文档库 最新最全的文档下载
当前位置:文档库 › 密布预应力束锚具下混凝土局部受压承载力计算方法

密布预应力束锚具下混凝土局部受压承载力计算方法

密布预应力束锚具下混凝土局部受压承载力计算方法
密布预应力束锚具下混凝土局部受压承载力计算方法

第25卷第4期 建筑结构学报 V ol.25,No.4 2004年8月 Journal of Building Stuctures Aug.,2004

基金项目:国家自然科学基金资助项目(50178026)

作者简介:郑文忠(1965- ),男,天津市蓟县人,工学博士,教授。 收稿日期:2003年8月

文章编号:1000-6869(2004)04-0060-06

密布预应力束锚具下混凝土局部受压承载力

计算方法

郑文忠1,张吉柱2

(1.哈尔滨工业大学土木工程学院,黑龙江哈尔滨 150090;2.中国建筑科学研究院结构所,北京 100013)

摘要:针对广大结构工程师在应用规范公式计算密布预应力束锚具下混凝土局部受压承载力时所遇到的问题,通过对应用ANSYS 软件计算结果的分析,得出了密布预应力束锚具下混凝土的横向拉应力的分布规律,为探讨密布预应力束锚具下混凝土局部受压承载力何时按“整体计算法”考虑,何时按“分别计算取和法”考虑提供了依据。利用已有试验数据,经大量试算和归纳,提出了计算密布预应力束锚具下混凝土局部受压承载力的“整体计算法”和“分别计算取和法”,各自的适用范围清晰、设计步骤明确,可操作性强,可用于工程设计。 关键词:锚具;混凝土;局部受压承载力

中图分类号: 文献标识码:

Calculating method of the local bearing capacity of concrete

under closely spaced anchorages

ZHENG Wenzhong 1,ZHANG Jizhu 2

(1.School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China ; 2., China Academy of Building Research, Institute of Building Structures, Beijing 100013, China)

Abstract :To solve problems with which some engineers meet when calculating the local bearing capacity of concrete under closely spaced anchorages by use of the Code formulae, the transverse tensile stress distribution law of concrete in the local zone under closely spaced local loads is found by applying ANSYS software. At the same time, it can be as principles to tell the usage range of ‘the whole calculating method’ and ‘sum of each single calculating method’ of the local bearing capacity. On the basis of existing experimental data and lots of calculation and conclusion, ‘the whole calculating method’ and ‘sum of each single calculating method’ of calculation of the local bearing capacity are developed. Both them own clear applying range, explicit computation procedures and convenient applications in practice. Keywords :anchorage ,concrete ,local bearing capacity

1 问题的提出

各国设计标准中所给混凝土局部受压承载力计算公式确切地讲在进行预应力混凝土工程设计时只适用于单束(根)预应力锚具下混凝土局部受压承载力计算或局部受压计算底面积A b 不重叠时的预应力锚具下混凝土局部受压承载力计算。实际后张预应力混凝土工程中的结构构件多为布置多束(根)预应力筋,且相邻束(根)预应力锚具下混凝土局部受压计算底面积A b 是重叠的(我们称这

种情况为“密布”)。在计算密布预应力束(根)锚具下混凝土局部受压承载力时,何时按“整体计算法”考虑,何时按“分别计算取和法”考虑;及按“分别计算取和法”考虑时,中束、边束、角束应分别如何计算,这一直是困扰结构工程师的技术难题之一。

2 密布预应力束锚具下局压区混凝土横向拉应力分布及计算准则

多个密布荷载作用下的局压区混凝土应力分

https://www.wendangku.net/doc/017601119.html,

布与单个荷载作用下的局压区混凝土应力分布有一定差别,明确多个密布荷载作用下的局压区混凝土横向拉应力分布规律,对确定密布预应力束锚具下混凝土局部受压承载力是按“整体计算法”考虑,还是按“分别计算取和法”考虑至关重要。影响多个密布荷载作用下的局压区混凝土应力分布的主要参数为局压荷载个数、局压荷载间距与局压荷载相应分布长度的比值等。本文采用ANSYS软件,对板端(板厚为100mm,混凝土强

构件将发生局压破坏,因此这种情况的局压承载力计算应按“整体计算法”考虑。对于两个局压荷载的情况,当局压荷载净距与单个局压荷载相应分布长度之比大于0.6时,在两个局压荷载的下方出现了各自的横向峰值拉应力,故此时的混凝土局部受压承载力应按“分别计算取和法”考虑。对于三个及三个以上局压荷载的情况,当局压荷载净距与单个局压荷载相应分布长度之比介于0.5至2.0之间时,在两个边端局压荷载下方出现

由有限元分析[1]可知,当局压荷载净距与单个局压荷载相应分布长度之比不大于0.5(对于两个局压荷载的情况,不大于0.6)时,其局压区混凝土的横向峰值拉应力位于局压荷载合力的正下方,当该横向峰值拉应力达到混凝土抗拉强度时,构件就会出现劈裂裂缝,随着裂缝向上、下发展,载下方的横向峰值拉应力,通过试算,表明可以偏于安全地将这种情况各预应力锚具下混凝土局部受压承载力也按“分别计算取和法”考虑。

单个局压荷载作用下的局压区混凝土横向应力分布,两个局压荷载作用,局压荷载净距与单个荷载分布长度之比分别为0.6、0.8的局压区混

凝土横向应力分布及三个局压荷载作用,局压荷载净距与单个荷载分布长度之比分别为0.5、0.6、1.5的局压区混凝土横向应力分布如图1所示。

3 整体计算法

3.1 建议方法

由前述分析,当相邻锚具下局部受压面积之间的净距与局部受压面积相应方向边长或直径的比不大于0.5(对于两束(根)预应力锚具下的局压情况,不大于0.6)时,局部受压承载力计算建议按整体计算法考虑。结合图2,“整体计算法”的要点可归纳如下:

(1)整体局部受压面积l A ′取为各锚具下的局部受压面积及各锚具下局部受压面积之间的面积

式中'

cor A 为整体钢筋网内表面范围内的混凝

土核心面积。

(4)按整体计算法考虑时,整体局部受压承载力设计值应按下式计算

n y cor

c c )2(9.0l v l l A f f F ∑′+′≤βαρββ (3) 式中F l 、βc 、f c 、α、ρv 、f y 等符号的意义

与规范[2]相同;l β′、cor

β′分别按式(1)和式(2)计算;ΣA l n 为各锚具下实际局部受压净面积之和。

3.2 计算结果与试验结果的比较

我国“混凝土局部受压及端部构造”专题组完成了若干个适合用“整体计算法”分析混凝土局部受压承载力问题的试件的试验[3]。他们得到了15个试件的试验结果,其中有6个试件承受两个荷载作用的素混凝土局部受压试验的数据,9个试件承受两个荷载作用配置间接钢筋的混凝土局部受压试验的数据。试件C-1~C-3、R-1~R-3的几何尺寸、开孔情况及传力垫板位置如图3a 所示;试件C-4~C-6、R-4~R-9的几何尺寸、开孔情况及传力垫板位置如图3b 所示。其中,试件表1 混凝土局压承载力试验值与计算值的比较(Ⅰ) Table 1 Comparison of testing data and calculating data

of local bearing capacity of concrete(Ⅰ) 实测值与计算值比较试件编号

混凝土轴压强度f c /N-mm

-2

间接钢筋体积配筋率(%)

破坏荷载实测值N T /kN

计算值N C

/kN

N T /N C

C-1 38.710 1827.81653.1 1.11

C-2 38.710 17201653.1 1.04

C-3 38.710 15681653.1 0.95

C-4 33.120 11271348.70.84

C-5 33.120 10781348.70.80

C-6 17.050 558.6694.30.80

R-1 38.32 2.57 18621636.9 1.14

R-2 38.32 2.57 19601636.9 1.20

R-3 38.32 2.57 18621636.9 1.14

R-4 33.12 2.71 11761348.10.87

R-5 33.12 2.71 14211348.1 1.05

R-6 33.12 2.71 1357.41348.1 1.01

R-7 33.12 2.71 1651.41348.1 1.22

R-8 17.05 2.71 842.8694.4 1.21

R-9 17.05 2.71 862.4694.4 1.24

平均值 1.04

标准差0.157

变异系数0.151注:配置间接钢筋的试件的混凝土项局压承载力实测值是由试件局压实测值扣除间接钢筋对局压承载力贡献计算值而得。

3.3 对整体计算法的评价

由表1局部受压承载力的试验值与计算值的对比可知,试验值与计算值之比X=N T/N C的平均值X=1.04,标准差σ=0.157,变异系数δ=0.151,计算结果与试验结果吻合较好,表明我们所建议的计算密布预应力束锚具下混凝土局部受压承载力的“整体计算法”是可行的。

4 分别计算取和法

4.1 建议方法

由前述分析可知,当相邻锚具下局部受压面积之间的净距与局部受压面积相应方向边长或直径的比大于0.5(仅有两束(根)预应力筋的情况,则大于0.6)时,密布预应力束锚具下混凝土局部受压承载力应按“分别计算取和法”考虑。

按“分别计算取和法”计算中束预应力筋锚具下混凝土局部受压承载力时,应遵循的要点主要有:

(1)由于相邻预应力束的作用,存在着很强的侧向约束,所以中束锚具下混凝土横向峰值拉应力明显小于单束预应力筋单独作用时锚具下局压区混凝土横向峰值拉应力。为合理考虑这种现象,我们权且将密布预应力束的中束锚具下混凝土所受到的周围侧向约束取同,因此中束(根)预应力锚具下的混凝土局部受压计算底面积按图4的思路和方法取用。此时中束预应力锚具下混凝土局部受压时的强度提高系数βl仍按下式计算

l

l A

A

b

=

β

(4)

(2)按“分别计算取和法”计算预应力锚具下混凝土局部受压承载力时,间接钢筋可选用钢筋网片,也可选用螺旋筋,但各束预应力筋对应的螺旋筋不应交叉重叠,且螺旋直径不小于A l所对应的直径d l。当选用钢筋网片作间接钢筋时,A cor 通过对A l“同心、对称、不重叠”的原则扩展而得;当选用螺旋筋作间接钢筋时,A cor仍取螺旋筋内表面范围内的混凝土核心面积。配置间接钢筋的局部受压承载力提高系数βcor仍按下式计算

l

A

A

cor

cor

=

β(5)

Fig.4 Selection method of A b of middle anchorage of ‘sum of each single calculating method’

l 小于局部受压面积相应方向边长时,应将边束预应力锚具下混凝土项局部受压承载力乘以0.9的折减系数,这主要是考虑中束锚具下混凝土受压图5 “分别计算取和法”边束预应力筋锚具下A b 的取法 Fig.5 Selection method of A b of edge anchorage of ‘sum of

each single calculating method’

对于梁端密布预应力束的情况,中束及边束A l 外边缘到0.9,即0.9×0.9=0.81的

(2)关于边束及角束预应力筋锚具下混凝土中(2)和(3)同。

,局压荷载外边缘到端面边缘的距离0.4375的同时作[4],两个试件几何尺寸及垫板布置如图6所示。

计算及试验结果如表2所示,其中D-1、D-2、D-3分别为试件1中束和二边束;D-4、D-5、D-6分别为试件2中束和二边束。

表2 混凝土局压承载力试验值与计算值的比较(Ⅱ) Table 2 Comparison of testing data and calculating data

of local bearing capacity of concrete(Ⅱ) 实测值与计算值的比较束的编号

混凝土轴压强度f c /N-mm -2

破坏荷载实测值N T /kN 计算值N C

/kN N T /N C D-1 32.93 592.9 572.8 1.04 D-2 32.93 416.5 407.3 1.02 D-3 32.93 416.5 407.3 1.02 D-4 32.93 637.0 572.8 1.11 D-5 32.93 495.9 407.3 1.22 D-6 32.93 460.6 407.3 1.13 平均值 1.09 标准差 0.071

变异系数

0.065

注:每个试件上三个局压荷载是同步匀速施加的。

4.3 对分别计算法的评价

由表2的试验结果与计算结果的对比可知,试验值与计算值之比X =N T /N C 的平均值X =1.09,标准差σ=0.071,变异系数δ=0.065。试件1和试件2在密布局压荷载下的混凝土总局部受压承载力(各束锚下局压承载力之和)的试验值分别为1425.9kN 和1593.5kN ,计算值均为1387.4kN 。计算结果与试验结果吻合较好,表明我们所建议的计算密布预应力束锚具下混凝土局部受压承载力的“分别计算取和法”是可行的。

5 结论

(1)应用ANSYS 软件进行分析,得出了密布

“整体计算法”和“分别计算取和法”,

利用已有试验数据,经大量试算归纳而得的,仍有待于经过试验和工程实践的进一步完善和检验。

参 考 文 献

[1] 张吉柱. 密布预应力束锚具下混凝土局部受压承载

力计算方法研究[D]. 哈尔滨工业大学硕士学位论文. 2003.

[2] GB 50010-2002 混凝土结构设计规范[S].

[3] 刘永颐,关建光,周凤濂,王传志. 混凝土和配筋

混凝土的局部承压强度[A]. 建筑科学研究报告[C]. 中国建筑科学研究院, 1982:1-47.

[4] 中国建筑科学研究院结构所,清华大学建工系. 大

吨位预应力束锚固区混凝土局部承压问题的研究[A]. 钢筋混凝土结构研究报告集[C]. 北京:中国建筑工业出版社, 1981:255-288.

柱子承载力计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范7.3)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。

◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2,抗震规范 6.2.2,6.2.3)即: 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的 弯矩设计值之和,如图所示; ——为节点左右梁端截面反时或顺时针方向组合的弯 矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数 计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。 其可按有关公式计算。 ——为柱端弯矩增大系数,一级取 1.4,二级取 1.2,三级取 1.1。

求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于0.15的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数 1.5,1.25,1.15,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4,抗震规范 6.2.5) 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足:

电力电子技术计算题

电力电子技术计算题 1、π/2; 32.1A; 0.707; 2、通过对电压检测,实施对两组反并联晶闸管门极予以控制。例如:输入电压高于10% 时,让VT1、VT2这组反并联的晶闸管的触发脉冲移到180°,使它不输出电压,而让VT3、VT4这组反并联晶闸管的触发脉冲移到0°,使他们分别在正负半周全导通时输出电压降低;当输入电压低于额定值10%时,让VT1、VT2这组反并联晶闸管的触发脉冲移到0°,使他们分别在正负半周全导通。让VT3、VT4反并联晶闸管的触发脉冲移到180°使他们截止,从而使输出电压提高10%,达到稳定输出电压的目的。 3、2.4KW 4、U0=133。3V;I0=6。67A; 5、

U d=117V;I d=23。4A;I dVT=7。8A;I VT=13。5A; 6、①星形接法的硒堆过电压保护; ②三角形接法的阻容过电压保护; ③桥臂上的快速熔断器过电流保护; ④晶闸管的并联阻容过电压保护; ⑤桥臂上的晶闸管串电感抑制电流上升率保护; ⑥直流侧的压敏电阻过电压保护; ⑦直流回路上过电流快速开关保护; VD是电感性负载的续流二极管; L d是电动机回路的平波电抗器; 7、U2φ=94V;KP50—5;I2=44。9A;S2=12。66KV A。 8、133.3V;6。67A。 9、423.8V 没有被磁化。因为在曲折接法时,流过同一相的两段绕组的电流大小相等,方向相反,故变压器铁心内不会被直流磁化。 10、

U d =445.8V 11、整流电动机状态:电流方向从上到下,电压方向上正下负,反电势E 方向上正下 负,Ud 大于E ,控制角的移相范围0°~90°。 逆变发电机状态:电流方向从上到下,电压U d 方向上负下正,发电机电势E 方向上负下正,Ud 小于E ,控制角的移相范围90°~150°。 12、由于采用锯齿波同步触发电路,用NPN 三极管做综合管,故同步电压应滞后于晶 闸管阳极电压180o相位角。并画出矢量图如下:同步变压器的联接组别应选择D/Y=11。 13、输出电压平均值为: πωωωωππππ 22222 023)(sin 22)(sin 21U t td U t td U U d =?? ????+=??

浅析混凝土路面的承载力

浅析混凝土路面的承载力 水泥混凝土(素混凝土)路面是山东地区加油站选用的主要硬化地面形式之一,由于公司部分加油站临近煤矿区或物流区,且车辆超载运输现象也较为普遍和严重,因此很多路面在使用初期就发生了严重的结构损坏,路面的使用寿命大大缩短,严重影响了加油站的经营销售、通行能力、行车安全和投资效益。因此,为解决大载重车辆地区的混凝土地面易破损问题,需要在施工开展前分析此地段的极限车辆荷载与混凝土地面的设计方法。 本文主要从混凝土地面承载力的主要影响因素入手,重点分析各因素对地面造成破坏的原因并根据破坏原因进行简单的数据测算,最后针对各破坏因素的极限值进行承载力比对,确定固定厚度的混凝土路面的极限承载力。 目的是简单清晰的确定混凝土的竖向承载力与混凝土厚度的比例关系。 混凝土地面承载力主要有四个影响因素,分别为:基础承载力,混凝土标号,混凝土厚度,及设计形式。 基础承载力(计算目标值):由于重点分析混凝土路面的承载力情况,且设计院设计的三元结构(15CM黄土垫层、15CM砂石垫层)一般情况下符合基础要求,因此计算中的基础一律按无限宽(刚性)基础进行考虑(根据厚度进行求解)。 混凝土标号:混凝土中的标号与刚度是成正比的即标号越大,混凝土的刚度越大,因此路面选择过低标号的混凝土会导致整体路面的网裂,而选择过高标号的混凝土会导致整体路面的刚度过大,呈现脆性即易整体开裂,因此标号的正确选择也是混凝土路面能否长期保持良好情况的重要因素,所以本文中的混凝土标号一律选用设计院设计的C30标号。 混凝土厚度(一般为18CM-30CM):根据公式分别代入25CM、28CM、30 CM。以25CM厚的C30混凝土为例,C30轴心抗压是20.1Mpa=20.1N/mm2=20.1×1000000N/m2,相当于20. 1×100000千克(五个零,除以10,重力加速度),也就是20.1×100吨,2010吨,即2010 吨/m2,因为是25CM厚混凝土,所以需要乘以0.25,因此推算每立方米的,25CM厚的C30混凝土的设计抗压能力约为502.5吨/m3。(初略计算,C30,厚25cm,最大只能承受63.245吨) 设计形式:由于上述影响因素均对混凝土的抗压进行考虑(即垂直地面方向),因此均按设计院提供的素混凝土方案,未进行配筋处理。 根据上述分析可以看出,素混凝土路面的抗压承载力主要取决于混凝土厚度,因此需要根据已知厚度可以通过公式计算出极限承载力。 Fcd=0.7·βh·Ftd·Um·H Fcd——混凝土最大集中返力; βh——对于厚度小于300mm时,取1; Ftd——轴心抗拉应力(C30取1.39mpa); Um——高度换算比=2·(a+b)+4H,a=20cm,b=60cm(a,b分别为轮迹宽、长); H ——厚度。 带入数值即对应关系: C30混凝土25CM 极限车辆承载力:63.245吨; C30混凝土28CM 极限车辆承载力:74.104吨; C30混凝土30CM 极限车辆承载力:81.732吨。 以上计算式只能计算出素混凝土路面在垂直方向上的极限承载力,但实际路面在对大车进行

柱子承载力计算

柱子承载力计算 Prepared on 22 November 2020

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同(混凝土规范)。如图所示。 即非抗震时: (3-62) (3-63)其中: (3-64)但考虑地震作用后,有两个修正,即: ◆正截面承载力抗震调整系数。 ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2 一、二、三级框架柱端组合的弯矩设计值为: (3-65)一级框架结构及9度各类框架还应满足: (3-66)其中: ——为节点上下柱端截面顺时针或反时针方向组合的弯矩设计值之和,如图所示;

——为节点左右梁端截面反时或顺时针方向组合的弯矩设计值之和的较大者,一级框架节点左右梁端均为负弯矩时,绝对值较小的弯矩应取0; ——为节点左右梁端截面按反时针或顺时针方向采用实配钢筋截面面积和材料标准值,且考虑承载力抗震调整系数计算的正截面抗震受弯承载力所对应的弯矩值之和的较大者。其可按有关公式计算。 ——为柱端弯矩增大系数,一级取,二级取,三级取。 求得节点上下柱端的弯矩设计值之和后,一般情况下可按弹性分析所得的节点上下柱端弯矩比进行分配。 对于顶层柱和轴压比小于的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数,,,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67)一级框架和9度各类框架还应满足: (3-68)

混凝土地坪承载力计算(第一版)

混凝土地坪承载力计算 对于500T吊机地面承载力计算 1.道路构造(1)——对应1#、3#支腿 2.道路基础承载力:本次重点分析混凝土路面的承载力情况及道路下卧层承载力验算。由 原设计单位设计的底基层250厚碎砾石碾压密实,30厚粗砂垫层应该符合道路基础的要求。 3.查表可得C25混凝土参数如下: 轴心抗压强度标准值fck=16.7N/mm2 抗拉强度标准值ftk=1.78N/mm2 抗剪强度ft=4N/mm2 4.假设3.5*2.5*0.3钢板为基础,以道路结构层为持力层,参照《建筑地基基础设计规范》 GB 50007-2011进行近似计算,已知吊车支腿最大荷126t,相当于1260KN,钢板重量 20.6T,相当于206KN。 ①计算混泥土地面附加应力: (1260+206)/2.5*3.5=167.5KN/M2<16700KN/M2 满足抗压要求 ②计算混泥土地面剪切应力: (1260+206)/((2.5+3.5)*2*0.2)=610KN/M2<4000KN/M2 满足抗剪要求

③下卧层承载力验算: 1)已知基础宽度b=2.5M,长度L=3.5M,基础埋深d=0M,持力层厚度 z=0.2+0.03+0.25=0.48M,下卧层承载力取fak=110kpa 2)持力层为混泥土结构,查表取其重度r=24KN/M3 3)按下卧层土性指标,对粉砂夹粉土的地基承载力修正: fa= fak+ηbγ(b-3)+ηdγm(d-0.5)=110kpa 式中:fa——修正后的地基承载力特征值(kPa); fak——地基承载力特征值(kPa),按本规范第 5.2.3 条的原则确定; ηb、ηd——基础宽度和埋深的地基承载力修正系数,按基底下土的类别查表 5.2.4 取值;γ——基础底面以下土的重度(kN/m3),地下水位以下取浮重度;

钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的

两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎 钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm 时,不应大于200mm,当板厚度h﹥150mm时,不应大 于1.5h,且不应大于250mm。板中受力筋间距一般不 小于70mm,由板中伸入支座的下部钢筋,其间距不应 大于400mm,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as不应小于5d。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内), 其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨 度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出 墙边的长度不应小于l1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的 总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上 受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布 钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情 况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向 板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用

电力电子技术试题及答案(1)

《电力电子技术》试卷 一.填空(共15分,1分/空) 1.电力电子技术通常可分为()技术和()技术两个分支。 2.按驱动电路信号的性质可以将电力电子器件分为()型器件和()型器件两类,晶闸管属于其中的()型器件。 3.晶闸管单相桥式全控整流电路带反电动势负载E时(变压器二次侧电压有效值为U ,忽略主电路 2 各部分的电感),与电阻负载时相比,晶闸管提前了电角度δ停止导电,δ称为()角,数量关系为δ=()。 4.三相桥式全控整流电路的触发方式有()触发和()触发两种,常用的是()触发。 5.三相半波可控整流电路按联接方式可分为()组和()组两种。 6.在特定场合下,同一套整流电路即可工作在()状态,又可工作在()状态,故简称变流电路。 7.控制角α与逆变角β之间的关系为()。 二.单选(共10分,2分/题) 1.采用()是电力电子装置中最有效、应用最广的一种过电流保护措施。 A.直流断路器 B. 快速熔断器 C.过电流继电器 2.晶闸管属于()。 A.不可控器件 B. 全控器件 C.半控器件 3.单相全控桥式整流电路,带阻感负载(L足够大)时的移相范围是()。 A.180O B.90O C.120O 4.对三相全控桥中共阴极组的三个晶闸管来说,正常工作时触发脉冲相位应依次差()度。 A.60 B. 180 C. 120 5.把交流电变成直流电的是()。 A. 逆变电路 B.整流电路 C.斩波电路 三.多选(共10分,2分/题) 1.电力电子器件一般具有的特征有。 A.所能处理电功率的大小是其最重要的参数 B.一般工作在开关状态 C.一般需要信息电子电路来控制 D.不仅讲究散热设计,工作时一般还需接散热器 2.下列电路中,不存在变压器直流磁化问题的有。 A.单相全控桥整流电路 B.单相全波可控整流电路 C.三相全控桥整流电路 D.三相半波可控整流电路 3.使晶闸管关断的方法有。 A.给门极施加反压 B.去掉阳极的正向电压 C.增大回路阻抗 D.给阳极施加反压 4.逆变失败的原因有。 A.触发电路不可靠 B.晶闸管发生故障 C.交流电源发生故障 D.换相裕量角不足 5.变压器漏抗对整流电路的影响有。 A.输出电压平均值降低 B.整流电路的工作状态增多 C.晶闸管的di/dt减小 D.换相时晶闸管电压出现缺口 四.判断(共5分,1分/题) 1.三相全控桥式整流电路带电阻负载时的移相范围是150O。() 2.晶闸管是一种四层三端器件。()

(新)搅拌站基础承载力验算书

拌合站基础计算书 梁场混凝土拌合站,配备HZS120拌合机两套,每套搅拌楼设有5个储料罐,单个罐在装满材料时均按照200吨计算。经过现场开挖检查,在地表往下0.5~3米均为粉质黏土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.18 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度Pa,W=V2/1600 V—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据厂家提供的拌合站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为8.19m圆的1/4的范围,宽4.42m,基础浇注厚度为

2m。基底处理方式为:压路机碾压两遍,填筑30cm建筑砖碴、混凝土块并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为2米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=2000KN,水泥罐整体基础受力面积为95.48m2,基础浇注C25混凝土,自重P’=4774KN,承载力计算示意见下图: 粉质黏土 根据历年气象资料,考虑最大风力为28.4m/s(10级风),风的动压力P2=V2/1600=504.1N/m,储蓄罐顶至地表面距离为20米,罐身长17m,5个罐基本并排竖立,受风面积306m2,在最不利风力下计算基础的抗倾覆性。计算示意图如下 P2 罐与基础自重P1+P’ 3.储料罐基础验算过程 3.1 地基承载力 根据上面公式,已知P+P’=14774KN,计算面积A=95.48×106mm2, P/A= 14774KN/95.48×106mm2=0.15MPa ≤σ0=0.55 MPa 地基承载力满足承载要求。

混凝土柱计算

轴心受压普通箍筋柱的正截面受压承载力计算 一般把钢筋混凝土柱按照箍筋的作用及配置方式的不同分为两种:配有纵向钢筋和 普通箍筋的柱,简称普通箍筋柱;配有纵筋和螺旋式(或焊接环式)箍筋的柱,简 称螺旋箍筋柱。 最常见的轴心受压柱是普通箍筋柱,见右图。纵筋的作用是提高柱的承载力,减小 构件的截面尺寸,防止因偶然偏心产生的破坏,改善破坏时构件的延性和减小混凝土的徐变变形。箍筋能与纵筋形成骨架,并防止纵筋受力后外凸。 1.受力分析和破坏形态 1 )短柱的受力分析和破坏形态: 配有纵筋和箍筋的短柱,在轴心荷载作用下,整个截面的应变基本上是均匀分布的。当荷载较小时,混凝土和钢筋都处于弹性阶段。当荷载较大时,由于混凝土塑性变形的发展,压缩变形增加的速度快于荷载增长速度。同时,在相同荷载增量下,钢筋的压应力比混凝土的压应力增加得快,见左图。随着荷载的继续增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏,见右图。 试验表明,素混凝土棱柱体构件达到最大压应力值时的压应变值约为0.0015 ~0. 002 ,而钢筋混凝土短柱达到应力峰值时的压应变一般在0.0025 ~0.0035 之间。其主要原 因是纵向钢筋起到了调整混凝 土应力的作用,使混凝土的塑性 性质得到了较好的发挥,改善了 受压破坏的脆性性质。 在计算时,以构件的压应变达到 0.002 为控制条件,认为此时混 凝土达到了棱柱体抗压强度 f c,相应的纵筋应力值 ;对于HRB400 级、HRB335 级、HPB235 级和RRB400 级热轧钢筋已达到屈服强度。而对于屈服强度或条件屈服强度大于400N /mm2的钢筋,在计算 f y'时,

第6章 混凝土梁承载力计算原理

6 混凝土梁承载力计算原理 6.1 概述 本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。钢筋混凝土梁是由钢筋和混凝土两种材料所组成,且混凝土本身是非弹性、非匀质材料。抗拉强度又远小于抗压强度,因而其受力性能有很大不同。研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。建筑工程中梁常用的截面形式如图6-1所示。 6.2 正截面受弯承载力 6.2.1 材料的选择与一般构造 1)截面尺寸 为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸: 梁宽一般为100m m、120m m、 150m m、180m m、 200m m、220m m、250和300m m,以上按 b/,50m m模数递增。梁高200~800m m,模数为50m m,800m m以上模数为100m m。梁高与跨度只比l h/,主梁为1/8~1/12,次梁为1/15~1/20,独立梁不小于1/15(简支)和1/20(连续);梁高与梁宽之比b 在矩形截面梁中一般为2~2.5,在T形梁中为2.5~4.0。 2)混凝土保护层厚度 为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。混凝土保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。具体应符合下表规定。 表6-1 混凝土保护层最小厚度 注:(1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。 (2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。 (3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值采用。 (4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。 (5)处于二类环境中的悬臂板,其上表面应另作水泥砂浆保护层或采取其它保护措施。

混凝土基础承载力计算

混凝土基础承载力计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

浅析混凝土路面的承载力水泥混凝土(素混凝土)路面是山东地区加油站选用的主要硬化地面形式之一,由于公司部分加油站临近煤矿区或物流区,且车辆超载运输现象也较为普遍和严重,因此很多路面在使用初期就发生了严重的结构损坏,路面的使用寿命大大缩短,严重影响了加油站的经营销售、通行能力、行车安全和投资效益。因此,为解决大载重车辆地区的混凝土地面易破损问题,需要在施工开展前分析此地段的极限车辆荷载与混凝土地面的设计方法。 本文主要从混凝土地面承载力的主要影响因素入手,重点分析各因素对地面造成破坏的原因并根据破坏原因进行简单的数据测算,最后针对各破坏因素的极限值进行承载力比对,确定固定厚度的混凝土路面的极限承载力。 目的是简单清晰的确定混凝土的竖向承载力与混凝土厚度的比例关系。 混凝土地面承载力主要有四个影响因素,分别为:基础承载力,混凝土标号,混凝土厚度,及设计形式。 基础承载力(计算目标值):由于重点分析混凝土路面的承载力情况,且设计院设计的三元结构(15CM黄土垫层、15CM砂石垫层)一般情况下符合基础要求,因此计 算中的基础一律按无限宽(刚性)基础进行考虑(根据厚度进行求解)。 混凝土标号:混凝土中的标号与刚度是成正比的即标号越大,混凝土的刚度越大,因此路面选择过低标号的混凝土会导致整体路面的网裂,而选择过高标号的混凝土会导致整体路面的刚度过大,呈现脆性即易整体开裂,因此标号的正确选择也是混凝土路面能否长期保持良好情况的重要因素,所以本文中的混凝土标号一律选用设计院设计的 C30标号。

电力电子技术复习题答案

电力电子技术复习题答 案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第二章: 1.晶闸管的动态参数有断态电压临界上升率du/dt和通态电流临界上升率等, 若du/dt过大,就会使晶闸管出现_ 误导通_,若di/dt过大,会导致晶闸管_损坏__。 2.目前常用的具有自关断能力的电力电子元件有电力晶体管、可关断晶闸管、 功率场效应晶体管、绝缘栅双极型晶体管几种。简述晶闸管的正向伏安特性答: 晶闸管的伏安特性 正向特性当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。 如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。 随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。 如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。 3.使晶闸管导通的条件是什么 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 4.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶 闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于半控型器件的是 SCR 。 5.晶闸管的擎住电流I L 答:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。 6.晶闸管通态平均电流I T(AV)

答:晶闸管在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。 7.晶闸管的控制角α(移相角) 答:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。 8.常用电力电子器件有哪些 答:不可控器件:电力二极管。 半控型器件:晶闸管。 全控型器件:绝缘栅双极晶体管IGBT,电力场效应晶体管(电力MOSFET),门极可关断晶闸管(GTO),电力晶体管。 9.电力电子器件有几种工作状态(电力电子器件有哪四种工作状态) 答:四种,即开通、截止、反向击穿、正向击穿。 10.维持晶闸管导通的条件是什么怎样才能使晶闸管由导通变为关断 答:维持晶闸管导通的条件是晶闸管的电流大于使晶闸管维持导通所必需的最小电流。 晶闸管由导通变为关断:去掉正向电压,施加反压,使晶闸管的电流低于维持电流。 11.简述晶闸管的正常工作时的特性。 答: 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶

塔吊基础承载力计算书

塔吊基础承载力计算书 编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。 地质报告中风化泥岩桩端承载力为P=220Kpa。按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。 一、塔吊基础承载力验算 1、单桩桩端承载力为: F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T 2、四根桩端承载力为: 4×F1=4×24.87=99.48T 3、塔吊重量51T(说明书中参数) 基础承台重量:5.2×5.2×1.3×2.2=77.33T 塔吊+基础承台总重量=51+77.33=128.33T 4、基础承台承受的荷载 F2=5.2×5.2×4.0=108.16T 5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T 所以塔吊基础承载力满足承载要求。 二、钢筋验算 桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。 验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。 Fc=14.3/mm2(砼轴心抗压强度设计值) Acor=π×r2/4(构件核心截面积) =π×11002/4=950332mm2 fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值) AS’=23×π×r2/4=23×π×162/4 =4624mm2(全部纵向钢筋截面积) x=1.0(箍筋对砼约束的折减系数,50以下取1.0) fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值) dCor=1100mm (箍筋内表面间距离,即核心截面直径) Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积) S螺旋箍筋间距200mm A’sso=πdCorAssx/s =π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式 N≤0.9(fcAcor+fy’AS’+2xfyAsso)=0.9(14.3×950332+300×4624+2×1.0×210×867.65)=15341360.6N 248.7KN<12382.87KN 经验算钢筋混凝土抗拉满足要求。

柱子承载力计算

三、框架柱承载力计算 (一)正截面偏心受压承载力计算 柱正截面偏心受压承载力计算方法与《混凝土基本原理》中相同图所示。3规范7.)。如(混凝土即非抗震时: (3-62) (3-63) 其中: (3-64) 但考虑地震作用后,有两个修正,即: 数。调整系抗正截面承载力震◆ ◆保证“强柱弱梁”,对柱端弯矩设计值按梁端弯矩来调整。(混凝土规范11.4.2,抗震规范6.2.2, 6.2.3)即: 一、二、三级框架柱端组合的弯矩设计值为: (3-65) 一级框架结构及9度各类框架还应满足: 专业文档供参考,如有帮助请下载。. )66(3-:其中矩的合弯针方向组截面顺时针或反时下——为节点上柱端示如;图所设计值之和,设弯矩组合的时反时或顺针方向——为节点左右梁端截面值对时,绝弯梁端均为负矩大和的较者,一级框架节点左右计值之;应取0较小的弯矩配实 采用顺时针方向针点左右梁端截面按反时或——为节正算的整系数计调,且考虑承载力抗震积钢筋截面面和材料标准值公关可其按有和的较大者。之力截面抗震受弯承载所对应的弯矩值。式计算1。三级取1.1.取1.4,二级取2,级系弯——为柱端矩增大数,一分弹性可情况下按般之矩柱节得点上下端的弯设计值和后,一求。分比进行配矩端下点的所析得节上柱弯

专业文档供参考,如有帮助请下载。. 对于顶层柱和轴压比小于0.15的柱,可不调整,直接采用内力组合所得的弯矩设计值。 当反弯点不在柱的层高范围内时,柱端截面组合的弯矩设计值可直接乘以上述柱端弯矩增大系数。 一、二、三级框架底层柱下端截面组合的弯矩设计值,应分别乘以增大系数1.5,1.25,1.15,且底层柱纵筋宜按上下端的不利情况配置。 (二)斜截面受剪承载力计算 1、柱剪力设计值(混凝土规范11.4.4,抗震规范6.2.5) 为了保证“强剪弱弯”,柱的设计剪力应调整。 一、二、三级的框架柱的剪力设计值按下式调整: (3-67) 一级框架和9度各类框架还应满足: (3-68) 其中: ——柱端截面组合的剪力设计值; ——考虑地震作用组合,且经调整后的框架柱上、下端弯矩设计值,分别按顺时针和反时针进行计算,取其中较大者; 专业文档供参考,如有帮助请下载。.配按实时顺针方向下端截面反时针或——分别为柱上、面正截整系数的虑承载力抗震调标钢筋面积、材料强度准值,且考者。的较大且取两个方向矩抗震受弯承载力所对应的弯,。取1.11.2,三级级大系数,一级取1.4,二取——柱剪力增,45.112,7.范公式(混凝土规7.5.算截2、柱斜面受剪承载力计0)1,1.4.111.4.9 面截规范斜此-25%,因5受复加载将使梁的剪承载力降低1%反因。8倍作用时的0.载承受剪载力设计值取静:震时非抗 9)(3-6时:抗震 )-70(3时:心受拉)偏拉柱当中出现力(即:抗震时非 )1(3-7时:震抗 专业文档供参考,如有帮助请下载。. (3-72) 其中: 取,M宜取柱上下端考虑地震作比——计算剪跨,可用组合的弯矩设计值的较大者,V取与M 对应的剪力设计值。当框。取,可小内弯点在柱高范围时反框结架构中的 架柱的3。大于3时取取1.于0时,1.0,且压为力当力轴对值设剪—取,N

电力电子技术练习题1教材

电力电子技术习题 一、可控整流部分 1、如某晶闸管的正向阻断重复峰值电压为745V,反向重复峰值电压为825V,则该晶闸管的额定电压应为()。 A、700V B、750V C、800V D、850V 2、单相半波可控整流电阻性负载电路中,控制角α的最大移相范围是( ) A、0o-90° B、0o-120° C、0o-150° D、0o-180° 3、三相全控桥式整流电路带电阻负载,当触发角α=0o时,输出的负载电压平均值为()。 A、0.45U2 B、0.9U2 C、1.17U2 D、 2.34U2 4、三相全控整流桥电路,如采用双窄脉冲触发晶闸管时,下图中哪一种双窄脉冲间距相

隔角度符合要求。请选择。 5、单相半波可控整流电路,晶闸管两端承受的最大电压为()。 A、U2 B、2U2 C、22U D、 6U 2 6、单相桥式整流电路的同一桥臂两只晶闸管的触发脉冲应相差度。 A、60° B、180° C、360° D、120° 7、在三相半波可控整流电路中,当负载为电感性时,负载电感量越大,则() A. 输出电压越高 B.输出电压越低 C.导通角越小 D. 导通角越大

8、在三相半波可控整流电路中,每只晶闸管的最大导通角为(D) A. 30° B. 60° C. 90° D. 120° 9、三相半波可控整流电路由(A)只晶闸管组成。 A、3 B、5 C、4 D、2 10、三相半波可控整流电路电阻负载的控制角α移相范围是(A)。 A、0~90° B、0~100° C、0~120° D、0~150° 11、三相半波可控整流电路大电感负载无续流管,每个晶闸管电流平均值是输出电流平均值的(D)。 A、1/3 B、1/2 C、1/6 D、1/4 12、三相半控桥式整流电路由(A)晶闸管和三只功率二极管组成。 A、四只 B、一只 C、二只 D、三只 13、三相半控桥式整流电路电阻性负载时,控

电力电子技术试题及其规范标准答案

《电力电子技术》试卷答案 一、填空(每空1分,36分) 1、请在正确的空格内标出下面元件的简称: 电力晶体管GTR;可关断晶闸管GTO;功率场效应晶体管MOSFET;绝缘栅双极型晶体管IGBT ;IGBT是MOSFET和GTR的复合管。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 3、多个晶闸管相并联时必须考虑均流的问题,解决的方法是串专用均流电抗器。 4、在电流型逆变器中,输出电压波形为正弦波,输出电流波形为方波? 。 5、型号为KS100-8的元件表示双向晶闸管晶闸管、它的额定电压 为800V伏、额定有效电流为100A。 6、180°导电型三相桥式逆变电路,晶闸管换相是在同一桥臂上的上、下二个元件之间进行;而120o导电型三相桥式逆变电路,晶闸管换相是在不同桥臂上的元件之间进行的。 7、当温度降低时,晶闸管的触发电流会增加、正反向漏电流会下降;当温度升高时,晶闸管的触发电流会下降、正反向漏电流会增加。 8、在有环流逆变系统中,环流指的是只流经?逆变电源、逆变桥而不流经负载的电流。环流可在电路中加电抗器来限制。为了减小环流一般采控用控制角α大于β的工作方式。 9、常用的过电流保护措施有快速熔断器?、串进线电抗器、接入直流快速开关、控制快速移相使输出电压下降。(写出四种即可) 10、双向晶闸管的触发方式有Ⅰ+、Ⅰ-、Ⅲ+、Ⅲ- 四种。 二、判断题,(每题1分,10分)(对√、错×) 1、在半控桥整流带大电感负载不加续流二极管电路中,电路出故障时会出现失控现 象。(√) 2、在用两组反并联晶闸管的可逆系统,使直流电动机实现四象限运行时,其中一组逆变器 工作在整流状态,那么另一组就工作在逆变状态。(×) 3、晶闸管串联使用时,必须注意均流问题。(×) 4、逆变角太大会造成逆变失败。(×) 5、并联谐振逆变器必须是略呈电容性电路。(√) 6、给晶闸管加上正向阳极电压它就会导通。(×) 7、有源逆变指的是把直流电能转变成交流电能送给负载。(×) 8、在单相全控桥整流电路中,晶闸管的额定电压应取U2。(×) 9、在三相半波可控整流电路中,电路输出电压波形的脉动频率为300Hz。(×) 10、变频调速实际上是改变电动机内旋转磁场的速度达到改变输出转速的目的。? (√) 三、选择题(每题3分,15分) 1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差A度。

浅基础地基承载力验算部分计算题

一、计算题 图示浅埋基础的底面尺寸为6.5m×7m,作用在基础上的荷载如图中所示(其中竖向力为主要荷载,水平力为附加荷载)。持力层为砂粘土,其容许承载力[ ]=240kPa。试检算地基承载力、偏心距、倾覆稳定性是否满足要求。 (提示:要求倾覆安全系数K0≥1.5) [本题15分] 参考答案: 解:

(1) 代入后,解得: ,满足要求 (2),满足要求 (3), 满足要求 二、图示浅埋基础,已知主要荷载的合力为N=5.0×103kN,对应的偏心距e=0.3m。持力层的容许承载力为420kPa,现已确定其中一边的长度为4.0m (1)试计算为满足承载力的要求,另一边所需的最小尺寸。 (2)确定相应的基底最大、最小压应力。 [本题12分] 参考答案:

解:由题,应有 (2) 三、图示浅埋基础的底面尺寸为6m×3m,已知作用在基础上的主要荷载为:竖向力N=6×1 03kN,弯矩M=1.5×102kNm。此外,持力层的容许承载力。试计算: (1)基底最大及最小压应力各为多少?能否满足承载力要求? (2)其偏心距是否满足e≤ρ的要求? (3)若N不变,在保持基底不与土层脱离的前提下,基础可承受的最大弯矩是多少?此时基底的最大及最小压应力各为多少? [本题12分] 参考答案:

解:(1) (2) (3) 四、某旱地桥墩的矩形基础,基底平面尺寸为a=7.5m,b=7.4m,四周襟边尺寸相同,埋置深度h=2m,在主力加附加力的组合下,简化到基底中心,竖向荷载N=6105kN,水平荷载H=273.9kN,弯矩M=3770.67kN.m。试根据图示荷载及地质资料进行下列项目的检算: (1)检算持力层及下卧层的承载力; (2)检算基础本身强度; (3)检算基底偏心距,基础滑动和倾覆稳定性。

电力电子技术计算题

可编辑 六、分析题(本题共2小题,共20分) 1、三相全控桥阻感负载,主回路整流变压器的接法是△/Y -5,采用NPN 管的锯齿波触发器,要求在整流与逆变状态运行。同步变压器二侧电压经R-C 滤波器滤波后(滞后角为30°)接到触发电路。试问:同步变压器的的接法为?画出主回路整流变压器和同步变压器接法。 (要求给出矢量分析图)(10分) 解:∵ 有300R-C 滤波环节 ∴ 同步变压器接线为Y/Y4-10 四、作图题(共 2 小题,每题12分,共24分) 1、三相全控桥,阻感负载,主回路整流变压器的接法是D,y5,采用NPN 管的锯齿波触发器,要求在整流与逆变状态运行。同步变压器二侧电压经R-C 滤波器滤波后(滞后角为30°)接到触发电路。同 U A U a U a △ △Y/Y-1U a

步变压器的的接法为Y/Y-10,4接法,如下图所示,选择晶闸管的同步电压。(要给出分析过程,分析依据) 同步变压器的钟点数为Y/Y-10,4 可编辑

可编辑 2、电路与波形如图所示。(1)若在t1时刻合上K ,在t2时刻断开K ,画出负载电阻R 上的电压波形;(2)若在t1时刻合上K ,在t3时刻断开K ,画出负载电R 上的电压波形(ug )宽度大于360 度。 (a )电路图 (b )输入电压u 2的波形 五、计算题(共 1 小题,共20分) 1、电路如图所示,单相全控桥式整流电路接大电感负载,R=4Ω,U 2=220V 。

(1)触发角为60°时,(a) 试求U d、I d、晶闸管电流平均值I dVT、晶闸管电流有效值I VT、变压器副边电流有效值I2;(b)作出u d、i d、i VT2、i2的波形图(图标清楚,比例适当)。 1、(1) (a)Ud=0.9U2cosα=0.9×220×cos600=99V(1分) Id=Ud/R=99/4=24.75A(1分) I2=Id=24.75A (1分) IdVT=1800/3600×Id=24.75/2=13.38A(1分) IVT=(2分) (b)波形如图1所示(3分) (2)当负载两端接有续流二极管时,(a)试求U d、I d、I dVT、I VT、I VD、I dVD、I2;(b)作出u d、i d、i VT2、i VD、i2的波形图(图标清楚,比例适当)。 (2)(a)Ud=0.9U2(1+cosα)/2=0.9×220×(1+cos600)/2=148.5V(1分) Id=Ud/R=148.5/4=37.13A IdVT=(1800-α)/3600×Id=(1800-600)/3600×37.13=12.38A(1分) (1分) 可编辑

电力电子技术习题及答案

电力电子技术习题集 习题一 1. 试说明什么是电导调制效应及其作用。 2. 晶闸管正常导通的条件是什么,导通后流过的电流由什么决定晶闸管由导通变为关断的条件是什么,如何实现 3. 有时晶闸管触发导通后,触发脉冲结束后它又关断了,是何原因 4. 图1-30中的阴影部分表示流过晶闸管的电流波形,其最大值均为I m ,试计算各波形的电流平均值、有效值。如不考虑安全裕量,额定电流100A 的晶闸管,流过上述电流波形时,允许流过的电流平均值I d 各位多少 (f) 图1-30 习题1-4附图 5. 在图1-31所示电路中,若使用一次脉冲触发,试问为保证晶闸管充分导通,触发脉冲宽 度至少要多宽图中,E =50V ;L =;R =; I L =50mA (擎住电流)。 图1-31习题1-5附图 图1-32习题1-9附图 6. 为什么晶闸管不能用门极负脉冲信号关断阳极电流,而GTO 却可以 7. GTO 与GTR 同为电流控制器件,前者的触发信号与后者的驱动信号有哪些异同 8. 试比较GTR 、GTO 、MOSFET 、IGBT 之间的差异和各自的优缺点及主要应用领域。 9. 请将VDMOS (或IGBT )管栅极电流波形画于图1-32中,并说明电流峰值和栅极电阻有 何关系以及栅极电阻的作用。 10. 全控型器件的缓冲吸收电路的主要作用是什么试分析RCD 缓冲电路中各元件的作用。 11. 限制功率MOSFET 应用的主要原因是什么实际使用时如何提高MOSFET 的功率容量 习题二

1.具有续流二极管的单相半波可控整流电路,带阻感性负载,电阻为5,电感为,电源电压的有效值为220V,直流平均电流为10A,试计算晶闸管和续流二极管的电流有效值,并指出晶闸管的电压定额(考虑电压2-3倍裕度)。 2.单相桥式全控整流电路接电阻性负载,要求输出电压在0~100V连续可调,输出电压平均值为30 V时,负载电流平均值达到20A。系统采用220V的交流电压通过降压变压器供电,且晶闸管的最小控制角αmin=30°,(设降压变压器为理想变压器)。试求: (1)变压器二次侧电流有效值I2; (2)考虑安全裕量,选择晶闸管电压、电流定额; (3)作出α=60°时,u d、i d和变压器二次侧i2的波形。 3.试作出图2-8所示的单相桥式半控整流电路带大电感负载,在α=30°时的u d、i d、i VT1、i VD4的波形。并计算此时输出电压和电流的平均值。 4.单相桥式全控整流电路,U2=100V,负载中R=2 ,L值极大,反电动势E=60V,当α=30°时,试求: (1)作出u d、i d和i2的波形; (2)求整流输出电压平均值U d、电流I d,以及变压器二次侧电流有效值I2。 5. 某一大电感负载采用单相半控桥式整流接有续流二极管的电路,负载电阻R=4Ω,电源电 压U2=220V,α=π/3,求: (1) 输出直流平均电压和输出直流平均电流; (2) 流过晶闸管(整流二极管)的电流有效值; (3) 流过续流二极管的电流有效值。 6.三相半波可控整流电路的共阴极接法和共阳极接法,a、b两相的自然换相点是同一点吗如果不是,它们在相位上差多少度试作出共阳极接法的三相半波可控的整流电路在α=30°时的u d、i VT1、u VT1的波形。 7. 三相半波可控整流电路带大电感性负载,α=π/3,R=2Ω,U2=220V,试计算负载电流I d, 并按裕量系数2确定晶闸管的额定电流和电压。 8.三相桥式全控整流电路,U2=100V,带阻感性负载,R=5 ,L值极大,当α=60°,试求:(1)作出u d、i d和i VT1的波形; (2)计算整流输出电压平均值U d、电流I d,以及流过晶闸管电流的平均值I dVT和有效值 I VT; (3)求电源侧的功率因数; (4)估算晶闸管的电压电流定额。 9.三相桥式不控整流电路带阻感性负载,R=5 ,L=∞,U2=220V,X B= ,求U d、I d、I VD、I2和γ的值,并作出u d、i VD1和i2的波形。 10.请说明整流电路工作在有源逆变时所必须具备的条件。 11.什么是逆变失败如何防止逆变失败 12. 三相全控桥变流器,已知L足够大、R=Ω、U2=200V、E M= -300V,电动机负载处于发电制 动状态,制动过程中的负载电流66A,此变流器能否实现有源逆变求此时的逆变角β。13.三相全控桥变流器,带反电动势阻感负载,R=1 ,L=∞,U2=220V,L B=1mH,当E M =-400V,β=60°时求U d、I d和γ的值,此时送回电网的有功功率是多少 14.三相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波其中最大的是哪一次变压器二次电流中含有哪些次数的谐波其中主要的是哪几次 15.试计算第4题中i2的3、5、7次谐波分量的有效值I23、I25、I27,并计算此时该电路的输

相关文档
相关文档 最新文档