔隙度 特高孔隙度≥30% 高孔隙度30%~25% 中孔隙度25%~15% 低孔隙度15%~10% ?渗透率 特高渗≥2000mD、高渗2000~500mD 中渗500~50mD、低渗50~10mD 特低渗小于10mD 2。微观 (1)孔隙结构 孔隙结构:岩石中所具有得孔隙与喉道得几何形状、大小、分布及其相互连通得关系。微米与纳米尺度就是通过扫描电镜与微—纳米CT扫描可以识别得微观孔隙形态与空间特征,如图1-1、 图1—1 微观孔隙形态与空间特征(据于清艳,2015)

体积压裂技术的研究与应用

体积压裂技术的研究与应用 摘要:对于低渗油藏,由于此类型的储油层密度高,渗透率较低,所以就不能使用常规的压裂形成单一裂缝的增产改造措施,因为此措施不能达到商业的开采价值,因而为了提升其商业开采价值就要探索新的压裂改造技术。在国内提出了体积压裂改造超低渗油藏的设想,其根据是参考国外的页岩气体积压裂技术。国内通过体积压裂的方法在靖安油田初次实验及应用。经实践后得出,虽然低渗油藏储层致密、渗透率低,但是在经体积压裂后,其形成了复杂缝网和增大改造体积,这样不仅在初期油量产出大,而且给与后期稳产极大支持。 关键词:低渗致密增产改造体积压裂缝网 一、体积压裂作用机理 “体积压裂”顾名思义,就是指将可以进行渗流的有效储集体通过压裂的方法“打碎”,这样就形成了一个网络裂缝,通过这样的压裂方式能使储层基质与裂缝壁面的接触面积达到最大化,使得油气可以从任何方向渗流到裂缝的距离最短化,将储层整体渗透率提高到一定的程度,从而使储层可以实现长、宽、高三维立体方向的改造。在工程的施工过程中,通过(1)低猫液体(2)大液量(3)高排量这三项,加以转向技术及材料的应用的辅助,利用直井分层压裂技术和水平井分段改造技术等手段,可以将裂缝网络系统形成规模最大化,储层动用率就会相应的提高,从而提高非常规油气藏采收率。 二、体积压裂的技术特征 2.1 体积压裂改造的条件 (1)地层有天然的裂缝且发育良好;(2)岩石中硅质成分含量高,容易在高压下产生裂缝。岩石在压裂过程中容易产生剪切力破坏,不是形成单一的裂缝,而是有利于形成复杂的网状裂缝,从而提高裂缝密度增加缝隙体积;(3)较小的敏感力度,适用于大型的滑溜水压裂。较弱的水敏地层,有利于提高压裂液的用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝延展距离增加缝隙体积,扩大了改造体积。 2.2 体积压裂改造技术 国内常用的体积压裂技术是滑溜水大型压裂技术。体积压裂工艺有两个特征。第一“两大”:大排量、大液量。第二“两小”:(1)小粒径低密度支撑剂,支撑剂一般采用70/100目和40/70目陶粒;(2)低砂比,最高砂比不超过支撑剂总量的20.0%。 2.3 体积压裂液体系

致密砂岩气藏读书总结

致密砂岩气藏读书总结 本次对于致密砂岩气藏的文献阅读主要从致密砂岩气藏的概念、分类、气藏特征、成藏要素、成藏机理以及国内外不同盆地致密砂岩气藏的特点等方面进行的,总结如下: 1.致密砂岩气藏的概念 国内外学者对致密砂岩气藏的定义与很多,其共同特点是储层致密,孔隙度渗透率很低。国内普遍认可的定义为:致密砂岩气是指孔隙度低(<12%)、渗透率比较低(1×10-3μm2)、含气饱和度低(<60%)、含水饱和度高(>40%)、天然气在其中流动速度较为缓慢的砂岩层中的非常规天然气(关德师,中国非常规油气地质,1995)。 2.致密砂岩气藏的分类 致密砂岩气藏根据产状分类可分为致密深盆气、致密根源气、致密连续型砂岩气。通过阅读学习发现,对于致密砂岩气藏比较合理的分类方式是按照气藏的成因进行分类,根据有机质大量生、排烃时间与储层致密化时间的关系可将致密砂岩气藏分为三大类:“先成型”深盆气藏、“后成型”致密砂岩气藏、后期改造复合型砂岩气藏。 “先成型”深盆气藏是指有机质大量生排烃时间晚于储层致密化的时间,即储层先致密后成藏。“后成型”致密砂岩气藏与“先成型”相反,是储层先成藏后致密,可见,“先成型”早期属于常规气藏,也称为常规致密砂岩气藏,根据圈闭类型可分为:致密构造类砂岩气藏和致密岩性类砂岩气藏。第三类后期改造复合型致密砂岩气藏是指早期形成的致密类油气藏受到构造变动改造后形成的、地质特征可能完全不同的一种新类型的油气藏或者致密常规型油气藏与致密深盆型油气藏在地史过程中叠加复合而形成的致密型砂岩类油气藏。 3.致密砂岩气藏地质特征: (1)储层致密,储层孔隙度低,一般都在12%以下;储层渗透率低,一般都在1×10-3μm2以下。 (2)致密砂岩气藏埋深变化范围大,分布面积较大。 (3)储量规模大,但储量丰度低,产能低、开采难度大。 (4)油藏压力特征复杂,既有异常高压又有异常低压。一般的,深盆气藏随着成藏演化由异常高压变为异常低压。 (5)气水关系复杂,既有上气下水,又有下气上水,汽水边界不规则。 不同类型的致密砂岩气藏其特点也有不同,特别的,“先成型”深盆气藏地质特征比较特别。 深盆气藏最本质的特征为:天然气被圈闭在地层下倾方向或盆地中心区域;含气区域内的各地质体孔隙均含气而少含水。另外,深盆气气水关系为下气上水型,无明显的边水和底水,气藏形态不受构造控制;深盆气藏的地层压力异常,在主要盆地深盆气藏中,加拿大阿尔伯塔盆地和中国的鄂尔多斯盆地、吐哈盆地属于异常低压,美国的绿河盆地和红沙漠盆地以及中国的四川盆地都属于异常高压,研究表明在天然气充注和深盆气藏的形成过程中,它们的压力显现出正异常;在盆地上升剥蚀或深盆气成藏作用停止过程中,它们的压力显现出负异常。深盆

煤层气压裂工艺技术及实施要点分析

煤层气压裂工艺技术及实施要点分析 发表时间:2019-07-17T09:24:30.543Z 来源:《建筑学研究前沿》2019年7期作者:康锴 [导读] 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。 新疆维吾尔自治区煤田地质局一六一煤田地质勘探队 摘要:近几年,我国经济建设发展迅速,煤矿企业为我国发展做出了很大贡献。我国煤层具有松软、压力低、表面积大和割理发育的特征,导致煤层气开采普遍存在经济效益低、单井产量低的问题。为了适应煤层气特殊的产出条件,本文探讨煤层气压裂工艺技术与实施要点,以期为我国煤层气开采提供参考意见。 关键词:煤层气;压裂工艺技术;实施要点 引言 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。因为煤层气本身属于清洁能源发展行列,本身带有极强的清洁性能和使用的高效性,对于此资源进行科学合理的开发应用,能够有效缓解现阶段我国能源紧缺的尴尬局面。进行开采过程中,需要对煤层的低饱和、低渗透和低压的发展特点充分了解,可以通过对水力压裂技术的改造升级,完成增产增效工作,保证煤层气井开采效率和高质量发展。在此过程中,需要注意的问题是,因为不同煤层在发展过程中,都受到不同介质的作用,其内部构成和物质特性方面都存在很大差异性,所以,科学掌握煤层气压裂工艺技术有着重要的现实意义。 1煤层气探采历史 1733年美国首次实现地下管道煤层气抽放,1920年第一次完成3口地面煤层气抽采井。1953年在圣胡安完成高产井,日产1.2万m3。我国起步较晚,1957年阳泉四矿在井下成功实现,临近煤层瓦斯抽采。1992年正式开始研究实验。1996年中联煤层气有限责任公司的成立,标志着我国煤层气开发研究的新纪元。 2矿岩压裂的主要影响因素 2.1天然裂缝割理 在煤层开采发展过程中,主要的裂缝系统包括天然裂缝和割理,这两种现象会严重影响到压裂裂缝的发展形态,同时还会对周围水文地质的发展起到一定的影响作用。通常它们的主要性能会对水力裂缝的形态进行延伸,造成冲击作用,也就是说,通过这两个作用力的共同作用,煤层气井在发展和延伸的时候,很容易发生突然转向和次生裂缝。 2.2矿岩力学性质 对矿岩力学性质进行研究的过程中,需要重点做好三个方面的工作:首先,做好矿岩硬度和密实度的勘察工作。第二,对整体强度和弹性力度问题进行研究。第三,深入探讨研究断裂相关内容。对有显著特点的矿样进行综合检测分析,通过观察和对比,得到的结论是,矿岩在受到某些压力和应力的共同作用下,其自身的特征也会发生改变,呈现出弹性模量低、脆性大、易破碎和易受压缩等显著特点,所以,需要对矿岩力学性质进行综合研究。 2.3地应力 在矿井气层发生水力起裂现象的过程中,地应力的变化情况会对裂缝整体位置和形态产生主要影响作用。通过科学调查结果显示,起裂压力大小情况与地应力差之间存在负相关的变化发展联系。换言之,破裂压力的影响因素主要为天然裂缝与最大水平主应力间的夹角,在高水平应力差作用力的影响下,会发生层次较规律的主缝问题。在低水平应力差作用力的影响下,裂缝问题就会向周边进行延伸和扩展。 3煤层气压裂工艺技术 3.1大排量压裂技术 在煤层储层中,有着大量的天然割理系统,加之在压裂施工中使用了活性水压裂液,因此容易造成在压裂过程中滤失量过大及效率低的情况。而为了控制液体滤失以保障效率,应当要根据活性水压裂液的特点,选择大排量注入压裂液的施工方式。 3.2低砂比压裂技术 煤层气压裂的砂比是由多种因素共同决定的,包括煤层本身的特性、压裂液及其排量、支撑剂密度等等。煤层具有性脆、易破碎以及易滤失等特性,而这些都容易引起压裂过程中煤层出现砂堵;再者压裂液粘度低,也是造成砂堵的一项常见因素。而若应用低砂比压裂技术,则能够十分有效地预防砂堵现象。 3.3脉冲加砂技术 若想实现煤层气开采的增产,其主要途径之一就是尽量增加缝长和沟通天然割理系统。在深层煤层气的压裂施工过程中,支撑剂的泵入可以选择采用将前置液与携砂液交替注入的方式。这种方法既能够更多地增加缝长和沟通天然割理系统,同时又能够防止砂堵,提高压裂效率。 3.4复合支撑技术 该深层煤层气储层的闭合压力<20MPa,经分析和评价后,认为其在支撑剂的选择上以石英砂为宜。由于煤层气储层具有易滤失的特点,所以在加砂前,首先要处理天然割理,即加入适量的细粒径石英砂,从而降低其滤失;其次在加砂过程中,要加入适量的中粒径石英砂,从而延伸裂缝;而在加砂后期,则要加入粗粒径石英砂,以使煤层中的气流畅通。 4煤层气压裂工艺技术及实施要点分析 4.1优选煤层气压裂液体系 在煤层气压裂中,压裂液既需要携砂、造缝,又会因液体浸入储层而伤害煤层,所以优选压裂液体系至关重要,即要求煤层气压裂液满足压裂工艺的技术要求、与储层配伍性且尽量不伤害煤层。煤层气井从客观实际出发优选压裂液体系,具体要点包括:一是少用添加剂,如有机类添加剂,以免伤害煤储层;二是研发与煤层气压裂条件相适宜的压裂液材料,以提高其与煤储层的配伍性;三是在满足压裂工艺与施工要求的前提下,提高压裂液的经济性,从而适应市场经济的发展要求。据此,山西沁水盆地煤层气井决定选用清水压裂。

致密砂岩油气藏形成机理及勘探技术讲解

致密砂岩油气藏形成机理及勘探技术 (调研报告) 编写人:牛宝荣孙占东 主要参加人:王幸才王琦莫增敏李元萍 杨丹王成辉 审核:刘永军 吐哈油田公司勘探开发研究院科技信息中心 二零零九年三月

目录 一、致密砂岩油气藏形成机理及特征 (1) 1.致密砂岩的形成机制 (1) 2.致密砂岩的封闭机理及储层特性 (2) 3.致密砂岩油气藏特征 (4) 4.致密砂岩气藏的划分 (5) 4.1两种气藏成藏特征异同点 (7) 4.2两种气藏成藏条件异同点 (8) 4.3两种气藏成藏模式及分布规律异同点 (13) 二、典型致密砂岩油气藏实例 (14) 1.加拿大阿尔伯达盆地深盆气藏 (14) 2.美国落基山地区深盆气藏 (15) 3.鄂尔多斯盆地上古生界深盆气藏 (16) 4.四川盆地西部坳陷的中生界陆相致密砂岩气藏 (17) 三、致密砂岩油气藏的勘探技术 (18) 1.用屏蔽暂堵技术提高致密砂岩油气层测井识别能力 (19) 2.致密砂岩孔隙度计算方法 (23) 3.地震裂缝综合预测技术 (26) 4.致密砂岩油气层测井评价新技术 (30) 5.致密砂岩气层的识别技术方法 (32) 6.致密含气砂岩的多参数联合反演预测技术 (35) 四、勘探技术现实中的应用 (41)

1、屏蔽暂堵技术应用效果(以鄂尔多斯盆地北部塔巴庙致密砂岩气藏为例) (41) 2、致密砂岩孔隙度计算方法的应用效果(以鄂尔多斯盆地北部下二叠系下石盒子组测井数据为例) (42) 3.地震裂缝综合预测技术应用效果(以川西BMM 地区侏罗系沙溪庙组地层为例) (43) 4、致密砂岩油气层测井评价新技术的应用效果(以鄂尔多斯盆地上古生界以陆相、海陆交互相碎屑岩为例) (43) 5、致密砂岩气层的识别技术方法的应用效果(以鄂尔多斯盆地陕北斜坡东南部陕北富县探区上古生界致密砂岩为例) (45) 6、多参数联合反演预测技术的应用效果(以川南须家河组致密砂岩储层为例) (46) 五、结论 (49) 六、结束语 (51)

相关文档
相关文档 最新文档