文档库 最新最全的文档下载
当前位置:文档库 › 基于AUTOFORM的冲压件成型仿真分析

基于AUTOFORM的冲压件成型仿真分析

基于AUTOFORM的冲压件成型仿真分析
基于AUTOFORM的冲压件成型仿真分析

基于AUTOFORM的冲压件成型仿真分析

一、AUTOFORM简介

AUTOFORM主要有以下特点:

1. 全自动网格划分

传统意义上的分析师,都在对几何的网格划分上具有较深的造诣,在一个方案的整个分析过程中,网格的处理,往往占据了70%的精力。资深分析师的匮乏,严重影响了CAE 分析在工业界的推广应用。AUTOFORM 由于在接触算法上的重大突破,从而在根本上改变了网格划分对技术人员所要求的内涵,其整个划分过程全自动,无需用户干预,具有快速、准确、稳定和简单的特点,不占用使用人员的精力。全自动网格划分,使得CAE 分析的瓶颈问题得到解决,对普通技术人员而言,CAE 分析不再是一个神秘领域,使得CAE 工业应用的普及化真正成为现实。

2. 全程工艺设计辅助

3. 计算速度快

AUTOFORM 对板冲压成型过程的仿真模拟计算速度超越了传统意义上对板冲压成型过程进行模拟所需时间的理解。其计算速度是同类CAE 软件的几倍甚至几十倍。绝大部分制件的仿真分析计算都能在几十分钟内完成,有些甚至只需几分钟。

4. 模拟精度高

AUTOFORM 不仅在瑞士设有研发部门,而且在德国还专门设有工业应用部门,其与欧洲的一些著名的汽车生产商和模具生产商之间也已建立了良好的联系和反馈机制。经过多年的工业应用反馈积累改进和版本升级,目前,AUTOFORM 的模拟精度已经在世界范围内得到了广泛认可,这一点也已经在NUMISHEET’2002 的试题结果中得到了很好的反映。

5. 模拟结果稳定性高

AUTOFORM 诸多内置参数来源于工业实际,无需用户外部干预。与传统CAE 软件比较,其计算结果不依赖于操作者的FE 经验,不会因人而异,稳定性非常好。这一点已经在NUMISHEET’2002 的试题结果中得到了很好的反映。

6. 界面简洁,操作性好

AUTOFORM 的前、后处理所有功能都集成于一个界面之中,但整个界面简单明了,给人以井井有条之感。其所有模块都兼具向导功能,用户只须按部就班将设置填好即可。若用户有错误或疏漏的地方,AUTOFORM 会以警示颜色标出,方便用户检查及修改。

7. 全参数化驱动,各模块无缝集成

AUTOFORM 中的所有涉及模面设计及几何操作的地方,都是参数化驱动,用户修改任意一处,相应的其它地方都自动改变。不同模块无缝集成,在任意一模块中都可调用其它模块中所获得的结果。

二、发动机罩内板冲压工艺设计

2.1、工艺补充及压料面设计

根据发动机罩内板模型,该冲压件的成型工序为:拉延、切边冲孔、整形三序,根据不同的工序设定工艺补充和压料面,拉延时凹凸模需要工艺补充和压料面,而整形时压块和顶起选取发动机罩内板模型上比较平坦的地方,凹模需要单独的工艺补充,凹凸模和工艺补充设计可以在CATIA 中完成,然后导入AUTOFORM 中,也可以在AUTOFORM 直接完成,此次仿真选择在AUTOFORM 中直接完成。

需要指出的是,发动机罩内板模型上需要很多孔,而且冲压方向不一致,有的需要正冲,有的需要侧冲,所以可以根据需要选择在其他工序中对一些孔进行冲压,如在拉延时可以冲出某些孔,本文为了方便,将所有孔都选择在切边冲孔工序中完成。

拉延工序的凹凸模和压料面如图1所示。

2.2、冲压方向的确定

冲压方向的确定要满足四个原则:保证能将冲压件的全部形状一次冲压出来;使冲压深度差最小;保证凸模与板料有良好的初始接触状态;有利于防止表面缺陷。

此次冲压方向选择Z 轴,图2为拉延时冲压件的负角检查,可以看出不存在冲压负角。

图1 拉延凹凸模及压料面

2.3、板料初始轮廓的确定

板料轮廓既要大于冲压件的展开尺寸,又要达到板料的利用率要求。板料轮廓的确定可以在CATIA 中完成,也可以在AUTOFORM 中完成,然后再利用CAD 软件进行编辑。此次仿真的板料初始轮廓在AUTOFORM 中完成,再导入CATIA 中进行编辑,最终结果如图3所示。

2.4、冲压工艺参数初始确定

压边力:压边力是影响冲压件冲压成型的重要工艺参数,与材料的流动息息相关。此次仿真的压边力根据经验,设置压边力为常量,取压强值23/N mm ,结合压料面面积,可确定压边力为250t 。

间隙:此次仿真凹凸模间隙选为0.1mm ,发动机罩内板板厚为1mm ,所以凹凸模实际间隙为1.1mm 。

摩擦系数:摩擦系数也是冲压件冲压成形中一个比较重要的工艺参数,摩擦图2 负角检查

图3 板料初始轮廓线

图4 硬化曲线

系数过大,可能会引起冲压件开裂;摩擦系数过小,可能引起冲压件起皱。此次仿真拉延工序的摩擦系数选择为0.12,整形工序摩擦系数选择为0.15。

2.5、冲压件材料的选择

此次仿真冲压件材料选择为DC01,其各种性能如下所示:

弹性模量:2.1e+05pa ;

泊松比:0.3;

硬化指数:0.15;

晶向综合指数:1.45;

屈服强度:200Mpa 。

DC01的硬化曲线如图4所示。

2.6、网格划分

如前所述,AUTOFORM 中采用全自动网格划分,无需用户设定。

板料网格划分如图5所示。

2.7、拉延筋布置 拉延筋广泛应用于冲压件冲压成型,是调节和控制压料面的一种强有力的方法,拉延筋的主要作用有:增大进料阻力、调节进料阻力分布等,在布置拉延筋的时候应该遵循一个原则,在曲率较小即曲面较为平缓的地方布置较小的拉延筋,在曲率较大即曲面较陡的地方布置较大的拉延筋。此次仿真拉延筋的布置如图6所示,图中曲线即为布置的拉延筋。

图5 网格划分

图6 拉延筋的布置

三、冲压仿真计算

设定完前面所述的工艺面及压料面,并将各种工艺参数导入之后,开始对发动机罩内板的成型进行仿真,观察计算过程,图7为拉延结果。

图8为切边冲孔结果。图9为翻边结果。图7 拉延结果

图8 切边冲孔结果

图9 整形结果

图10 基于应变的成型极限图

图11 基于应力的成型极限图

四、仿真结果分析

仿真结束后,可以对该冲压件的成型性进行分析。

4.1、成型极限图FLD

成型极限图FLD (Forming Limited Diagram )是冲压成型性能发展过程中的较新成果,用来预测板料成型,其两个数据轴分别代表主应变和次应变,连接材料发生颈缩或者断裂时对应的应变状态所得的点,就是成型极限图。

成型极限图主要有基于应变的成型极限图和基于应力的成型极限图,用的较多的是基于应变的成型极限图,但是对于有些冲压件来说,其成型过程处于基于应变成型极限图安全区内,但是可能超过基于应力成型极限图之外,所以,对于一些复杂的冲压件,有必要对其进行应力成型极限图和应变成型极限图。

此次仿真基于应变的成型极限图如图10所示。从图中可以看出,大部分成型处于极限图安全区内,一小部分厚度比较小,有破裂的危险,另有一小部分厚度较大,有起皱危险,需要进一步找到这些危险存在的地方,查明区域大小,进行进一步分析。

进 基于应力的成型极限图如图11所示,从该图中可以看出,成型过程都在曲

线以内,故成型安全。

4.2、FLD分布图

FLD分布图可以直观的显示出可能发生各个成型情况分布的区域,如安全区、起皱区、破裂区等。图12为此次仿真的FLD分布图,从该图可以看出,此次仿真冲压件模型上大部分呈绿色即安全状态,证明此次冲压大部分是安全的;一小部分处于灰白色区域即拉伸不足区;更小部分处于蓝色区域即压应力起始区,代表在这部分存在压应力;极小部分处于材料增厚区,代表材料厚度增加,有起皱趋势,但是这部分区域相对较小,只占发动机罩内板上极小一部分,并且观察冲压件成型过程,并无起皱现象发生,所以可以认为此次冲压件成型不存在起皱现象;另外有小部分区域呈黄色状态即过度变薄区,代表在这个区域内冲压件厚度变薄,但是在可接受范围内。

综上所述,此次发动机罩内板成型安全,虽有一些小瑕疵,但是都在可接受范围内。

图12 FLD分布图

4.3、厚度分布图

图13为此次仿真的厚度分布图,从图中可以看出,成型后大部分区域厚度

在1mm左右,在AUTOFORM中测量,最大厚度为1.08mm,最小厚度为0.86 mm,在可接受范围内,故认为此次仿真冲压件厚度分布均匀,满足成型性要求。

由以上分析可以得出,该发动机罩内板在冲压过程中无起皱、开裂等重大缺陷产生,故可认为其成型性良好。

五、结论

本报告对仿真软件AUTOFORM进行了简单介绍,以前面设计出的发动机罩内板为例,详细介绍了运用AUTOFORM进行冲压件仿真的方法和流程,对一些重要的仿真参数进行了详细介绍,并对仿真结果进行分析,主要有FLD成型极限图和厚度分析等方法,得出分析结果为此冲压件成型性良好。

高速精密冲压工艺流程及特点【详细解析】【共7页】

高速精密冲压工艺流程及特点【详细解析】 -------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有-------------- 高速精密冲压工艺流程及特点【详细解析】 精冲是冲压领域中的高技术,在各类机电与家电产品制造企业中,如其产品达到适度经济生产规模进行大批量生产时,合理应用精冲技术,可以获得很好的技术经济、职业安全效益。高速精密冲压技术涉及到机械、电子、材料、光学、计算机、精密检测、信息网络和管理技术等诸多领域,是多学科的系统工程。 高速精密冲压工艺流程 1、备料:不同产品所需的模具材料也有所不同,要根据产品特点选择合适的模具材料,如模柄,上盖板及上公夹,脱料板,下模板,垫板及底板。 2、粗加工:选择好材料后,用铣床对平面及侧面进行初步加工。通常需要用到公夹板,脱料板,下模板及垫板,底板,上盖板及顶料板。 3、细加工:需要用磨床加工平面及四角打直角。将公夹板,脱料板,下模板及垫板研磨平面再打直角,再将底板及上盖板研磨平面即可。

4、划线:将经过细加工处理已经研磨好并打好直角的模具板材放置在划线台上,根据模具制作图纸,用划线高度尺进行划线,最后把划好线的模具板材进行打点,钻孔,攻牙。 5、热处理:将需要热处理的下模板及模块提高硬度的板材经过高温淬火,回火,调质,退火,在进一步精加工,把板材进行研磨平面并打直角,再进行线切割加工。 6、组装试模:选用模架或配套导柱,导套来完成模具组装,并将组装好的模具安装在冲压机床上进行调试冲压,最后将冲出的进行测量确认其是否符合产品的要求,完成整个冲压加工。 高速精密冲压工艺流程中注意事项 1、在开始工作前,操作人员应把压力机和工作场地加以检查、整理:检查、精密端子冲模内是否干净;检查冲模紧固情况和在压力机上的固定情况;检查材料厚度及表面清洁情况;检查压力机润滑情况,并准备好废料箱,同时把精密冲压件、精密端子毛坯放在指定位置以便于拿取。 2、工作时,应始终遵守安全规程。如冲压时要始终执行所规定的各项安全制度;工作时要穿上工作服,戴好工作帽,工作要认真,始终坚持岗位,思想要集中,以防发生人身事故。 3、严格按精密冲压件、精密端子工艺规程所规定的各项内容操作,工作时应思想集中。精密冲压件、精密端子首件必须经过检查,合格后方可生产,冲压过程中,应随时进行自检和专

冲压件的工艺分析与计算

广东工业大学 华立学院 课程设计(论文) 一、课程设计(论文)的内容

1.冲压件的工艺分析与计算 1.1工艺分析 产品零件图如下所示 图1-1-1产品零件外形 1)此工件只有落料和冲孔两个工序。工件结构相对简单,有2个Φ10的孔,孔与孔,孔与边缘之间的最小C距离满足C>1.5t要求,最小壁厚为7mm,尺寸精度较低,普通冲裁完全能满足要求。 2)正方形部分清角(不带圆角R),异形凸模加工困难,且容易折断,所以应分步冲裁;正方形部分有尖叫,查表夹角部分应设计R0.4。 3)冲裁件质量是指断面状况、尺寸精度和形状误差。断面状况尽可能垂直、光洁、毛刺小,尺寸精度应该保证在图纸规定的公差范围之内,零件外形应该满足图纸要求,表面尽可能平直,即拱弯小。本产品在断面粗糙度和毛刺高度没有严格要求,所以要模具达到一定要求,冲裁件的断面质量可以保证。 4)本产品的材料为10钢(普通碳素钢,未退火),具有良好的冲压性能,适合冲裁,抗剪强度为255~333t/MPa,抗拉强度为294~432бb/MPa,屈服强度为206бs/MPa,可见产品材料性能符合冲压加工要求。 5)产品批量为大批量,很适合采用冲压加工,最后采用连续模或复合模,加上自动送料装置,会提高生产率。 经上述分析,该零件的尺寸精度能够在冲裁加工中得到保证 孔落料级进冲裁模进行加工。 1.2冲裁工艺方案的确定 止动片冲裁工艺过程包括落料、冲孔两个基本工序,可有以下三种工艺方案:方案一:先冲孔,后落料。 特点:结构简单,但需要两道工序两副模具,成本高生产效率低,难以满足大批量生产的要求。 方案二:落料—冲孔复合冲模,采用复合模生产。 特点:只需要一副模具,工件精度及生产效率都较高,工件最小壁厚为7mm,模具强度较好,但模具制造比较复杂,调整维修较麻烦。 方案三:冲孔—落料级进冲模,采用级进模生产。特点:也只需要一副模具,生产效率高,操作方便,但是制造精度不如复合模,模具制造比较复杂,调整维修较麻烦。 通过对上述三种方案的分析比较,根据本零件的设计要求以及各方案的特点,采用方案三(级进模)最合理,即选用级进模具结构。 分析得到:止动片的形状为上下对称,下端水平,采用直对排效率较高。2.2选择搭边值 排样时冲裁件之间以及冲裁件与条料侧边之间留下的工艺废料叫搭边。搭边的作用一是补偿定位误差和剪板误差,确保冲出合格零件;二是增加条料刚度,方便条料送进,提高劳动生产率;同时,搭边还可以避免冲裁时条料边缘的毛刺被拉人模具间隙,从而提高模具寿命。搭边值由上表得到,工件间1a=2mm,沿边a=2.5mm。 2.3送料步距与条料宽度 制件步距的计算公式为:S=maxD+1a 式中:maxD——条料宽度方向冲裁件的最大尺寸 1a——搭边值

塑料成型加工技术实验报告范文

塑料成型加工技术实验报告范文 篇一:材料加工实验报告(注塑成型CAE分析实验) 一、实验目的 1、掌握注塑成型工艺中各参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对其成型质量的影响大小。 2、了解塑件各种成型缺陷的形成机理,以及各工艺参数对各种缺陷形成的影响大小。 3、初步了解注塑成型分析软件Moldflow的各项功能及基本操作。 4、初步了解UG软件三维建模功能。 5、初步了解UG软件三维模具设计功能。 二、实验原理 1、Moldflow注塑成型分析软件的功能十分齐全,具有完整的分析模块,可以分析出注塑成型工艺中各个参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对成型质量的影响,还可以模拟出成型缺陷的形成,以及如何改进等等,还可以预测每次成型后的结果。 2、注射成型充填过程属于非牛顿体、非等温、非稳态的流动与传热过程,满足黏性流体力学和基本方程,但方程过于复杂所以引入了层流假设和未压缩流体假设等。最后通过公式的分析和计算,就可以得出结果。 三、实验器材 硬件:计算机、游标卡尺、注塑机、打印机

软件:UG软件、Moldflow软件 四、实验方法与步聚 1、UG软件模型建立和模具设计(已省去); 2、启动Moldflow软件; 3、新建一个分析项目; 4、输入分析模型文件; 5、网格划分和网格修改; 6、流道设计; 7、冷却水道布置; 8、成型工艺参数设置; 9、运行分析求解器; 10、制作分析报告 11、用试验模具在注塑机上进行工艺试验(已省去); 12、分析模拟分析报告(省去与实验结果相比较这一步骤); 13、得出结论 五、前置处理相关数据 1.网格处理情况 1)进行网格诊断,可以看到网格重叠和最大纵横比等问题;2)网格诊断,并依次修改存在的网格问题; 3)修改完后,再次检查网格情况。 2.材料选择及材料相关参数 在在方案任务视窗里双击第四项材料,弹出如图材料选择窗可直接选常用材料,也可根据制造商、商业名称或全称搜索 3. 工艺参数设置 双击方案任务视窗里的“成型条件设置”,这里直接用默认值。 4. 分析类型设置(1)最佳浇口位置分析 分析结果:

冲压件工艺性分析与计算(doc 8页)

冲压件工艺性分析与计算(doc 8页)

一.冲压件工艺性分析 (1)材料分析 08F是优质沸腾钢,强度低和硬度、塑性、韧性好,易于拉伸和冲裁成形。 (2)结构分析 冲压件为外形为弧形和直边组成近似矩形的结构、有凸缘筒形浅拉深、冲三个圆孔的结构。零件上有3个孔,其中最小孔径为5.5mm,大于冲裁最小孔径d≥1.0t=1.2mm的要求。另外,孔壁与制件直壁之间的最小距离满足L=3.475 min ≥R+0.5t=1.6.的要求。所以,该零件的结构满足冲裁拉深的要求。 (3)精度分析 零件上有4个尺寸标注了公差要求,由公差表查得其公差要求都属于IT11~IT13,所以,普通冲裁可以满足零件的精度要求。 由以上分析可知,该零件可以用普通冲裁和拉深的加工方法制得。 二.冲压件工艺方案的确定 (1)冲压方案 完成此工件需要落料、拉深、冲孔三道工序。因此可以提出以下5种加工方案分: 方案一:先落料,再冲孔,后拉深。采用三套单工序模生产。 方案二:落料—拉深—冲孔复合冲压,采用复合模生产。 方案三:冲孔—拉深—落料连续冲压,采用级进模生产。 方案四:拉深—冲孔复合冲压,然后落料,采用级进模生产。 方案五:落料—拉深复合冲压,然后冲孔。采用两套模生产。 (2)各工艺方案的特点分析 方案一和方案五需要多套工序模,模具制造简单,维修方便,但生产成本较低,工件精度低,不适合大批量生产;方案二只需一副模具,冲压件的形状位置精度和尺寸精度易于保证,且生产效率高。方案三和方案四的级进模,生产效率高,但模具制造复杂,调整维修麻烦,工件精度较低; (3)工艺方案的确定

拉深尺寸计算 ,拉深基本公式为 d 0d δD D = 0p )(p Z D D δ-= 尺寸mm 0 33.030-φ,p δ=0.03 d δ=0.05,双边间隙Z=2.2t=2.64,则 d 0d δD D ==05.00 30 0p )(p Z D D δ-==003.0)64.230(-=05.0036.27 中心距尺寸计算 :零件上两孔中心距为L=mm 5.1709.009.0+ -mm (2)拉深凸、凹模圆角半径的计算 凹模圆角半径的计算:拉深凹模圆角半径的计算为 ()t d D r d -80.01= 此零件落料冲孔的周长L 为94mm ,材料厚度t 为1.2mm ,08F 钢的抗拉强度b σ取390MPa ,则零件所需拉深力为 ()()mm t d D r d 35.22.16.272.3680.080.01=?-=-= 凸模圆角半径的计算:拉深凸模圆角半径的计算为 18.01d r r p = 根据凹模圆角半径,计算凸模半径为 88.135.28.08.011=?=d r r p = 四.冲压力的计算及初选压力机 (1)落料工序冲压力的计算 冲裁力基本计算公式为τKLT F = 此零件落料的周长1L 为153mm ,材料厚度t 为 1.2mm ,08F 钢的抗剪强度τ取310MPa ,则冲裁该零件所需冲裁力为 kN 748.73990N 3102.11533.1≈=???=N F 落 模具采用弹性卸料装置和推件结构,所需卸料力X1F 和推件力T1F 为

塑件成型工艺性分析3

一、塑件成型工艺性分析 1、塑件的分析 (1)外形尺寸该塑件壁厚为3mm,塑件外形尺寸不大,塑件熔体流程不太长,适合于注射成型。 (2)精度等级每个尺寸的公差都不一样,有的属于一般精度,有的属于高精度,就按实际公差进行计算。 (3)脱模斜度 ABS属无定形塑料,成型收缩率较小,选择该塑件上型芯和凹模的统一脱模斜度为1度。 2、ABS的性能分析 (1)使用性能综合性能好,冲击强度、力学强度较高,尺寸稳定,耐化学性,电气性能好;易于成型和机械加工,其表面可镀铬,适合制作一般机械零件、减摩零件、传动零件和结构零件。 (2)成型性能 1)无定型塑料。其品种很多,各品种的机电性能及成型特性也各有差异,应按品种来确定成型方法及成型条件。 2)吸湿性强。含水量应小于0.3%(质量)。必须充分干燥,要求表面光泽的塑件应要求长时间预热干燥。 3)流动性中等。溢边料0.04mm左右。 4)模具设计时要注意浇注系统,选择好进料口位置、形式。推出力过大或机械加工时塑件表面呈白色痕迹。 (3)ABS的主要性能指标其性能指标见下表

ABS 性能指标 密度/g ·3cm 1.02~1.08 屈服强度/MPa 50 比体积/13-?g cm 0.86~0.96 拉伸强度/MPa 38 吸水率(%) 0.2~0.4 拉伸弹性模量/MPa 1.4×310 熔点/C ο 130~160 抗弯强度/MPa 80 计算收缩率(%) 0.4~0.7 抗压强度/MPa 53 比热熔/1)(-??C kg J ο 1470 弯曲弹性模量/MPa 1.4310? 3、ABS 的注射成型过程及工艺参数 (1)注射成型过程 1)成型前的准备。对ABS 的色泽、粒度和均匀度等进行检验,由于ABS 吸水性较大,成型前应进行充分的干燥。 2)注射过程。塑件在注射机料和筒内经过加热、塑化达到流动状态后,由模具的浇注系统进入模具型腔成型,其过程可分为充模、压实、保压、倒流和冷却五个阶段。 3)塑件的后处理。的介质为空气和水,处理温度为60~75C ?,理时间为16~20s 。 (2)注射工艺参数 1)注射机:螺杆式,螺杆转数为30r/min 2)料筒温度(C O ):后段150~170; 中段160~180;

autoform详细设置

Autoform中整形的设置过程 以S21项目中的一个产品为例,介绍在Autoform中设置整形的过程。 1.产品名称:左/右门槛后部本体,产品图号:S21-5101931/2 料厚:1.2 材质:ST12 如图所示: 2.此产品由(1)拉延、(2)修边冲孔、(3)翻边整形、(4)冲孔侧冲孔切断四序完成(左右 件共模)。仅介绍第三序翻边整形的设置过程。 3.设置过程 3.1 过程准备 3.1.1按“Autoform操作规范”进行工艺补充(如图所示),并进行拉延序的计算,拉延序的计算 结果达到最佳时,方可进行后序的计算。 3.1.2将修边线(必要时将修边后的产品型以.igs 格式输出以便在Autoform中计算整形和翻 边时提取修边线)、产品数型以.igs 格式输出。

3.2 在Autoform 中对整形过程进行设置: 3.2.1 打开拉延序的.sim 文件,在此基础上进行整形过程的设置。 3.2.2 打开几何构型(Geometry Generator )对话框,导入产品数型,导入过程如图所示: (1) (2) (3) 具体步骤为: ① 打开Geometry Generator 对话框,如图(1)所示; ② 在File 的下拉菜单中选择Import[如图(2)所示];弹出如图(3)所示的对话框; ③ 选择New Geometry ,在地址栏中输入文件所在地址,单击 OK 。

3.2.3 打开仿真参数输入(Input Generator )对话框,进行仿真参数设置。 3.2.3.1 模具结构的运动过程 ① 在进行仿真参数设置以前,首先要了解模具结构的运动过程。 翻边:向上翻边是通过上压料芯和下托料芯夹紧料与下模镶块的相对运动来完成的; 向下翻边是通过上压料芯和下模压紧料与上模镶块的相对运动来完成的。 整形:整形是通过上(或下)模镶块与上压料芯(或下托料芯)的相对运动来完成。 ② 此产品需要向上翻边,且拉延修边后的产品型和翻边前的产品型不一致,因此在 Autoform 中进行仿真参数设置时要相应的增加上压料芯、上模镶块、下托料芯和下模镶块这些工具;同样,在运动过程设置中也需要增加修边、定位(制件)、闭合、成型这些运动过程(其中成型过程需要两个,分别为:翻边、整形的成型过程),先将修边后的产品型整形,再翻边得到最终的产品型。 (4)Input Generator 中的Tools 对话框

典型冲压件冲压工艺设计实例

典型冲压件冲压工艺设计实例 汽车车门玻璃升降器外壳件的形状、尺寸如图 8.2.1 所示,材料为 08 钢板,板厚 1.5mm ,中批量生产,打算采用冲压生产,要求编制冲压工艺。 8.2.1 冲压件的工艺分析 首先必须充分了解产品的应用场合和技术要求,并进行工艺分析。汽车车门上的玻璃抬起或降落是靠升降器操纵的。升降器部件装配简图如图 8.2.2 所示,本冲压件为其中的外壳 5 。升降器的传动机构装在外壳内,通过外壳凸缘上三个均布的小孔 φ 3.2mm 用铆钉铆接在车门座板上。传动轴 6 以 I T11 级的间隙配合装在外壳件右端孔 φ 16.5mm 的承托部位,通过制动扭簧 3 、联动片 9 及心轴 4 与小齿轮 11 联接,摇动手柄 7 时,传动轴将动力传递给小齿轮,然后带动大齿轮 12 ,推动车门玻璃升降。 该冲压件采用 1.5mm 的钢板冲压而成,可保证足够的刚度与强度。外壳内腔的主要配合尺寸φ 16.5 mm 、 φ 22.3 mm 、 16 mm 为IT11-IT12 级。为确保在铆合固定后,其承托部位与轴套的同轴度,三个φ 3.2mm 小孔与φ 16.5mm 间的相对位置要准确,小孔中心圆直径φ 42 ± 0.1mm 为 Ⅰ T10 级。此零件为旋转体,其形状特征表明,是一个带凸缘的圆筒形件。其主要的形状、尺寸可以由拉深、翻边、冲孔 等冲压工序获得。作为拉深成形尺寸,其相对值 、 都比较合适,拉深工艺性较好。φ 22.3 mm 、16 mm 的公差要求偏高,拉深件底部及口部的圆角半径 R1.5 mm 也偏小,故应在拉深之后,另加整形工序,并用制造精度较高、间隙较小的模具来达到。 三个小孔 φ 3.2 mm 的中心圆直径 42 ± 0.1mm 的精度要求较高,按冲裁件工艺性分析,应以 φ 22.3 mm 的内径定位,用高精度(IT7 级以上)冲模在一道工序中同时冲出。 图 8.2.1 玻璃升降器外壳

冲压工艺分析流程及要点

冲压工艺分析流程及要点 说明: 本规范为TG0数据设计指导。 该系列设计规范用于指导结构功能说明、结构布置与 尺寸控制的正向设计,尤其是在没有标杆车的状态下 的正向开发;基于本规范完成结构数据TG0版的设计 开发。 本规范是TG0版数据的设计指导。 [键入文字]

内容 一.冲压SE宏观流程 二.冲压SE流程详解 三.根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布 四.根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP点五.根据冲压方向做成型工艺补充,压边圈按要求尽量平缓过渡光顺,并将修边线展出。调整分模线平滑光顺 六.根据项目提供信息及材料进行成型工艺模拟 七.对成型模拟结果进行分析,此过程需项目负责人(冲压工艺负责人)监督完成,根据模拟结果分析要求进行反复模拟验证 八.根据结果分析要求对该产品优化,并提出相应的ECR。(ECR格式和内容待商定) 九.经项目负责人(冲压工艺负责人)确认结果分析无误后,可开始进行UG建型。并开始正式UG 数据模拟计算并分析结果 十.根据结果进行局部小修改,直到模拟结果没问题,将数型数据交给精算人员进行PAM精算。根据PAM精算结果进行局部修改,同时准备后续翻边整形的粗算及数型数据。并交给精算人员进行精算 十一.准备工艺数型,根据要求完成数型优化和层的摆放 十二.制作DL图,并优化二维图 十三. 项目负责人(冲压工艺负责人)审核完工艺数型和DL图后,可提交给项目助理整理并最终按节点交付材料 注意:红色字体为推荐值

冲压SE分析流程及要点 一.冲压SE宏观流程: 1. 接到数据在项目负责人(冲压工艺负责人)协助下分析工艺数据宏观缺陷。 2. 根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布。 3. 根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP 点,此过程根据分析结果需反复操作。 4. 根据冲压方向做成型工艺补充,压边圈按要求尽量平缓过渡光顺,并将修边线展出。调整分 模线平滑光顺。 5. 根据项目提供信息及材料进行成型工艺模拟。 6. 对成型模拟结果进行分析,此过程需项目负责人(冲压工艺负责人)监督完成,根据模拟结 果分析要求进行反复模拟验证。 7. 根据结果分析要求对该产品优化,并提出相应的ECR。 8. 经项目负责人(冲压工艺负责人)确认结果分析无误后,可开始进行建型。并开始正式数据 模拟计算并分析结果。 9. 根据结果进行局部小修改,直到模拟结果没问题,将数型数据交给精算人员进行PAM精算。 根据PAM精算结果进行局部修改,同时准备后续翻边整形的粗算及数型数据。并交给精算人员进行精算。 10. 准备工艺数型,根据要求完成数型优化和层的摆放。 11. 制作DL图,并优化二维图。 12. 项目负责人(冲压工艺负责人)审核完工艺数型和DL图后,可提交给项目助理整理并最终按 节点交付材料。 二.冲压SE流程详解: A. 接到数据在项目负责人(冲压工艺负责人)协助下分析工艺数据宏观缺陷。 在接受到客户输入的数据后,项目负责人(冲压工艺负责人)会做一次全面的工艺审查并分序,包括工艺数据各个方面的宏观缺陷,之后将按人力和资源将任务分配到个人。当个人接到数据后,将数据打开开始通过观察和经验进行分析该数据的宏观缺陷。宏观缺陷主要包括: ①.数据有无造型缺陷。如缺面,多面,残面,未倒角,等其他面品缺陷。 ②.数据有无拉延缺陷。如负角,拔模角度小,圆角过小(简算最小R≥3t),尖点,三面包 角等成型缺陷。 ③.数据有无修边冲孔缺陷。如孔离边缘太近(小于3mm),立修角度小,立壁缺口,三面包 角无缺口,模具强度弱,缺口距离小于4mm等缺陷。 ④.数据有无后序成型缺陷。如翻边有负角,翻边后拐角无缺口,翻边干涉,翻边后有无冲孔 等缺陷。 以上所有宏观缺陷基本由项目负责人(冲压工艺负责人)在全面工艺审查时已经提出,个人接到数据后在协助检查一下,务必做到问题提前发现,提前预防,在第一次ECR就将问题大部分消灭。 三.根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布。 在做完宏观缺陷分析后,就可以根据工艺评审表对该数据的分序进行理解,弄清楚该产品是按拉延还是按压型做,以及后序的排布,明白后序分模线在什么地方,拉延或者压型该从什么地方开始做工艺补充。并确定是否对件。 四.根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP点,

【实验报告】塑料成型加工技术实验报告范文

塑料成型加工技术实验报告范文 一、实验目的 1、掌握注塑成型工艺中各参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对其成型质量的影响大小。 2、了解塑件各种成型缺陷的形成机理,以及各工艺参数对各种缺陷形成的影响大小。 3、初步了解注塑成型分析软件Moldflow的各项功能及基本操作。 4、初步了解UG软件三维建模功能。 5、初步了解UG软件三维模具设计功能。 二、实验原理 1、Moldflow注塑成型分析软件的功能十分齐全,具有完整的分析模块,可以分析出注塑成型工艺中各个参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对成型质量的影响,还可以模拟出成型缺陷的形成,以及如何改进等等,还可以预测每次成型后的结果。 2、注射成型充填过程属于非牛顿体、非等温、非稳态的流动与传热过程,满足黏性流体力学和基本方程,但方程过于复杂所以引入了层流假设和未压缩流体假设等。最后通过公式的分析和计算,就可以得出结果。 三、实验器材 硬件:计算机、游标卡尺、注塑机、打印机 软件:UG软件、Moldflow软件 四、实验方法与步聚

1、UG软件模型建立和模具设计(已省去); 2、启动Moldflow软件; 3、新建一个分析项目; 4、输入分析模型文件; 5、网格划分和网格修改; 6、流道设计; 7、冷却水道布置; 8、成型工艺参数设置; 9、运行分析求解器;10、制作分析报告 11、用试验模具在注塑机上进行工艺试验(已省去); 12、分析模拟分析报告(省去与实验结果相比较这一步骤);13、得出结论 五、前置处理相关数据1.网格处理情况 1)进行网格诊断,可以看到网格重叠和最大纵横比等问题;2)网格诊断,并依次修改存在的网格问题;3)修改完后,再次检查网格情况。 2.材料选择及材料相关参数 在在方案任务视窗里双击第四项材料,弹出如图材料选择窗 可直接选常用材料,也可根据制造商、商业名称或全称搜索 3. 工艺参数设置 双击方案任务视窗里的“成型条件设置”,这里直接用默认值。 4. 分析类型设置(1)最佳浇口位置分析 分析结果: 理论最佳浇口在深蓝色区,但实际选浇口位置还需根据模具结构设计等综合因素考虑。在方案任务视窗里双击第三项,弹出选择分析系列窗口,选择浇口分析,最后选择如图位置。

冲压件工艺性分析讲解

一、止动件冲压件工艺性分析 1、零件材料:为Q235-A 钢,具有冲裁; 2、零件结构良好的冲压性能,适合:相对简单,有2个φ20mm 的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为14mm (φ20mm 的孔与边框之间的壁厚) 3、零件精度:全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。 查表得各零件尺寸公差为: 外形尺寸:0 1130-、062.048-、074.060-、03.04-R 、074.060-R 内型尺寸:052.0020+ 孔中心距:60±0.37 二、冲压工艺方案的确定 完成该零件的冲压加工所需要的冲压基本性质的工序只有落料、冲孔两道工序。从工序可能的集中与分散、工序间的组合可能来看,该零件的冲压可以有以下几种方案。 方案一:落料-冲孔复合冲压。采用复合模生产。 方案二:冲孔-落料级进冲压。采用级进模生产。 方案一只需一副模具,工件的精度及生产效率都较高,工件最小壁厚14mm 大于凸凹模许用最小壁厚3.6mm--4.0mm ,模具强度好,制造难度中等,并且冲压后成品件可通过卸料板卸下,清理方便,操作简单。

方案二也只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但是模具结构复杂,制造加工,模具成本较高。 结论:采用方案一为佳 三、模具总体设计 (1)模具类型的选择 由冲压工艺分析可知,采用复合模冲压,所以模具类型为复合模。(2)定位方式的选择 因为该模具采用的是条料,控制条料的送进方向采用导料板,无侧压装置。控制条料的送进步距采用挡料销定距。而第一件的冲压位置因为条料长度有一定余量,可以靠操作工目测来定。 (3)卸料、出件方式的选择 因为工件料厚为1.5mm,相对较薄,卸料力也比较小,故可采用弹性卸料。又因为是倒装式复合模生产,所以采用上出件比较便于操作与提高生产效率。 (4)导向方式的选择 为了提高模具寿命和工件质量,方便安装调整,该倒装式模采用导柱导向方式。 四、排样方案确定及材料利用率 (1)排样方式的确定及其计算 设计倒装式复合模,首先要设计条料排样图,采用直排。 方案一:搭边值取2mm和3mm(P33表2-9),条料宽度为135mm

冲压工艺过程设计的内容及步骤

第二章冲压件工艺过程设计的内容及步骤 不论冲压件的几何形状和尺寸大小如何,其生产过程一般都是从原材料剪切下料开始,经过各种冲压工序和其他必要的辅助工序(如退火,酸洗,表面处理等)加工出图纸所要求的零件。对于某些组合冲压件或精度要求较高的冲压件,还需要经过切削,焊接或铆接等加工,才能完成。冲压件工艺过程的制定和模具设计是冷冲压课程设计的主要内容。进行冲压设计就是根据已有的生产条件,综合考虑影响生产过程顺利进行的各方面因素,合理安排零件的生产工序,最优地选用,确定各工艺参数的大小和变化范围,设计模具,选用设备等,以使零件的整个生产过程达到优质,高产,低耗,安全的目的。 2.1 工艺过程设计的基本内容 冲压工艺规程是模具设计的依据,而良好的模具结构设计,又是实现工艺过程的可靠保证,若冲压工艺有改动,往往会造成模具的返工,甚至报废。冲制同样的零件,通常可以采用几种不同方法。工艺过程设计的中心就是依据技术上先进,经济上合理,生产上高效,使用上安全可靠的原则,使零件的生产在保证符合零件的各项技术要求的前提下,达到最佳的技术效果和经济效益。 冲压件工艺过程设计的主要内容和步骤是: 一. 分析零件图(冲压件图) 产品零件图是分析和制定冲压工艺方案的重要依据,设计冲压工艺过程要从分析产品的零件图人手。分析零件图包括技术和经济两个方面: 1. 冲压加工的经济性分析 冲压加工方法是一种先进的工艺方法,因其生产率高,材料利用率高,操作简单等一系列优点而广泛使用。由于模具费用高,生产批量的大小对冲压加工的经济性起着决定性作用,批量越大,冲压加工的单件成本就越低,批量小时,冲压加工的优越性就不明显,这时采用其他方法制作该零件可能有更好的经济效果。例如在零件上加工孔,批量小时采用钻孔比冲孔要经济;有些旋转体零件,采用旋压比拉深会有更好的经济效果。所以,要根据冲压件的生产纲领,分析产品成本,阐明采用冲压生产可以取得的经济效益。 2. 冲压件的工艺性分析 冲压件的工艺性是指该零件在冲压加工中的难易程度。在技术方面,主要分析该零件的形状特点,尺寸大小,精度要求和材料性能等因素是否符合冲压工艺的要求。良好的工艺性应保证材料消

冲压件工艺性分析

冲压件工艺性分析Prepared on 21 November 2021

一、止动件冲压件工艺性分析 1、零件材料:为Q235-A 钢,具有冲裁; 2、零件结构良好的冲压性能,适合:相对简单,有2个φ20mm 的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为14mm (φ20mm 的孔与边框之间的壁厚) 3、零件精度:全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。 查表得各零件尺寸公差为: 外形尺寸:01130-、062.048-、074.060-、03.04-R 、074.060-R 内型尺寸:052 .0020+ 孔中心距:60± 二、冲压工艺方案的确定 完成该零件的冲压加工所需要的冲压基本性质的工序只有落料、冲孔两道工序。从工序可能的集中与分散、工序间的组合可能来看,该零件的冲压可以有以下几种方案。 方案一:落料-冲孔复合冲压。采用复合模生产。 方案二:冲孔-落料级进冲压。采用级进模生产。 方案一只需一副模具,工件的精度及生产效率都较高,工件最小壁厚14mm 大于凸凹模许用最小壁厚,模具强度好,制造难度中等,并且冲压后成品件可通过卸料板卸下,清理方便,操作简单。 方案二也只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但是模具结构复杂,制造加工,模具成本较高。

结论:采用方案一为佳 三、模具总体设计 (1)模具类型的选择 由冲压工艺分析可知,采用复合模冲压,所以模具类型为复合模。 (2)定位方式的选择 因为该模具采用的是条料,控制条料的送进方向采用导料板,无侧压装置。控制条料的送进步距采用挡料销定距。而第一件的冲压位置因为条料长度有一定余量,可以靠操作工目测来定。 (3)卸料、出件方式的选择 因为工件料厚为,相对较薄,卸料力也比较小,故可采用弹性卸料。又因为是倒装式复合模生产,所以采用上出件比较便于操作与提高生产效率。 (4)导向方式的选择 为了提高模具寿命和工件质量,方便安装调整,该倒装式模采用导柱导向方式。 四、排样方案确定及材料利用率 (1)排样方式的确定及其计算 设计倒装式复合模,首先要设计条料排样图,采用直排。 方案一:搭边值取2mm和3mm(P33表2-9),条料宽度为135mm

塑料注射成型工艺中成型零部件

塑料注射成型工艺中成型零部件 摘要随着塑料制品在日常生活中的广泛利用,人们对塑料制品的质量与数量要求日趋提高,而国内塑料制造行业所掌握的技术普遍相对落后,要提高我国塑料行业的整体竞争力,对成型模具的研究与改进是必须的。实际上塑料注射所用的模具(简称注射模一一实现注射成型工艺的重要工艺装备)成型技术已成为衡量一个国家塑料制造水平的重要标志之一。本文介绍了几种塑料成型工艺中重要模具的特点,并对不同种类凹模凸模的结构和使用条件进行探究。 关键词塑料成型;注塑机;凹模;凸模 中图分类号TS91 文献标识码A 文章编号1674-6708 (2016 )162-0149-02 注射成型(注塑)是一种将已经在加热料筒中预先均匀塑化的热固性或热塑性材料,高速推挤到闭合模具的模腔中用以成型工业产品的生产方法。产品通常使用橡胶注塑和塑料注塑。注塑方法又可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是一种常用的塑料成型设备,它利用塑料成型模具将热塑性塑料制成各种形状的塑料制品。近年来,注射成型也成功地用于成型某些热固性塑料。 我国的注塑机从无到有,从单一品种到多品种,已经有

了长足的发展。但相比于其他如德国等制造工艺技术发达的 国家,我国的塑料工业还处于初级发展阶段,所以注塑成型 在我国的高分子材料发展进程中有着广阔的前景。同时随着塑料制品在日常社会中得到广泛利用,塑料注射成型所用的模具(简称注射模,它是实现注射成型工艺的重要工艺装备)技术已成为衡量一个国家制造水平的重要标志之一。 注射模的基本组成: 1)成型零部件; 2)浇注系统:浇注系统是指注塑机喷嘴将塑料喷出后,流体到达模具型腔前所流经的通道; 3)导向机构:导向机构是用于保证动、定模合模时准确对合; 4)支承零部件:支承零部件是指起支持作用的零部件轴承,常与导向机构组合构成模架; 5)推出机构:推出机构是将模具中已经完成成型后的塑件及浇注系统中的凝料推出模具的装置; 6)侧向分型与抽芯机构:该机构将成型孔、凹穴或凸台的型芯或瓣合模块从塑件上脱开或抽出,合模时又将其复位; 7)温度调节系统:满足注射工艺对模温的要求; 8)排气系统:将型腔内的气体排出模外。 其中,成型零部件是指直接与塑料接触或部分接触,并决定塑件形状、尺寸、表面质量的零件,它们是模具的核心 零件。包括型腔、型芯、螺纹型芯、螺纹型环、镶件等。

ABS塑料特性、成型工艺、用途

ABS塑料特性、成型工艺、用途 ABS 丙烯腈-丁二烯-苯乙烯共聚物化学和物理特性ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。 ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。 ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。 注塑模工艺条件 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90C下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280C;建议温度:245C。模具温度:25…70C。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 注射压力:500~1000bar。 注射速度:中高速度。典型用途汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等。 PA12 聚酰胺12或尼龙12 典型应用范围: 水量表和其他商业设备,电缆套,机械凸轮,滑动机构以及轴承等。 注塑模工艺条件: 干燥处理:加工之前应保证湿度在0.1%以下。如果材料是暴露在空气中储存,建议要在 85C热空气中干燥4~5小时。如果材料是在密闭容器中储存,那么经过3小时温度平衡即可 直接使用。 熔化温度:240~300C;对于普通特性材料不要超过310C,对于有阻燃特性材料不要超过270C。模具温度:对于未增强型材料为30~40C,对于薄壁或大面积元件为80~90C,对于增强型材料为

汽车冲压件工艺分析

绘制汽车车身覆盖件冲压综合工序图[DL图]的方法 -1- 汽车车身覆盖件均系复杂的双曲面壳形薄钢钣件。现代汽车外形日趋流畅和饱满,艺术 性变换频繁,都给车身覆盖件冲压成形带来难度。现代汽车行驶速度愈来愈高,对车身覆盖件的成形尺寸精度要求也愈来愈高,更加增加了车身覆盖件冲压成形的难度。 冲压成形汽车车身覆盖件是采用压力机上安装大型冲模,通过冲裁展开料,拉延成形,修边冲孔,翻边整形等程序冲压而成。如何处置各道程序的成形內容,以及所采取的方式方法,是成形合格的车身覆盖件的关键。我们把这一工程称为它们的综合工序图(DL图)或工法图或加工要领图的设计。DL 图或工法图或加工要领图是大型冲模结构设计要实现的目标,这个目标出现差错, 大型冲摸结构设计再完善也多半会报废重来。 汽车车身覆盖件的成形方法是沿用了阶梯式矩盒形件拉延成形的变形理论基础,再演变发展而成的一种独特的成形方法。 a)车门內板拉延件b)阶梯式矩盒形拉延件 (图一)拉延件的对照图 如(图一) 所示,a为车门內板,b为阶梯式矩盒形件。将车门內板附加工艺补充面之后, 就变成了一个可拉延成形的冲压件,它与矩盒形拉延件多么相似。图中A和a同属于圆筒形拉延件圆筒壁的拉延变形区;B和b也同属于直边部拉弯之弯曲变形区,都属于类同的塑性变形方法。如(图一)所示,C和c也同是阶梯形状,变形性质也是类同的。无任工艺补充面如何变换,其拉延成形的基本点並没有甚么多大的改变。 (图一)a)还说明,任何汽车车身覆盖件均可以通过增加工艺补充面的方法演变成拉延制件,而覆盖件的主体双曲面形状均是在拉延模內一次拉延成形的,只有这样才能获得准确形状的覆盖件。因而拉延成形制件是覆盖件成形的主体,也是覆盖件成形成败的关键。满足汽车车身设计要求的覆盖件,往往不可能是理想的拉延制件,但是通过某些形状的变换之后,就成为了较理想的拉延制件了。这些变换应该在后续的工序工程中再成形回复为覆盖件,而再成形时不仅成形形状准确,还要不再使已成形好的覆盖件主体形状发生意外变形。具体的变换內容如下: (1)关于覆盖件上的孔洞: 在拉延制件上,孔洞一般都要事先堵补起来,待拉延成形之后,在事后的工序工程中再冲出。如果事先就有孔洞存在,拉延过程中必将在孔洞处出现应力集中的现象,造成制件拉破而导致拉延成形失败。但是某些大的窗洞和门洞,又不宜都堵补起来,它还可以被拉延成形所借用。例如: [1]门框洞: 如(图二) 所示,我们若要把门洞堵补起来,则在拉延过程中产生拉延和反拉延,在变

塑件成型工艺性分析

第1章塑件成型工艺性分析 1.1 塑件(齿轮链轮套件)分析 1.1.1塑件 如图1.1所示,齿轮链轮套件参数见表1.1。 表1.1 齿轮链轮套件参数 1.1.2该塑件塑料名称为聚酰胺66(PA66),采用大批量生产纲领 1.1.3塑件的结构及成型工艺分析 1.1.3.1 塑件结构分析如下,塑件零件工作图如图1.1。 图1.1塑件零件工作图 (1)该凸凹塑件作为传动件,两端都为齿轮,分别在不同的型腔内成型,必须保证塑件的同轴度,所以在模具设计和制造上要有精密的定位措施和良好的加工工艺,以保证传

动精度。 (2)该塑件外形是阶梯齿轮零件,在圆柱齿轮上有侧向凸凹。 1.1.3.2 成型工艺分析如下。 (1)精度等级。采用一般精度7级。 (2)脱模斜度。塑件壁厚哟为2.5mm,其脱模斜度查参考文献其脱模斜度40`到1度30分。由于塑件没有特殊狭窄细小部位,所用塑料为PA66,流动性极好,注射流畅,所以塑件外形没有放脱模斜度,同时为了保证齿轮传动齿面接触强度,齿轮轮齿不放脱模斜度,轴孔也不放脱模斜度。 1.2 热塑性材料(PA66)的注射成型过程及工艺参数 1.2.1 注射成型过程 (1)成型前的准备。对PA66的色泽、细度和均匀度等进行检查。由于PA66容易吸湿,成型前应进行充分的干燥,使水分含量<0.3%。 (2)注射过程。塑料在注射机料筒内经过加热、塑化达到流动状态后,由模具的浇注系统进入模具型腔成型,其过程可以分为冲模、压实、保压、倒流、和冷却5个阶段。 (3)塑件的后处理。采用调湿处理,其热处理条件查参考文献有处理介质为油;处理温度为120度;处理时间为15分钟。 1.2.2 PA66的注射工艺参数 (1)注射机:螺杆式 (2)螺杆转速(r/min):20~50 (3)料筒温度(℃):后段240~250 中段260~280 前,因斜导柱与两半结构及型腔形成的阻力,使B分型面先分型,脱料板将浇道脱下,随即限位螺钉达限位,C分型面分型,斜导柱将两半结构拔离,最后由顶板、顶管将制品顶出。 合摸时,顶出系统由复位杆进行复位。

塑料成型的工艺性分析

一、塑料成型的工艺性分析 该塑件是外壳产品,其零件图如下图所示。本塑件的材料采用聚氯乙烯PVC, 1.1.1塑件的原材料分析 P50 塑件注射成型工艺参数的确定: 根据该塑件的结构特点和得成型性能,查相关手册得到ABS塑件的成型工艺参数: 塑件的注射成型工艺参数

二.分型面位置的确定 根据塑件结构形式分型面应选在I上,如下图: 三.确定型腔数量和排列方式 1.该塑件精度要求不高,批量大,可以采用一模多腔,考虑到模具的制造费用和设备的运转费用,定为一模两腔。 四.模具结构形式的确定 从上面的分析中可知本模具采用一模两腔,直排,推干推出,流道采用平衡式,浇口采用侧浇口,动模部分需要一块型芯,固定板,支撑板。 五.注射机型号的选定 1.通过测量,塑件的质量为6.5gPVC的密度为1.4g/cm3 V= 草稿本上 4、注射机有关参数的校核 型腔数校核合格。 式中,K—-注塑机最大注射量的利用系数一般取0.8

m—注射机的额定塑化量(10.5g/s) T—成型周期取30s 3、开模行程校核 开模行程是指从模具中取出塑料所需要的最小开合距离,用H表示,它必须小于注射机移动模板的最大行程S。所需开模行程为:六.浇注系统的设计 6.1 主流道设计 1)主流道尺寸设计 根据所选注射机,则主流道小端尺寸为 d=注射机喷嘴尺寸+1 =5 2)主流道球面半径为 SR=喷嘴球面半径+(1-2)=13mm 3)球面配合高度 h=3mm-5mm,取h=4mm 4)主流道长度,尽量小于60,由标准模架结合该模具的结构,取L=20+20=40mm 5)主流道大端直径 D=d+2Ltana=8.5mm(半锥角a为,取a= )取D=10mm 6.2 主流道衬套的形式 主流道小端入口处与注射机喷嘴反复接触属易损性,对材料要求严格,因而模具主流道部分常设计可拆卸更换的主流道衬套形式即浇口

最新冲压工艺及模具设计学习

冲压工艺及模具设计 学习

《冲压工艺及模具设计》课程学习指南 20 —20 学年第学期 机学生使用 任课教师:王芳 一、课程基本情况、性质、研究对象和任务 总学时:40学时课堂教学:36学时实验教学:4学时 先修课:机械设计金属与塑料成型设备 《冲压工艺及模具设计》是高等工业院校材料成型方向开设的一门主干专业技术课,也是制造类其它专业的一门重要选修课。它是一门将冲压成形加工原理、冲压设备、冲压工艺、冲模设计与冲模制造有机融合,综合性和实践性较强的课程。本课程的主要任务是分析各类冲压成形的变形规律,认识典型冲压成形工艺方法和模具结构,掌握冲压工艺与模具设计方法。 通过本课程学习,使学生在下列能力培养方面得到锻炼与提高: 1.能应用冲压变形理论,分析中等复杂冲压件变形特点,制定合理冲压工艺规程。 2.协调冲压设备与模具的关系,选择冲压设备的能力。 3.熟悉掌握冲模设计计算方法,具备中等复杂冲模结构选择和设计的能力,所设计的冲模应工作可行、操作方便、便于加工和装配,技术经济性好。 二、教材处理 本课程选用机械工业出版社出版,姜奎华主编的《冲压工艺及模具设计》。本教材内容比较全面,结构编排严谨。但由于学时限制不可能对所有教材内容一一详细讲解。所以应紧

紧抓住本课的重点内容,搞清模具设计的有共性的规律,从而能做到举一反三,逐类旁通,为今后的学习工作打下基础。 三、学习参考书 1.刘建超、张宝忠主编.冲压模具设计与制造.北京:高等教育出版社,2004年 2.王孝培主编.冲压手册.北京:机械工业出版社,1990年 3.冲模设计手册编写组编著.冲模设计手册.北京:机械工业出版社,2000年 4.模具实用技术丛书编委会.冲模设计应用实例.北京:机械工业出版社,1994 5.冯炳尧、韩泰荣、蒋文森编.模具设计与制造简明手册(第二版).上海科学技术出版社,1998年 6.模具设计与制造技术教育丛书编委会.模具制造工艺与装备.北京:机械工业出版社,2003年7.国家技术监督局.冲模模架.北京:中国标准出版社,1991 8.许发越主编.模具标准应用手册.北京:机械工业出版社,1994年 9.李天佑主编.冲模图册.北京:机械工业出版社, 1988 四、关于考试的说明 期末考试:100% 五、各次课基本内容,重点难点,自我测验及作业

相关文档