文档库 最新最全的文档下载
当前位置:文档库 › 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展

植物叶片抗氧化系统及其对逆境胁迫的响应研究进展

植物叶片抗氧化系统及其对逆境胁迫的响应研究进展
植物叶片抗氧化系统及其对逆境胁迫的响应研究进展

植物对干旱胁迫的响应及其研究进展

植物对干旱胁迫的响应及其研究进展 学院:班级: 姓名:学号: 摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化. 关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 一、植物抗旱基因工程研究新进展 (一)与干旱胁迫相关的转录因子研究 通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴

植物对盐胁迫的反应

植物对盐胁迫的反应 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REVIEW ON PLANT RESPONSE AND RESISTANCE MECHANISM TO SALT STRESS YANG Xiao-hui1,2,JIANG Wei-jie1*,WEI Min2,YU Hong-jun1( 1.Institute of Vegetables and Flowers,Chinese Academy of Agricultural Science,Beijing100081,China;2.College of Horticulture Science and Engineering,Shandong Agriculture University,Taian 271018,China) Key words:Iron stress,Osmotic stress,Salt resistant mechanism,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。根据许多研究报道,土壤含盐量超过0.2%~0.25%时就会造成危害。钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。盐分过多会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。盐分过多还会使PEP羧化酶与RuBP 羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响是初期明显降低,而后又逐渐恢复,这似乎是一种适应性变化。盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。呼吸增高是由于Na+活化了离子转移系统,尤其是对质膜上的Na+、K+与A TP活化,刺激了呼吸作用。盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势是呼吸消耗增多,净光合速度降低,不利于生长。 一、实验目的 盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成株生长等。不同种类的植物受盐胁迫影响的程度也各不相同。本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察和计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。 二、仪器设备和材料 电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml 容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。 三、实验方法和步骤 1.预处理 (1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于培养皿中做发芽实验。

植物水分胁迫诱导蛋白研究进展

植物水分胁迫诱导蛋白研究进展 施俊凤1,孙常青2  (1.山西省农业科学院农产品贮藏保鲜研究所,山西太原030031;2.山西省农业科学院作物遗传研究所,山西太原030031) 摘要 干旱是影响植物正常生长发育的一种最主要的逆境因子,研究发现了大量的植物应答水分胁迫的蛋白。笔者综述了这些蛋白的特性和功能,以提高人们对于植物抗旱机理的认识。关键词 水分胁迫;功能蛋白;调节蛋白;植物中图分类号 S311 文献标识码 A 文章编号 0517-6611(2009)12-05355-03P rogress in P roteins R esponding to W ater Stress in P lants SHI Jun 2feng et al (Institute of Farm Products S torage ,Shanxi Academ y of Agricultural Sciences ,T aiyuan ,Shanxi 030031)Abstract Drought is an im portant stress factor ,which im pacts the grow th and developm ent of plants.At present ,a series of proteins responding to water -stress in plants have been reported.T he study summ arizes the characters and functions of these proteins for enhancing integrated understanding to the m echanism of proteins inv olved in the tolerance to water stress in plants.K ey w ords W ater stress ;Functional protein ;Regulatory protein ;Plant 作者简介 施俊凤(1977-),女,山西代县人,助理研究员,从事抗旱 分子研究。 收稿日期 2009202206 干旱在我国是影响区域最广、发生最频繁的气象灾害。植物在遭受干旱胁迫时,会做出各种反应来避免或减轻缺水对其细胞的伤害。随着分子生物学技术和理论的发展,抗旱相关基因不断被克隆,现已证明一些基因表达产物可增强植物的抗逆性。根据其功能,可分为调节蛋白和功能蛋白两大类。 1 调节蛋白 调节蛋白在逆境胁迫信号转导和功能基因表达过程中起调节作用。目前,已发现的主要有转录因子、蛋白激酶、磷脂酶C 、磷脂酶D 、G 蛋白、钙调素和一些信号因子等。 1.1 转录因子 转录因子对水分胁迫的响应非常迅速,一 般数分种即可达最高水平,转录因子C BF1、C BF2、C BF3、C BF4和DRE B1a 、DRE B1b 、DRE B1c 、DRE B2通过与顺式作用元件 CRT/DRE 结合,引起一组含顺式作用元件CRT/DRE 的抗旱 功能基因表达。在拟南芥等多种植物中,DRE 顺式作用元件普遍存在于干旱胁迫应答基因的启动子中,对干旱胁迫诱导基因的表达起调控作用。 转录因子A BF 和bZIP 可与顺式作用元件A BRE 特异结合,通过依赖A BA 的信号转导途径调控植物对冷害、干旱和高盐碱等环境胁迫的反应 [1] ;MY B 和MY C 可与MY BR 和 MY CR 特异结合,引起相应抗旱功能基因的表达;WRKY 调控 的目标基因启动子是具有W 框的顺式元件,在拟南芥中约有100个WRKY 成员,存在于根、叶、花序、脱落层、种子和维管组织中,参与植物胁迫反应的很多生理过程 [2] 。 1.2 蛋白激酶 目前已知的植物干旱应答有关的蛋白激酶 主要有受体蛋白激酶(RPK )、促分裂原活化蛋白激酶 (M APK )、转录调控蛋白激酶(TRPK )等。RPK 与感受发育和 环境胁迫信号相关;M APK 与植物对干旱、高盐、低温等反应的信号传递有关;TRPK 主要参与细胞周期、染色体正常结构维持等的基因表达[3]。 M AP 激酶级联信号转导途径由M AP 激酶(M APK )与M AP 激酶激酶(M APKK )和M AP 激酶激酶激酶(M APKKK )组 成。植物细胞感受环境胁迫(如损伤、干旱、低温等)后,通过受体蛋白激酶、M APK 4、蛋白激酶C 和G 蛋白等上游激活子顺次激活M APKKK 、M APKK 和M APK 。M APK 被激活后进入细胞核,通过激活特定转录因子引起功能基因的表达或停留在胞质中激活其他酶类如蛋白激酶磷酸酶、脂酶等,最终引起植物细胞对内外刺激的生理生化反应。目前已经在植物中鉴定出多个由干旱胁迫所诱导的与M APK 信号通路有关的蛋白激酶,如A T MPK3、A T MEKK1和RSK 等。利用酵母双杂交系统,M iz oguchi 等证明A T MEKK1参与拟南芥对干旱、高盐、低温和触伤胁迫信号传递的M APK 级联途径[4]。 最近,T aishi 等报道,在拟南芥中有一种蛋白激酶SRK 2C 可响应干旱胁迫诱导,将该基因敲除后的突变体srk2c 对干旱极敏感[5]。另外,用花椰菜病毒的35S 强启动子构建超表达SRK 2C 的转基因植株,其抗旱性也明显增强。 1.3 与第二信使生成有关的蛋白酶 P LC 是主要的磷酸二 酯酶,水解磷酸二酯键,根据水解的磷脂不同,可产生IP3、 DAG 、PA 等。IP3可提高细胞质溶质中的C a 2+浓度,诱导抗 性相关基因的表达[6]。DAG 和PA 可通过诱导活性氧(ROS )的产生,引起相关抗性基因的表达,从而增强植物抗旱性。 C a 2+是最受关注的第二信使,在保卫细胞中,干旱信号 导致C a 2+浓度增加,引起气孔关闭。C a 2+与其受体蛋白钙调素结合发生构象变化,通过C a 2+/C aM 依赖性蛋白激酶 (C DPK )起作用,使蛋白质的S er 或Thr 磷酸化,引起下游信号 传递,使抗旱相关基因表达。 2 功能蛋白 功能蛋白往往是整个水分胁迫调控通路的终 端产物,直接在植物的各种抗旱机制中起作用。当植物遭受水分胁迫时,其本身作为一个有机整体能从各方面进行防御。K azuk o 等将植物水分胁迫功能蛋白分为渗透调节相关蛋白、膜蛋白、毒性降解酶、大分子保护因子和蛋白酶5大类[7]。 2.1 渗透调节相关蛋白 当植物遭受渗透胁迫时,会积累 大量渗透调节物质,如脯氨酸、甘露醇、甜菜碱、可溶性糖和一些无机离子等。这些物质可使植物在胁迫条件下保持吸收水分或降低水分散失,维持一定的细胞膨压,保持细胞生长、气孔开放和光合作用等正常生理过程。现已发现很多渗 安徽农业科学,Journal of Anhui Agri.Sci.2009,37(12):5355-5357,5385 责任编辑 胡剑胜 责任校对 况玲玲

烟草耐冷机理的进展

烟草耐冷机理的研究进展 余文,林雷通,石健林 (福建省龙岩市烟草公司武平分公司,福建武平364300) 摘要从膜脂过氧化、抗氧化系统、渗透代谢抗冷调控途径综述了烟草耐冷遗传机制研究进展,并对烟草耐冷研究方向进行了展望。 关键词烟草;耐冷;机理;综述中图分类号S572文献标识码A 文章编号1004-8421(2012)01-84-02 作者简介 余文(1986-),男,福建福清人,硕士,从事烟草生理生化 和分子育种研究 。收稿日期2012-01-01烟草是我国主要的经济作物之一,种植区域广泛。在我国的南方地区, 低温危害一直制约烟叶的生产发展,低温胁迫也是引起烟草品质下降的关键因素之一。深入开展烟草耐冷性生理和遗传机制研究,对寻求分子育种手段解决耐冷低温冷害问题具有重要意义。低温胁迫根据温度的高低可分为冷害和冻害2种, 前者是指在0?以上对植物造成的损害,而后者则在0?以下对植物造成的损害。目前对于低温胁迫的生理机制的研究报道较多,但未有定论,主流的理论有细胞膜系统损害学说、信号传导机制以及自由基理论。1 低温胁迫与活性氧清除系统 活性氧化物(Reactive oxygen species , ROS )是生物体内各种有氧代谢过程中产生的毒性副产物(O -2 、 H 2O 2和HO -等)。一般情况下,植物体内的ROS 的水平处于稳定状态,但当其受到各种胁迫时,如缺氧,淹水,高盐以及低温胁迫时其体内会积累大量的ROS 。当然,在植物进化过程中,也发展出与之相对应的ROS 清除酶系统,包括超氧化物歧化酶(Superoxide Dismutase ,SOD ),过氧化氢酶(Catalase ,CAT ),谷胱甘肽过氧化物酶(glutathione peroxidase ,GPX ),过氧化物酶(Peroxidase ,APX )等,植物组织内只有通过SOD ,POD 和CAT 的协同作用,才能使组织内的自由基维持一个较低的水平,以降低ROS 产物对细胞造成的伤害。ROS 的过度积累会对细胞产生毒性,破坏蛋白质,DNA 以及膜脂的结构。陈卫国等 [1] 试验结果表明,在低温胁迫下,烟草幼苗的CAT 和 SOD 活性均有所降低,POD 活性变化呈相反趋势,即在低温胁迫下,烟草幼苗的POD 活性明显增加,且随胁迫温度的降低和胁迫时间的延长POD 活性增加幅度增大。POD 与CAT 和SOD 活性呈极显著负相关,而CAT 与SOD 活性呈极显著正相关。耐寒性较强的品种可保持较高的SOD 、CAT 和POD 活性。张燕等 [2] 分别利用PEG 和CaC12处理烟苗种子并对 其进行低温胁迫期,研究表明,烟草体内SOD 、CAT 、POD 等活性显著高于对照。2 低温胁迫与细胞膜系统 细胞膜是分隔细胞内环境与外环境的第一层屏障,也是细胞在受到外界环境胁迫后最先遭受破环的目标。在低温条件下,细胞膜功能的紊乱是最主要的分子事件,并导致出现各种低温胁迫症状 [3] ,例如,H + -ATP 酶的活性降低,细 胞内可溶物的运输受阻,影响能量传导,以及酶依赖的代谢途径的变化。因此, 在低温胁迫下,如何维持植物细胞膜的稳定性是提高植物耐冷抗性的关键因素之一[4] 。而在细胞 膜各个组分中, 尤其是不饱和脂肪酸对于维持细胞膜的流动性具有重要的作用 [5] 。一般情况下,耐冷品种体内不饱和脂 肪酸的含量以及比例要比冷敏型品种多, 且在适应低温环境期间,细胞膜中去饱和酶浓度升高且不饱和脂肪酸比例升高 [6-7] ,这种修饰作用能够保护膜脂由于低温而从流动相逐 渐转变为半晶体相,因此,脂肪酸的去饱和作用从一定程度上减少低温对细胞膜的破坏。晋艳等[8] 试验表明,烟草幼苗 的膜透性都随着胁迫温度的降低和胁迫时间的增加而增加。 张燕等 [2] 研究显示,烟草幼苗在低温下叶片MDA 含量随低 温胁迫时问的延长呈逐步增加的趋势,但是用PEG 处理的叶片,MDA 含量增长较慢,表明,PEG 有减缓膜脂过氧化作用,降低MDA 积累的作用,能提高细胞膜的稳定性和膜脂过氧化的保护能力,从而提高其耐冷抗性。3 低温胁迫与Ca 2+ 调控 Ca 2+作为细胞内第二信使,在植物低温胁迫研究表明其信号通路途径在冷适应的过程中具有举足轻重的作用。在 正常条件下, 细胞内Ca 2+ 的浓度只有很低的水平(小于1μM ),而主要通过质膜上的Ca 2+-ATP 酶进行转运。Ca 2+ 在植物低温胁迫方面可能有两方面作用:一是通过稳定细胞壁、细胞膜结构和提高保护酶活性而增强植物的耐冷性;二是通过低温逆境下信号传递诱导耐冷基因的表达而提高植物的耐冷性。研究表明,低温胁迫刺激下,植物体内Ca 2+ 的 浓度会急剧上升,产生Ca 2+波,抑制蛋白磷酸酶2A (protein phosphatase 2A ,PP2A )的活性,在细胞核内,PP2A 通过抑制转录因子的活性阻止转录;相反,通过钙调蛋白(Calmodulin , CaM )感应由低温引起的Ca 2+浓度的变化,同时导致Ca 2+依 赖蛋白激酶以及其它蛋白激酶的产生,从而介导基因的调控表达,提高植物的抗低温能力。张燕等[2] 用CaCl 2处理幼 苗,其细胞膜受低温的伤害轻于水处理的,表明CaCl 2具有 保护细胞膜,缓解低温伤害的作用。4 低温胁迫与渗透物质代谢 一般情况下,植物在低温胁迫下细胞内的渗透调节物质合成会发生变化,以此来调节植物的生长、发育和提高其耐冷能力。细胞内的渗透调节物质主要有多胺、可溶性糖、可溶性蛋白和甜菜碱等,这些代谢物质的积累可以抵抗因水分流失而导致的细胞膜相的改变,从而达到保护核酸和蛋白质 结构和功能的目的,消除有害物质[8]。 多胺的合成积累是烟草逆境胁迫下的一种普遍现象。在低温胁迫下,其体内会积累大量的多胺。多胺是一类脂肪族含氮碱化合物,其分子结构中带正电荷的氨基与亚氨基可 责任编辑聂克艳责任校对胡先祥 农技服务,2012,29(1):84-85

植物盐胁迫及其抗性生理研究进展解读

植物盐胁迫及其抗性生理研究进展 李艺华1罗丽2 (1、漳州华安县科技局华安 363800 2、福建农林大学园艺学院福州 350002 摘要:盐胁迫是制约农作物产量的主要逆境因素之一。本文综合了几年来植物盐胁迫研究的报道,对盐胁迫下植物生理生化和生长发育变化、植物自身生理系统的响应以及增强植物抗盐胁迫的方法进行综述和讨论。 关键词:植物抗盐胁迫生理 中图分类号:Q945.7 文献标识码:A 文章编号:1006—2327—(200603—0046—04 盐胁迫是目前制约农作物产量的主要逆境因素之一[1],既有渗透胁迫又有离子胁迫[2]。随着土壤盐渍化面积的扩展,许多非盐生植物因受盐胁迫而导致产量和品质的快速下降,已成为中国西北部和沿海地区迫切解决的难题。迄今,植物盐胁迫这方面有较多的研究报道,多数侧重于某一植物或是植物某一生长阶段耐盐胁迫性与抗盐胁迫性的研究,缺少对植物抗盐胁迫有一个较为系统的综合阐述。鉴于植物抗盐胁迫的研究面的广泛性和分散性,本文综合了几年来抗盐胁迫研究报道,对植物抗盐胁迫的生理机制做一个综合阐述,为阐明植物对盐胁迫的反应机制提供一个较系统的理论依据。 1 盐胁迫对植物生理生化和生长发育的影响 盐胁迫对植物生理生化的影响可分为三方面:离子毒害、渗透胁迫和营养亏缺。离子毒害作用包括过量的有毒离子钠和氯对细胞膜系统的伤害,导致细胞膜透性的增大,电解质的外渗以及由此而引起的细胞代谢失调;渗透胁迫是由于根系环境中盐分浓度的提高、水势下降而引起的植物吸水困难;营养亏缺则是由于根系吸收过程中高浓度Na和Cl 离子存在,干扰了植物对营养元素K、Ca和N的吸收,造成植物体内营养元素的缺乏,影响植物生长发育[1]。大量试验结果表明,盐胁迫不同程度地影响植物的光合作用、呼吸作用和渗透作用,影响植物的同、异化功能[3],当盐

逆境胁迫对植物质膜透性的影响

逆境胁迫对植物质膜透性的影响(电导率法) 【实验目的】 1.学习电导仪法测定膜相对透性的方法。 2.理解逆境对植物膜透性的影响。 【实验原理】 植物细胞膜对维持细胞的微环境和正常的代谢起着重要的作用。在正常情况下,细胞膜对物质具有选择透性能力。 当植物受到逆境影响时,如高温或低温,干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,电导率增大。 膜透性增大的程度与逆境胁迫强度有关,也与植物抗逆性的强弱有关。 这样,比较不同作物或同一作物不同品种在相同胁迫温度下膜透性的增大程度,即可比较作物间或品种间的抗逆性强弱。 因此,电导法目前已成为作物抗性栽培、育种上鉴定植物抗逆性强弱的一个精确而实用的方法。 相对电导率根据公式计算得出:Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%(注C0为双蒸水的电导率) 【实验材料及仪器】 材料:小麦幼苗:对照、100mM NaCl处理、100mM NaCl处理、5%PEG-6000处理、15%PEG-6000处理 仪器设备:电导仪、温箱、水浴锅 【实验步骤】 1.取0.1g对照和盐或PEG6000处理的小麦叶片,切成约1cm小段,每种处理做两个平行; 2.用双蒸水冲洗3 遍以除去表面粘附的电解质; 3.加10 ml双蒸水,25℃振荡温育1小时,期间经常摇动,测定此时的电导率为C1;

4.将盛有根的试管100℃煮沸15 min,冷却到室温后,测定此时的电导率为C2; 5.相对电导率根据公式计算得出:Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%(注C0为双蒸水的电导率) 【数据记录及结果处理】 双蒸水的电导率C0=1.6 根据公式Relative ion leakage = (C1 - C0) / (C2 - C0) ×100%,计算各根尖的相对电导率 对照:①Relative ion leakage = 6.72% ②Relative ion leakage = 8.33%平均=7.53% 100mM NaCl处理:①Relative ion leakage = 13.16% ②Relative ion leakage = 10.22%平均=11.68% 200mM NaCl处理:①Relative ion leakage = 29.93% ②Relative ion leakage = 29.10%平均=29.51% 5%PEG-6000处理:①Relative ion leakage = 6.69% ②Relative ion leakage = 6.95%平均=6.82%

干旱胁迫及植物抗旱性的研究进展

新疆农业大学 专业文献综述 题目: 干旱胁迫及植物抗旱性的研究进展 姓名: 库热·巴吐尔 学院: 林学与园艺学院 专业: 园艺(特色经济林) 班级: 041班 学号: 043231142 指导教师: 海利力·库尔班职称: 教授 2008年12月19日

干旱胁迫及植物抗旱性的研究进展 摘要:干旱(水分亏缺)是我国北方沙漠化地区植物生长季的主要环境胁迫因子。本文从植物干旱的种类,植物对水分胁迫的生理反应,抗旱机理,植物水分胁迫的研究方法等几个方面,探讨植物抗旱研究的进展,存在问题及发展趋势,和干旱和高温在生理水平对植物光合作用影响机制的最新研究进展进行了综述,并对以后的相关研究进行了一些分析。 关键词:干旱胁迫;植物抗旱性,干旱机制 干早(Drought)是限制植物生长发育,基因表达和产量的重要因子[1-4],是气象与环境质量的指标,是指在无灌溉条件下,长期无雨或少雨,气温高,湿度小,土壤水分不能满足农作物的需要,使作物的正常生长受到抑制,甚至枯死,造成减产或无收的一种自然现象,一般分为大气干旱和土壤干早[5-6]。全球干旱半干旱地区约占陆地面积的35%遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52.5%,其中干旱地区占30.8%,半干旱地区占21.7%[7]。植物的抗旱性是指植物在大气或土壤干旱条件下生存和形成产量的能力,抗旱性鉴定就是按植物抗旱能力大小进行鉴定,评价的过程[8-10]。前人对于植物抗旱性的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。但这些研究都具有一定的局限性,主要表现为现有研究结果多数是针对植物某个或几个方面进行研究,如某些生理或生化指标,而这些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径,方式和机理,或进行耐旱性评价都难以反映植物的真实情况,甚至会使某些最关键的问题被忽略。因此,本文对植物干旱胁迫及抗旱性方面的一些研究成果及存在的问题进行了探讨。 1 干旱胁迫 干旱是一个长期存在的世界性难题,中国水的问题始终是个大问题,水的安全供给问题引起了世界各国的关注。中国的干旱缺水问题目前已引起党中央,国务院和全社会的关注,中国的水危机不是危言耸听,而是既成事实。干旱缺水将成为我国农业和经济社会可持续发展的首要制约因素。 1.1 干旱胁迫的类型及特点 干旱形成有两种主要原因,并形成两类干旱。一是土壤干旱。由于连年干旱,雨量过少,每年降雨量约在200~300mm,地下水位又较低,土壤中水分根本不能满足植物生长,如无灌溉,作物将受干旱之害。二是大气干旱。植物的水分亏缺是由于蒸腾失水超过吸水而产生的,即使在土壤水分充足的情况下,晴天的中午也常常产生干旱。气温高,强烈的太阳辐射显著促进蒸腾;由于土壤干燥,地温低,根的机能低下,使吸水受到抑制。都能使植物产生水分亏缺,特别是二者同时产

水分胁迫

科技名词定义 中文名称:水分胁迫 英文名称:water stress 定义1:因土壤水分不足或外液的渗透压高,植物可利用水分缺乏而生长明显受到抑制的现象。 所属学科:生态学(一级学科);生理生态学(二级学科) 定义2:因土壤水分不足而明显抑制植物生长的现象。 所属学科:土壤学(一级学科);土壤物理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 1水分胁迫 water stress 水分胁迫(water stress)植物水分散失超过水分吸收,使植物组织含水量下降,膨压降低.正常代谢失调的现象。 植物除因土壤中缺水引起水分胁迫外,干旱、淹水、冰冻、高温或盐演条件等不良环境作用于植物体时,都可能引起水分胁迫。不同植物及品种对水分胁迫的敏感性不同,影响不一。在淹水条件下,有氧呼吸受抑制,影响水分吸收,也会导致细胞缺水失去膨压,冰冻引起细胞间隙结冰,特别是在严重冰冻后遇晴天,细胞间隙的冰晶体融化后又因燕腾大量失水,易引起水分失去平衡而姜蔫。高温及盐演条件下亦易引起植物水分代谢失去平衡,发生水分胁迫。干旱缺水引起的水分胁迫是最常见的,也是对植物产量影响最大的。水分胁迫对植物祝谢的影响在植物水分亏缺时,反应最快的是细胞伸长生长受抑制,因为细胞膨压降低就使细胞伸长生长受阻,因而叶片较小,光合面积减小;随着胁迫程度的增高,水势明显降低,且细胞内脱落酸(ABA)含量增高,使净光合率亦随之下降,另一方面,水分亏缺时细胞合成过程减弱而水解过程加强,淀粉水解为糖,蛋白质水解形成氨基酸,水解产物又在呼吸中消耗;水分亏缺初期由于细胞内淀粉、蛋白质等水解产物增亥,吸呼底物增加,促进了呼吸,时间稍长,呼吸底物减少,呼吸速度即降低,且因氧化碑酸化解联,形成无效呼吸,导致正常代谢进程紊乱,代谢失调。水分胁迫对植物的严重影:由于水分胁迫引起植物脱水,导致细胞膜结构破坏。在正常情况下,由于细胞膜结构的存在,植物细胞内有一定的区域化(compartmentation),不同的代谢过程在

作物青枯病生物防治研究进展(综述)

作物青枯病生物防治研究进展(综述) 冯文俊 华南农业大学Email:wonjune@https://www.wendangku.net/doc/016225234.html, 摘要:作物的青枯病是由青枯劳尔氏菌引起的一类细菌性的土传植物病害,危害严重,难于防治。生物防治是解决作物细菌性青枯病的一条极有希望的途径。文章综述了利用无致病力产细菌素菌株(ABPS)、生防菌、转基因植物以及诱导抗性等生防因子防治植物青枯病的研究进展;另一方面应加强田间应用技术的研究,结合多种生物防治技术,以高效、简便、经济地防治植物青枯病。 关键词:青枯病;青枯雷尔氏菌;生物防治;研究进展 作物细菌性青枯病素有植物“癌症”之称,是由茄科劳尔氏菌(Ralstonia solanacearum)引发的一种世界性的重要植物土传病害,其发病主要集中在温暖、潮湿、雨水充沛的热带和亚热带地区的50多个国家和地区,一旦发生则难以控制,往往造成作物大面积死亡甚至绝收,危害严重。R. solanacearum的寄主非常广泛,包括农作物、果树、蔬菜、林木、花卉、药材、牧草和杂草等50多科300多种植物;由该病菌引起的症状是,发病初期,病株主茎顶梢第一、二片叶白天呈现失水性凋萎,早晚尚可恢复,之后随着病情的发展则不再恢复,病株叶片自上而下逐渐萎蔫,叶色暗淡,呈青绿色,最后病株枯死。根据对不同寄主植物的致病性,可将茄科劳尔氏菌分为5个小种:1号小种寄主范围较广,侵染番茄、烟草等茄科作物及姜、甘薯等其他植物;2号小种侵染香蕉、赫蕉、大蕉、海里康;3号小种侵染马铃薯、番茄,对其他植物致病力弱;4号小种侵染生姜,对其他植物侵染力弱或不侵染;5号小种侵染桑树,不侵染其他植物[1]。 植物青枯病的防治一直是个世界性的难题。化学防治的现状令人担忧,农产品的农药残留和剧毒农药直接对人类生存环境造成严重污染,危及人类和其他生物的生命。随着可持续农业和可持续植保观念的不断深入与发展,生物防治越来越受到人们的重视。而且,早期国内外专家们在抗病品种选育、化学防治、农业防治等方面进行了大量的研究,但由于抗病品种抗性低且抗性容易丧失,化学药剂的后期防效差且病菌易产生抗药性而不能最终控制青枯病的发生,农业措施如水旱轮作受地域条件限制而难于大面积推广,迄今尚未研究出十分理想、有效的防治技术。于是生防技术的研究和开发成为目前防治青枯病的重点和热点。无致病力产细菌素菌株(ABPS)、生防菌、转基因植物以及诱导抗性的研究与应用取得了较大进展,研究者成功开发出一批广泛应用

植物对盐胁迫的反应及其抗盐机理研究进展

山东农业大学学报(自然科学版),2006,37(2):302~305 Journa l of Shandong Agricu lt ura lUn i versity(Natura l Sc i ence) 文#献#综#述 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REV IE W ON PLANT RESPONSE AND RE SISTANCE M ECHAN IS M TO S ALT STRESS YANG X i a o-hu i1,2,JI A NG We i-jie1*,WE IM i n2,Y U H ong-jun1 (1.I n stitute ofV egetab l es and Flo wers,Ch inese A cade m y ofAgricu l tural Sci ence,Beijing100081,Ch i na; 2.Coll ege ofH orti cu lt u re Science and Engi n eeri ng,Shandong Agricu l tureU n i versit y,Ta i an271018,Ch i na) K ey words:Iron stress,Os motic stress,Salt resistantm echan i s m,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)02-0302-04 1植物对盐胁迫的反应 1.1盐胁迫对植物形态发育的影响 盐胁迫对植物个体形态发育的整体表现为抑制组织和器官的生长,加速发育过程,缩短营养生长和开花期。P laut等(1985)研究发现,90mmol/L NaC l胁迫抑制甜菜块根的干物质积累,但低浓度NaC l可增加叶面积。Nunes(1984)认为这主要是细胞体积增加而不是细胞分裂的结果。盐分对佛手瓜的生长及腋芽的萌动均有抑制作用,幼苗的生长速度与中期细胞指数的变化具有一致性,说明盐分影响植物生长的途径是通过细胞的有丝分裂来完成的[2]。在NaC l胁迫(0.1%、0. 2%、0.3%、0.4%)条件下,马铃薯试管苗生长受到显著抑制,且随着盐浓度的增加,各处理间差异加大[3]。戴伟民等[4]研究发现,随盐浓度的增加,番茄幼苗的下胚轴粗度、侧根数逐渐减少,根干重逐渐降低。根据牟永花的研究,50、100mm ol/L NaC l使番茄株高和干物质积累均有不同程度的降低,但对根冠比无影响[5]。用25、50mmol/L NaC l处理黄瓜幼苗,发现植株株高、鲜重和干重均降低[6]。杨秀玲等[7]也发现,随着N aC l浓度(75、100、125、150mm ol/L)的增高,黄瓜幼苗地上和地下部鲜重以及根冠比(R/T)也均表现为下降。 1.2盐胁迫对植物生理生化代谢的影响 1.2.1水分平衡与质膜透性Levltt在1980年即指出,不同环境胁迫作用于植物时都会发生水胁迫。在盐胁迫下,植物细胞脱水,膜系统破坏,位于膜上的酶功能紊乱,各种代谢无序进行,导致质膜透性的改变。而且,高浓度NaC l可置换细胞膜结合的Ca2+,使膜结合Na+增加,膜结构和功能破坏,细胞内的K+、磷和有机溶质外渗。 1.2.2光合作用盐胁迫下,植物组织因缺水而引起气孔关闭,叶绿体受损,光合相关酶失活或变性,光合速率下降,同化产物合成减少。叶绿体是植物光合作用的主要场所,而类囊体膜是光能吸收、传递和转换的结构基础,植物进行光能吸收、传递和转换的各种色素蛋白复合体都分布在类囊体膜上。盐胁迫下,过量盐离子积累使类囊体膜糖脂含量显著下降,不饱和脂肪酸含量降低,而饱和脂肪酸含量升高,从而影响细胞膜的光合特性。叶绿素是类囊体膜上色素蛋白复合体的重要组成部分,所以盐胁迫下叶绿素含量的降低必将影响色素蛋白复合体的功能,使垛叠状态的类囊体膜比例减小,叶绿体中基粒数量和质量下降,光合强度降低[8]。 R ub isco(核酮糖-1,5-二磷酸羧化酶)和PEP(磷酸烯醇式丙酮酸)羧化酶是光合作用的两种重要酶。盐胁迫下,收稿日期:2005-06-25 基金项目:基金项目:国家863项目(2004AA247030,2004AA247010);国家科技攻关项目(2004BA521B01);农业部蔬菜遗传与生理重点开放实验室项目. 作者简介:杨晓慧(1980-),女,硕士研究生,从事设施园艺与无土栽培. *通讯作者:Aut hor f or correspo ndence.E-m a i:l ji ang w@j m ai.l https://www.wendangku.net/doc/016225234.html,

逆境胁迫对植物生理生化代谢的影响

逆境胁迫对植物生理生化代谢的影响 20093391 魏晓明农学0901 摘要:对植物产生伤害的环境称为逆境,又称胁迫。常见的逆境有寒冷、干旱、高温、盐渍等。逆境会伤害植物,严重时会导致植物死亡。逆境对植物的伤害主要表现在细胞脱水、膜系统受破坏,酶活性受影响,从而导致细胞代谢紊乱。有些植物在长期的适应过程中形成了各种各样抵抗或适应逆境的本领,在生理上,以形成胁迫蛋白、增加渗透调节物质(如脯氨酸含量)、提高保护酶活性等方式提高细胞对各种逆境的抵抗能力。 关键词:逆境胁迫,抗逆性,相对电导率,脯氨酸,丙二醛,样品,细胞膜透性,过氧化物酶活性,叶绿素,可溶性糖。 前言:植物细胞膜起调节控制细胞内外物质交换的作用,它的选择透性是其最重要的功能之一。当植物遭受逆境伤害时,细胞膜受到不同程度的破坏,膜的透性增加,选择透性丧失,细胞内部分电解质外渗。膜结构破坏的程度与逆境的强度、持续的时间、作物品种的抗性等因素有关。因此,质膜透性的测定常可作为逆境伤害的一个生理指标,广泛应用在植物抗性生理研究中。 当质膜的选择透性被破坏时细胞内电解质外渗,其中包括盐类、有机酸等,这些物质进入环境介质中,如果环境介质是蒸馏水,那么这些物质的外渗会使蒸馏水的导电性增加,表现在电导

率的增加上。植物受伤害愈严重,外渗的物质越多,介质导电性也就越强,测得的电导率就越高(不同抗性品种就会显示出抗性上的差异)。 在植物胁迫处理过程中,叶绿素含量会下降,可以把叶绿素含量下降看作是胁迫发展中由功能性影响到器质性伤害的一个中间过程。 过氧化物酶是植物体内普遍存在的、活性较高的一种酶,他与呼吸作用、光合作用及生长素的氧化等都有密切关系,在植物生长发育过程中,他的活性不断变化,因此测量这种酶,可以反映某一时期植物体内代谢的变化。 植物体内的碳素营养状况以及农产品的品质性状,常以糖含量作为重要指标。植物为了适应逆境条件,如干旱、低温,也会主动积累一些可溶性糖,降低渗透势和冰点,以适应外界环境条件的变化。 植物器官衰老时,或在逆境条件下,往往发生膜脂过氧化作用,丙二醛(MDA)是其产物之一,通常利用它作为脂质过氧化指标,表示细胞膜脂过氧化程度和植物对逆境条件反应的强弱。 植物细胞膜对维持细胞的微环境和正常的代谢起着重要作用。在正常情况下,细胞膜对物质具有选择透性能力。当植物受到逆境影响时,如高温、干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以至于植物细胞侵提液的电导率增大。膜透性增大的程度与逆境胁迫强度有

植物抗逆性研究进展

植物抗逆性研究进展 V A菌根真菌对植物吸收能力及抗逆性的影响研究进展 接种菌根真菌是一种提高农作物产量和质量的比较经济有效的新方法。V A菌根侵染能扩大寄主植物根系的吸收面积;能够改善水分运输,抵抗水分胁迫,提高植物抗旱性能;能够增强植物对矿物元素和水分的吸收能力,改变菌根根际土壤环境,并在根际生态系统中起重要作用。V A菌根真菌也可通过植物根系获得碳水化合物及其他营养物质,从而形成营养上的共生关系为植物提供生长所必需的氮等矿物营养;增强寄主植物光合作用及水分循环运转;提高植物对各种病虫害的抗性。可见,V A菌根真菌对植物的生长具有极其重要的生态价值和经济价值。 电场处理对毛乌素沙地沙生植物抗逆性影响的研究进展 自2002年以来,将电场技术应用于毛乌素沙地沙生植物抗逆性研究中,结果表明,恰当的电场处理更有利于种子的萌发及苗的生长,增强了其抗旱抗寒能力。 多胺与植物抗逆性关系研究进展 在逆境条件下,植物会改变生长和发育类型以适应环境。许多研究表明,在各种逆境协迫下,植物体中多胺水平及其合成酶活力会大量增加,以调节植物生长、发育和提高其抗逆能力,这种反应对逆境条件下的植物可能有意义。就目前的资料来看,多胺之所以能提高植物的抗逆性其机制可能是:①通过气孔调节和部分渗透调节控制逆境条件下水分的丢失。Liu等的研究表明,多胺以保卫细胞中向内的K+-通道作为靶点,调节气孔的运动[10]。多胺还可作为渗透调节剂,其积累可增加细胞间渗透,部分调节水分丢失。②调节膜的物理化学性质。多胺可与膜上带负电荷的磷脂分子头部及其他带负电的基团结合,影响了膜的流动性,同时也间接地调节膜结合酶的活性。③多胺可影响核酸酶和蛋白质酶特别是与植物抗逆性有关的保护酶活性,保护质膜和原生质不受伤害。④清除体内活性氧自由基和降低膜脂过氧化。⑤调节复制、转录、翻译过程。 尽管多胺对植物抗逆性起积极作用,但植物的各种抗性性状是由多个基因控制的数量性状,很难用转基因的方法将如此众多的外源基因同时转入一种植物中并进行表达调控,更何况还有很多与抗性有关的基因尚未发现,这说明植物抗性机制是复杂的。迄今,多胺合成代谢中的3个关键酶ADC、ODC、SAMDC已在许多植物中得到了纯化和鉴定,它们的基因也从多种植物中克隆,并采用转基因技术获得了一些认为多胺可提高植物抗性的证据,但多胺在植物中的载体是什么,植物对多胺的信号感受和传递途径怎样,多胺通过怎样的信号转导通路作用于植物的抗性基因,作用于哪些抗性基因,进而在转录和翻译水平上调控这些基因的表达,控制胁迫蛋白的水平,都还不清楚。因此,采用各种手段,特别是分子生物学的方法研究多胺对植物作用的多样性和提高植物抗胁迫的分子机制、多胺作用的信号转导是值得考虑的 多效唑提高植物抗逆性的研究进展 多效唑是英国ICI有限公司在20世纪70年代末推出的一种高效低毒的植物生长延缓剂和广谱性的杀菌剂[1],因此它对多种植物都有调节生长的效应。多效唑还能引起植物体内一系列的代谢和结构变化,增强植物的抗逆性[2],并兼有杀菌作用。本文仅就多效唑提高植物的抗逆性方面作一简要综述,以期为该领域的研究提供借鉴。 钙与植物抗逆性研究进展 钙是植物必需的营养元素,具有极其重要的生理功能。植物在缺钙条件下,出现与缺钙有关的生理性病害,如苹果果实缺钙可导致苦痘病、水心病和痘斑病等在采前或贮藏期间的生理病害[1]。早在19世纪,钙就被列为植物必需营养元素,并与氮、磷、钾一起称为“肥料的四要素”。钙有“植物细胞代谢的总调节者”之称,它的重要性主要体现在钙能与作为胞内信使的钙调蛋白结合,调节植物体的许多生理代谢过程[2,3],尤其在环境胁迫下,钙和钙调素参与胁迫信号的感受、传递、响应与表达,提高植物的抗逆性[4]。近十几年来,有关钙素营养生理及钙提高植物抗逆性的研究已取得许多进展,现综述如下。 目前,国内外对钙生理及抗逆性研究已经取得了很大进展,但是前人的工作主要侧重于外源钙对植物的影响,对细胞内钙的作用的细节研究得不够深入细致。以下几个方面的问题亟待深入研究:(1)植物是如何感受到逆境信号以及这些信号是如何由激素传导的;(2)激素是如何把逆境信号通过细胞膜传递给钙信使系统的;(3)钙信使系统如何一步步激活靶酶将逆境信号转变为植物体内的生理生化反应从而使植物适应环境胁迫的;(4)钙信使系统与其它胞内信使是如何一起协调调节植物激素的生理反应的。相信随着植物生理学和分子生物学的发展及研究的一步步深入,人们对以上这些问题一定会有日益透彻的认识。这些问题的解决,将使钙生理及抗逆性的研究更加深入,使钙素营养的研究和应用走向新的辉煌 硅与植物抗逆性研究进展 果聚糖对植物抗逆性的影响及相应基因工程研究进展 果聚糖是一类重要的可溶性碳水化合物,其在植物中的积累可提高植物的抗逆性。本文除了介绍果聚糖的有关知识外,重点综述了果聚糖对植物抗逆性的影响,并从果聚糖对渗透的调节,对膜的保护,在低温、干旱条件下果聚糖相关酶活性变化方面阐述了果聚糖抗旱、抗寒机制。此外,综述了提高果聚糖积累方面的基因工程研究进展及存在的相关问题。

相关文档
相关文档 最新文档