文档库 最新最全的文档下载
当前位置:文档库 › 第四讲 解析函数与调和函数的关系

第四讲 解析函数与调和函数的关系

第四讲 解析函数与调和函数的关系
第四讲 解析函数与调和函数的关系

工程数学II 课程教案

授课时间:第 周 周 第 节 课时安排 课次__ 授课方式(请打√):理论课□ 讨论课□ 实验课□ 习题课□ 综合课□ 其他□ 授课题目(教学章、节或主题):

§3.7 解析函数与调和函数的关系

教学目的、要求(分掌握、熟悉、了解三个层次):

1.理解调和函数与解析函数的关系. 教学重点及难点:

重点:调和函数与解析函数的关系.

难点:调和函数与解析函数的关系. 教学基本内容(要体现出教学方法及手段):

§3.7 解析函数与调和函数的关系

一、调和函数的定义

定义 (,) x y D ?如果二元实变函数在区域内具, 有二阶连续偏导数并且满足

拉普拉斯方程

2

2

2

2

0, x

y

????+

=??

(,) .x y D ?那末称为区域内的调和函数

调和函数在流体力学和电磁场理论等实际问题中有很重要的应用.

二、解析函数与调和函数的关系

定理 任何在区域 D 内解析的函数,它的实部和虚部都是 D 内的调和函数. 证 (),w f z u i v D ==+设为

内的一个解析函

数 , .u v u v x

y

y

x

????==-????那末2

2

2

2

22

,

.u v u v x

y x

y

x y ????=

=-

??????从而

根据解析函数高阶导数定理, ,

u v 与具有任意阶的连续偏导数2

2

,v

v y x

x y

??=

????从而

2

2

2

2

0,u u x

y

??+

=??2

2

2

2

0,v v x

y

??+

=??同理

.u v 因此与都是调和函数 [证毕]

2. 共轭调和函数的定义 (,) , u x y D 设为区域内给定的调和函数我 u iv +们把使 (,) (,) .D v x y u x y 在内构成解析函数的调和函数称为的共轭调和函数换句话

,说 , u v u v D x

y

y

x

????==-????在内满足方程,的两个调和函数中 v u 称为的共轭

.调和函数

区域D 内的解析函数的虚部为实部的共轭调和函数. 3. 偏积分法

如果已知一个调和函数 u , 那末就可以利用柯西-黎曼方程求得它的共轭调和函数 v , 从而构成一个解析函数u +vi . 这种方法称为偏积分法.

例1 3

2

(,)3 , u x y y x y =-证明为调和函数并求 (,) v x y 其共轭调和函数和

.由它们构成的解析函数

解 6,u

xy x ?=-?因为226,u y x

?=-?22

33,u y x y ?=-?2

2

6,u y y ?=?于是 2

2

2

2

0,u u x

y

??+

=??

(,) .u x y 故为调和函数

6,v u xy y

x ??=

=-??因为6d v xy y =-?2

3(),xy g x =-+

2

3(),v y g x x

?'=-+?

v u x

y

??=-??又因为2233,y x =-+23()y g x '-+22

33,y x =-+

( )c 为任意常数2 ()3d g x x x =

?故3,x c =+32

(,)3,v x y x xy c =-+

得一个解析函数

3

2

3

2

3(3).w y x y i x xy c =-+-+

这个函数可以化为

3

()().w f z i z c ==+

课堂练习 3

2

2

3

(,)632 , .

u x y x x y

x y y =--+

证明为调和函数并求其共轭调和函数 答案 2

2

3

3

(,)362.v x y x y

x y y x c =

--

++( )

c 为任意常数。 例2 (,)(c o s s i n ) x v x y e y y

x y

x y =+++已知为调, 和函数求一解

析函数 (), (0)0f z u iv f =+=使

(cos sin sin )1,x

v e y y x y y x

?=+++?

(cos sin cos )1,x

v e y y y x y y

?=-++?

u v x

y

??=??由(cos sin cos )1,x

e y y y x y =-++得

[(cos sin cos )1]d x u e y y y x y x =

-++?(cos sin )(),x

e x y y y x g y =-++

, v u x

y

??=-

??由得

(cos sin sin )1x

e y y x y y +++(sin cos sin )(),x

e x y y y y g y '=++-

(),g y y c =-+故 (cos sin ),x

u e x y y y x y c =-+-+于是

()f z u iv =+(1)(1)x

iy

x

iy

xe e iye e x i iy i c =++++++(1),z

ze i z c =+++

(0)0, f =由 0,c =得所求解析函数为

()(1).z

f z ze i z =++

4. 不定积分法

(,) (,), u x y v x y 已知调和函数或用不定积分求解析函数的方法称为不定积

.分法不定积分法的实施过程:

() () ,f z u iv f z '=+解析函数的导数仍为解析函数 且

()x x f z u iv '=+x y u iu =-y x v iv =+

,x y y x u iu v iv z -+把与用来表示

()(),x y f z u iu U z '=-=()(),y x f z v iv V z '=+=

将上两式积分, 得

()()d ,f z U z z c =+? ()()d ,f z V z z c =+?

(),u f z 适用于已知实部求 (),v f z 适用于已知虚部求

例3 22

, . , () k u x ky v f z u iv =+=+求值使为调和函数再求使为解析函, 数

() 1 ().f i f z =-并求的

解 2,u

x x ?=

?因为 2

2

2,u x

?=?

2,u ky y

?=?

2

2

2,u k y

?=?根据调和函数的定义可得

1,k =-因为

()()x y f z U z u iu '==-22x kyi =-22x kyi =-22x yi =+ 2,z =

()2d f z z z =

?根据不定积分法2

,z c =+ ()1,f i =-由 0,c =得所求解析函数为

2

2

2

()2.f z x y xyi z =-+=

例4 用不定积分法求解例1中的解析函数()f z 32

(,)3. u x y y x y =-实部

解 ()()x y f z U z u iu '==-223(2)i x xyi y =+-23,iz =

2

()3d f z iz

z =

?3

1,iz c =+

( () , f z 因为的实部为已知函数不可能包含, 实的任意常数所以1 c 常数为 )任意纯虚数,故

3

()().f z i z c =+( )c 为任意实常数

例5 用不定积分法求解例2中的解析函数()f z 虚部 (,)(c o s s i n )x

v x y e y y x y x y

=

+++ 解 ()()y x f z V z v iv '==+(c o s s i n c o s )

x e y y y x y =-++ [(cos sin sin )1]x

i e y y x y y ++++

(cos sin )()sin ()cos 1x

x

x

e y i y i x iy e y x iy e y i =+++++++ (cos sin )()[cos sin ]1x

x

e y i y x iy e y i y i =++++++ ()1x iy x iy

e

x iy e

i ++=++++1,z z

e ze i =+++

()()d f z V z z =?(1)d z

z

e

ze i z =+++?(1).z

ze i z c =+++( ) c 为任意实常数

例6 2

2

()(4)2(), ().u v x y x xy y x y f z u iv +=-++-+=+已知试确定解析函数 解 两边同时求导数

22

(4)()(24)2,x x u v x xy y x y x y +=+++-+-

22

(4)()(42)2,y y u v x xy y x y x y +=-+++-+-

, ,u v u v x

y

y

x

????==-

????且所以上面两式分别相加减可得

22

332,y v x y =--6,x v xy =

()y x f z v iv '=+223326x y xyi =--+2

32,z =-

2

()(32)d f z z

z =

-?3

2.z z c =-+( ) c 为任意实常数

作业和思考题:

第三章习题 23;302).

课后小结:本节我们学习了调和函数的概念、解析函数与调和函数的关系以及共轭调和函

数的概念.应注意的是:

1. 任意两个调和函数u 与v 所构成的函数u +iv 不一定是解析函数.

2. 满足柯西—黎曼方程ux= vy , vx= –uy ,的v 称为u 的共轭调和函数, u 与v 注意的是地位不能颠倒.

必修1 第三章函数的应用经典例题讲解

第三章 函数的应用 1:函数的零点 【典例精析】 例题1 求下列函数的零点。 (1)y=32x 2-+x ;(2)y =(2 x -2)(2 x -3x +2)。 思路导航:判断函数零点与相应的方程根的关系,就是求与函数相对应的方程的根。 答案:(1)①当x≥0时,y=x 2 +2x -3,x 2 +2x -3=0得x=+1或x=-3(舍) ②当x <0时,y=x 2 -2x -3,x 2-2x -3=0得x=-1或x=3(舍) ∴函数y=x 2 +2|x|-3的零点是-1,1。 (2)由(2x -2)(2 x -3x +2)=0,得(x +2)(x -2)(x -1)(x -2)=0, ∴x 1=-2,x 2=2,x 3=1,x 4=2。 ∴函数y =(x 2 -2)(x 2 -3x +2)的零点为-2,2,1,2。 点评:函数的零点是一个实数,不是函数的图象与x 轴的交点,而是交点的横坐标。 例题2 方程|x 2-2x|=a 2+1 (a∈R + )的解的个数是______________。 思路导航:根据a 为正数,得到a 2 +1>1,然后作出y=|x 2 -2x|的图象如图所示,根据图象得到y=a 2 +1的图象与y=|x 2 -2x|的图象总有两个交点,得到方程有两解。 ∵a∈R + ∴a 2 +1>1。而y=|x 2 -2x|的图象如图, ∴y=|x 2 -2x|的图象与y=a 2 +1的图象总有两个交点。 ∴方程有两解。 答案:2个 点评:考查学生灵活运用函数的图象与性质解决实际问题,会根据图象的交点的个数判断方程解的个数。做题时注意利用数形结合的思想方法。 例题3 若函数f (x )=ax +b 有一个零点为2,则g (x )=bx 2 -ax 的零点是( ) A. 0,2 B. 0,12 C. 0,-12 D. 2,-1 2 思路导航:由f (2)=2a +b =0,得b =-2a ,∴g (x )=-2ax 2-ax =-ax (2x +1)。令g (x )=0,得x 1=0,x 2=-1 2 ,故选C 。 答案:C 【总结提升】 1. 函数y =f (x )的零点就是方程f (x )=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题。 2. 函数与方程二者密不可分,二者可以相互转化,如函数解析式y =f (x )可以看作方程y -f (x )=0,函数有意义则方程有解,方程有解,则函数有意义,函数与方程体现了

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布 一. 填空题 1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =9 5 , 则P(Y ≥ 1) = _________. 解. 9 4951)1(1)0(=-=≥-==X P X P 94)1(2 = -p , 3 1=p 2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为c c c c 162 , 85,43,21, 则c = ______. 解. 2,16321628543211==+++= c c c c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________. P(X > a) = ________. P(x 1 < X ≤ x 2) = ________. 解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1) 4. 设k 在(0, 5)上服从均匀分布, 则02442 =+++k kx x 有实根的概率为_____. 解. k 的分布密度为??? ??=0 51 )(k f 其它50≤≤k P{02442 =+++k kx x 有实根} = P{03216162 ≥--k k } = P{k ≤-1或k ≥ 2} =5 3 515 2=?dk 5. 已知2}{,}{k b k Y P k a k X P =-== =(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++ a a a a . 49 36 ,194= =++b b b b (X, Y)

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

二维随机变量及其分布题目

一、单项选择题 1.设随机变量21,X X 独立,且2 1 }1{}0{= ===i i X P X P (2,1=i ),那么下列结论正确的是 ( ) A .21X X = B .1}{21==X X P C .2 1 }{21= =X X P D .以上都不正确 2设X 与Y 相互独立,X 服从参数为12的0—1分布,Y 服从参数为1 3 的0—1分布,则方程 220t Xt Y ++=中t 有相同实根的概率为 (A ) 13 (B )12 (C )16 (D )2 3 [] 3.设二维随机变量(X ,Y )的概率密度为 ()22 ,02,14, (,)0, .k x y x y f x y ?+<<<

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47) a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数2()log )f x x =的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

复变函数习题解答(第3章)

p141第三章习题 (一)[ 5, 7, 13, 14, 15, 17, 18 ] 5.由积分 C1/(z+ 2)dz之值证明 [0,](1 + 2 cos)/(5 + 4cos)d= 0,其中C取单位圆周|z| = 1. 【解】因为1/(z+ 2)在圆|z内解析,故 C1/(z+ 2)dz= 0. 设C: z()= ei ,[0, 2]. 则 C1/(z+ 2)dz= C1/(z+ 2)dz= [0, 2]iei /(ei + 2)d = [0, 2]i(cos+isin)/(cos+isin+ 2)d =

[0, 2]( 2 sin+i(1 + 2cos))/(5 + 4cos)d = [0, 2]( 2 sin)/(5 + 4cos)d+i [0, 2](1 + 2cos)/(5 + 4cos)d. 所以 [0, 2](1 + 2cos)/(5 + 4cos)d= 0. 因(1 + 2cos))/(5 + 4cos)以2为周期,故 [,](1 + 2cos)/(5 + 4cos)d= 0;因(1 + 2cos))/(5 + 4cos)为偶函数,故[0,](1 + 2 cos)/(5 + 4cos)d [,](1 + 2cos)/(5 + 4cos)d= 0. 7. (分部积分法)设函数f(z),g(z)在单连通区域D内解析,,是D内两点,试证 [,]f(z)g’(z)dz= (f(z)g(z))| [,] [,]g(z)f’(z)dz. 【解】因f(z),g(z)区域D内解析,故f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z)f’(z),以及(f(z)g(z))’的积分都与路径无关.[,]f(z)g’(z)dz+ [,]g(z)f’(z)dz= [,](f(z)g’(z)dz+g(z)f’(z))dz

第二章__随机变量及其概率分布_考试模拟题答案

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

必修一函数经典例题

例4.已知log 4log 4m n <,比较m ,n 的大小。 解:∵log 4log 4m n <, ∴ 4411 log log m n < , 当1m >,1n >时,得4411 0log log m n << , ∴44log log n m <, ∴1m n >>. 当01m <<,01n <<时,得4411 0log log m n <<, ∴44log log n m <, ∴01n m <<<. 当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<. 综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 例5.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠). 解:(1)令3t x =+,则2log y t =, ∵0t >, ∴y R ∈,即函数值域为R . (2)令2 3t x =-,则03t <≤, ∴2log 3y ≤, 即函数值域为2(,log 3]-∞. (3)令2247(2)33t x x x =-+=-+≥, 当1a >时,log 3a y ≥, 即值域为[log 3,)a +∞, 当01a <<时,log 3a y ≤, 即值域为(,log 3]a -∞. 例6 .判断函数2()log )f x x =的奇偶性。 x 恒成立,故()f x 的定义域为(,)-∞+∞, 2()log )f x x -= 2 log =- 2 log =- 2log ()x f x =-=-, 所以,()f x 为奇函数。 例7.求函数213 2log (32)y x x =-+的单调区间。 解:令2 2 3 132()2 4u x x x =-+=-- 在3[,)2+∞上递增,在3 (,]2 -∞上递减, 又∵2 320x x -+>, ∴2x >或1x <, 故2 32u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵13 2log y u =为减函数, 所以,函数213 2log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。 例8.若函数2 2log ()y x ax a =--- 在区间(,1-∞上是增函数,a 的取值范围。 解:令2 ()u g x x ax a ==--,

§4.解析函数与调和函数解读

§4. 解析函数与调和函数 一、教学目标或要求: 掌握解析函数与调和函数的关系熟练计算 二、教学内容(包括基本内容、重点、难点): 基本内容:解析函数与调和函数的关系例题 重点:解析函数与调和函数的关系 难点: 例题 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习: 16、17、18 §4. 解析函数与调和函数 在前一节,我们已经证明了,在区域D内解析的函数具有任何阶的导数。因此,在区域D内它的实部与虚部都有二阶连续偏导数。现在我们来研究应该如何选择 才能使函数在区域D内解析。 设在区域D上解析,则C--R条件成立 ,. 下一章将证明,某个区域上的解析函数在该区域上必有任意阶的导数,因此可对上式求偏导数 , 两式相加可得 同理可得

定义3.5若二元实函数 在区域 内有二阶连续偏导数且满足拉普拉斯方 程,则称为区域内的调和函数。记, 则为运算符号,称为拉普拉斯算子。 定义3.6 在区域D 内满足C.— R.条件 y v x u ??=??, x v y u ??-=?? 的两个调和函数中),(y x u ,),(y x v 中, ),(y x v 称为),(y x u 的轭调和函数. 共轭调和函数的几何意义 设是区域D 上的解析函数,则 , 两式相乘得 即 所以 就是说,梯度跟梯度 正交. 我们知道,和 分别是曲线族“”和“ ”的法向矢量,因而上式 表示“ ”与“ ”两族曲线相互正交. 这就解析函数

实部),(y x u 与虚部),(y x v 的几何意义。 定理3.18 若),(i ),()(y x v y x u z f +=在区域D 内解析,则在区域D 内),(y x v 必为),(y x u 的轭调和函数. 证 由 在 内解析知, ,从而 。又解析 函数具有的无穷可微性保证 , 在 内均连续,故必相等,于是在 内 。 同理 ,即,满足拉普拉斯方程。 定理3.19 设若),(y x u 是在单连通区域D 内的调和函数,则存在由(3.22)式所确定的函数),(y x v ,使),(i ),()(y x v y x u z f +=在区域D 内解析. 解析函数的又一等价定理 ),(i ),()(y x v y x u z f +=在区域D 内解析当且仅当在区域D 内),(y x v 是) ,(y x u 的共轭调和函数。 函数)(z f 在区域D 内为解析函数的充分必要条件是)](Im[z f 为)](Re[z f 的共轭调和函数。 从已知解析函数的实(虚)部求它的虚(实)部的方法。 1.线积方法 定理3.19 设 是在单连通区域 内的调和函数,则存在 , 使 是 内的解析函数。(其中 是 内定点, 是 内动 点,为任意常数,积分与路径无关) 证 要使成为解析函数,则 必须满足条件 ( 条件), 又 ,故 ,又 在单连通区域 可微,故 积分与路径无关,从而

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

解析函数与调和函数的关系

解析函数与调和函数的关系

§3.7 解析函数与调和函数的关系 内容简介 在§3.6我们证明了在D内的解析函数,其导数仍为解析函数,所以解析函数有任意阶导数。本节利用这一重要结论研究解析函数与调和函数之间的关系。

. ),() 00: ),(22 2 2 内的调和函数为则称即(方程续偏导数且满足内具有二阶连在若二元实变函数 D y x y x Laplace D y x ??? ??=?=??+??定义是,内解析 在区域若D y x v v y x u u D y x iv y x u z f ),(),(),(),()( ==?+=定理

证明:设f (z )=u (x ,y )+i v (x ,y )在区域D 内解析,则 x v y u y v x u R C ??- =????= ??- 方程由y x v y u x y v x u ???-=?????=??22 222 2从而有x y v y x v y x v y x u ???= ???∴?22.) ,(),,(具有任意阶的连续导数理由解析函数高阶导数定,0 D 22 22 =??+??y u x u 内有故在0 22 22 =??+??y v x v 同理有

,0=?=?v u 2 2 22y x ?? +??≡?其中即u 及v 在D 内满足拉普拉斯(Laplace )方程: 是,D y x v v y x u u ),(),(==∴. ),(),(D ,),(的共轭调和函数为函数内构成解析函数的调和在称使得内的调和函数 为设y x u y x v iv u D y x u +定义

课内第九章习题

第九章习题 (一) 1. 设(1)(,)u x y 为区域D 内的调和函数;(2)圆||z a R -<全含于D. 求证:当,i z a re r R θ=+<时, 1(,)R e ()(cos sin )2i n n n n a r r f a re r a n b n θθθθ∞==+=++∑, 且展式是唯一的. 2. 如果()u z 在z 平面内是有界的调和函数,试证()u z 恒等于常数. 3. 设()f z 为一整函数且不恒等于一常数,(,)Re ()u x y f z =,则对于任一实数a ,必有平面上的点(00,x y )使00(,)u x y a =. 4. 设(1)(,)u x y 是区域D 内的调和函数;(2)圆K 全含于D ,(,)u x y 在K 内恒等于一常数a. 求证(,)u x y 在D 内恒等于a. 5. 设(1)(,)u x y 为区域D 内的调和函数; (2)(00,x y )D ∈使00(,)u x y a =; (3)U 是(00,x y )的一个邻域,U D ?, 求证:U 内有无穷多个点,(,)u x y 在其上的值都是a. 6. 试求在单位圆K 内调和、在闭圆K 上(除去其上两点,αβ外)连续的函数,这个函数在圆弧 αβ上取值1,在单位圆周的其余部分上取值0. (二) 1. 试用调和函数的平均值定理证明: 2 0ln(12cos )0r r d πθθ-+=? , 其中 11r -<<. 提示 当01r ≤<时,令i z re θ=,考虑(1)Ln z -在||1z <内的一个单值解析分

支(1)ln z -. 于是()Re[ln(1)]u z z =- 在||1z <内调和。且有(0)Re[ln 1]0u ==. 再利用第二章习题(一)21的结果;当10r -≤<时,可考虑(1)Ln z +在||1z <内的一个单值解析分支ln(1)z +,再作类似于上段的讨论,即可得到证明. 2. 如果两个二元实函数 1(,)u x y 与2(,)u x y 在区域D 内为调和,在闭域D 上连续,且在D 的所有边界点处有 12(,)(,)u x y u x y =, 试证:在D 内恒有 12(,)(,)u x y u x y =. 提示:考虑12(,)(,)(,)u x y u x y u x y =-. 3. 设二元实函数(,)u x y 是在0||()z ρ<<<+∞内的有界调和函数. 试证:适当定义(0,0)u 后,(,)u x y 是在||z ρ<内的调和函数.

第二章随机变量与分布函数习题

第二章:随机变量与分布函数习题 一、“离散型随机变量与分布函数”习题: 1. 射手对靶子进行射击,用X 表示击中的环数,已知击中一环的概率为0.2,击中两环的概率为0.8;求:(1)X 的分布列及分布函数;(2)()()10,1≤<≥X P X P . 2. 射手对靶子进行射击,一次射击的命中率为0.8,现在连续射击三枪,用X 表示三枪中命中的次数,求:(1)X 的分布列及分布函数;(2)A “至少命中两枪”的概率. 3. 设随机变量X 的分布函数为 ()()???? ???≥<≤<≤--<=≤=31 318.0114.010 x x x x x X P x F 求:X 的分布列. 4. 设随机变量X 的分布函数为 ()??? ? ????? >≤≤<=2120sin 00ππx x x A x x F 求:(1)A =? (2)??? ??<6πx P . 5. 设随机变量X 的分布列为??? ? ??--22121101q q ; 求: (1)q=? (2)X 的分布函数. 6. 某设备由三个独立工作的元件构成,该设备在一次试验中每个元件发生故障的概率为 0.1,求该设备在一次试验在中发生故障的元件数的分布列. 7. 将一颗骰子投掷两次,以X 表示两次所得点数之和、Y 表示两次中所得的小的点数;分别求X 与Y 的分布列. 8. 设随机变量X ~()p B ,2, 随机变量Y ~()p B ,3; 已知()9 5 1=≥X P , 求:()1≥Y P . 二、“连续型随机变量与分布函数”习题: 1. 设()()??? ??<>≥=-00 0,0212 x a x e a x x f a x ; ()?????<<=其他0 0cos 21 2 πx x x f ; ()????? <<-=其他0 22cos 3ππx x x f ; (1) 以上()()()x f x f x f 321,,是否是某随机变量X 的分布密度函数?

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

函数的最值经典例题

函数的最值 根据条件确定函数的参数是否存在 例 已知函数1 log )(223++++=cx x b ax x x f ,是否存在实数a 、b 、c ,使)(x f 同时满足下列三个条件:(1)定义域为R 的奇函数;(2)在[)+∞,1上是增函数;(3)最大值是1.若存在,求出a 、b 、c ;若不存在,说明理由. 分析:本题是解决存在性的问题,首先假设三个参数a 、b 、c 存在,然后用三个已给条件逐一确定a 、b 、c 的值. 解:)(x f 是奇函数.1,0log 0)0(3=∴=?=?b b f 又)()(x f x f -=- ,即1 1log 11log 223223++++-=+-+-cx x ax x cx x ax x , ∴222222222222)1()1(1111x c x x a x ax x cx x cx x ax x -+=-+?++++=-+-+. ∴c a c a =?=2 2或c a -=,但c a =时,0)(=x f ,不合题意;故c a -=.这时1 1l o g )(223+++-=cx x cx x x f 在[)+∞,1上是增函数,且最大值是1. 设1 1)(22+++-=cx x cx x x u 在[)+∞,1上是增函数,且最大值是3. 2 22222222)1()1)(1(2)1()1(2)1()1)(2()1)(2()(++-+=++-=+++-+-++-='cx x x x c cx x x c cx x cx x c x cx x c x x u ,当1>x 时0)(012>'?>-x u x ,故0>c ;又当1-'x u ;当)1,1(-∈x 时,0)(<'x u ; 故0>c ,又当1-'x u ,当)1,1(-∈x 时,0)(<'x u . 所以)(x u 在),1()1,(+∞--∞ 是增函数,在(-1,1)上是减函数. 又1>x 时,1,1)(,1122-=∴<++<+-x x u cx x cx x 时)(x u 最大值为3. ∴.1,1,31 111-===+-++a c c c 经验证:1,1,1==-=c b a 时,)(x f 符合题设条件,所以存在满足条件的a 、b 、c ,即.1,1,1==-=c b a 说明:此题是综合性较强的存在性问题,对于拓宽思路,开阔视野很有指导意义.

相关文档
相关文档 最新文档