文档库 最新最全的文档下载
当前位置:文档库 › 生物质直燃发电的新技术链条炉排锅炉

生物质直燃发电的新技术链条炉排锅炉

什么才是真正的生物质锅炉

什么才是真正的生物质锅炉? 高温气化、裂解燃烧生物质锅炉。其原理是先利用生物质气化,把生物质转化成可燃气体,之后生物质燃气再经过燃烧,用于产生热水、蒸汽或者加热导热油。本设备特点是气化和燃烧在微秒级的时间内,几乎同时进行,此燃烧方式目前在全球此行业唯一。 高温气化生物质锅炉采用倾斜布置炉排,炉排下采用均布风装置,可以根据需要调节各段送风量,炉排上采用绝热燃烧装置,燃料由前部液压送料系统送入。启炉时,利用外加热源(如木材、报纸等)将燃烧室出料口部分点燃,待加热到800℃以上较高温度后,再利用送料机构将物料慢慢送入燃烧室,这样表面的燃料在高温下快速气化燃烧,由于是绝热燃烧,燃烧室温度较高,燃烧室的温度可根据需要调整,燃烧产生的高温一部分用来维持燃烧室的高温以保证高温热解气化燃烧反应的连续进行,另一部分经出火口送到换热器作功。燃烬的灰渣在物料的推动下进入下部的除渣机除到外面。 之所以节能原因是:绝热控制技术+超高温气化技术+恒定高温燃烧技术+水管换热(非水火管)=燃烧干净=相对节能,技术优秀、成熟,运行稳定、免维护,非常适用于工业。 优点:

▲由于生物质高温气化炉产生的是生物质燃气,而生物质直燃锅炉产生的是高温的烟气,故生物质气化锅炉比生物质直燃锅炉粉尘含量、烟尘含量更低: ▲生物质高温气化炉,把生物质转换成燃气的同时,在绝热腔内进行高温燃烧,所以生物质高温气化锅炉比生物质直燃锅炉效率平均高达20%以上; ▲生物质高温气化锅炉的主体形式采用一体式锅炉,所以相对于生物质直燃锅炉具有占地小,系统简便的优点; ▲本生物质气化锅炉的既可以采用直接的生物质原料,也可以采用生物质块及生物质颗粒,并且生物质气化锅炉具有效率高,无烟等特点。 主要技术参数:

链条锅炉的常见故障及维修方法

链条锅炉的常见故障及维修方法 摘要链条炉排能够控制煤层厚度和自行冷却的结构特点,锅炉的燃烧工况稳定,热效率较高,运行操作方便,劳动强度低,烟尘排放浓度较低等优点。在使用时应该加强点检,及时发现问题及时处理。本文针对链条炉排卡住停转、燃烧室炉墙及吊璇损坏、炉排面上燃烧不均匀等故障,进行原因分析,提出具体的维修方法。 关键词链条锅炉;运行故障;维修方法 链条锅炉是机械化程度较高的一种层燃炉。结构比较简单、制造和安装工艺要求不高,炉排不漏煤,因其炉排类似于链条式履带而得名,是工业锅炉中使用较广泛的一种炉型。链条的运行从头是收热和吸热区,在中段起煤释放出的热量,基本上对效益帮助不大。因此布煤、厚度、链条速度也很重要。下面就谈谈10 t 链条锅炉本体或辅机常发生的一些故障及排除故障的方法。 1链条锅炉的常见故障 1.1链条炉排卡住停止转动 链条锅炉炉排是转动的燃烧设备,由于工作条件不良,极易发生卡住停转现象。在日常应用中炉排的故障较多,维修量大,影响着锅炉的正常使用。发生故障时表现为:电动机电流突然增大,炉排安全弹簧跳动或保险离合器动作,发出不正常的撞击声。锅炉材质制造质量是造成炉排故障的重要原因。链条炉排两侧的链条调整螺钉调整不当,造成左右两侧链条长短不一,炉排前后轴的平整度影响着炉排行进阻力大小及应力均匀程度,易造成炉排跑偏、断片。炉排片折断,一端露出炉排面,当行至挡渣板处有时被挡渣板尖端阻挡;有时炉排片一整片脱落,当行至挡渣板处,使挡渣板尖端下沉顶住炉排。有碍炉排的正常运转,严重时会卡住或拉断炉排。例如:一台10 t/h锅炉链齿误差达12 mm,锅炉运行中炉排经常大面积撕裂,炉排轴弯曲,炉排两侧链条被煤中的金属等杂物卡住,链条炉排停止运转。 1.2链条锅炉燃烧室炉墙及吊璇损坏 炉墙的常见故障有结焦、裂纹、倾斜、砖块松动,局部脱落,炉管穿墙处被硬物卡死和密封石棉绳烧坏等。链条锅炉正常工作时,如果发生炉外空气进入炉内,使烟气中的二氧化碳含量降低,含氧量升高,燃烧室变正压;锅炉支架或墙皮发热甚至烧红,这说明炉墙有较多的裂缝、严重的漏风。炉墙内衬砖破裂或局部脱落,可能把燃烧室炉墙及吊璇损坏。产生的原因是:修后烘炉不当,升火或停炉方式不正确;耐火材料质量不良,施工质量差;设计不合理,炉墙阻碍受热部件正常膨胀,或热强度过高,吊璇冷却不充分;炉墙严重磨损,其磨损厚度超过原厚度的1/3,致使锅炉经常在正压下运行,炉膛温度过高,或炉墙挂焦严重,而打焦时将水喷到炉墙上。

锅炉基础知识(相关知识)

1、锅炉额定蒸发量:蒸汽锅炉在额定蒸汽参数,额定给水温度,使用设计燃料并保证效率时所规定的蒸汽产量。 2、锅炉最大连续蒸发量:蒸汽锅炉在额定蒸汽参数,额定给水温度和使用设计燃料长期连续运行时所能达到的最大蒸发量。 3、锅炉额定蒸汽参数:过热器出口处额定蒸汽压力和额定蒸汽温度。 4、锅炉事故率:锅炉事故率=[事故停用小时数/(运行小时数+事故停用小时数)]×100% 5、锅炉可用率:锅炉可用率=[(运行总小时数+备用总小时数)/统计期间总时数]×100% 6、锅炉热效率:锅炉每小时的有效利用热量占输入锅炉全部输入热量的百分数。 7、锅炉钢材消耗率:锅炉单位蒸发量所用钢材的吨数。 8、连续运行小时数:两次检修之间运行的小时数。 1、发热量:单位质量或容积的燃料完全燃烧时所放出的热量。 2、高位发热量:单位量燃料完全燃烧,而燃烧产物中的水蒸汽全部凝结成水时所放出的全部热量,称为燃料的高位发热量。 3、低位发热量:单位燃料完全燃烧,而燃烧产物中的水蒸汽全部保持蒸汽状态时所放出的全部热量。 4、折算成分:指燃料对应于每4190kJ/kg收到基低位发热量的成分 5、标准煤:规定收到基低位发热量Qarnet=29270kJ/kg的煤。 6、煤的挥发分:失去水分的煤样在规定条件下加热时,煤中有机质分解而析出的气体。 7、油的闪点:在一定条件下加热液体燃料,液体表面上的蒸汽与空气的混合物在接触明火时发生短暂的闪火而又随即熄灭时的最低温度。 8、煤灰熔融性:在规定条件下随加热温度的变化灰的变形、软化、流动等物理状态的变化特性。 1、燃烧:燃料中可燃质与氧在高温条件下进行剧烈的发光放热的化学反应过程。 2、完全燃烧:燃烧产物中不再含有可燃物的燃烧。 3、不完全燃烧:燃烧产物中仍然含有可燃质的燃烧。 4、理论空气量:1kg收到基燃料完全燃烧而又没有剩余氧存在时,燃烧所需要的空气量。 5、过量空气系数:燃料燃烧时实际供给的空气量与理论空气量之比。即α=VK/V0 6、漏风系数:相对于1kg收到基燃料漏入的空气量ΔVK与理论空气量V0之比。 7、理论烟气量:按理论空气量供给空气,1kg燃料完全燃烧时生成的烟气量。 8、烟气焓:1kg固体或液体燃料所生成的烟气在等压下从0℃加热到θ℃所需要的热量。 9、烟气成分:烟气中某种气体的分容积占干烟气容积的百分数。 一、名词解释 1、锅炉热平衡:在稳定工况下,输入锅炉的热量与锅炉输出热量的相平衡关系。 2、最佳过量空气系数:(q2+q3+q4)之和为最小时的过量空气系数。 3、排烟热损失q2:锅炉中排出烟气的显热所造成的热损失。 4、机械不完全燃烧损失q4:由于飞灰、炉渣和漏煤中的固体可燃物未放出其燃烧热所造成的损失。 5、化学未完全燃烧损失q3:锅炉排烟中含有残余的可燃气体未放出其燃烧热所造成的损失。

链条炉在实际燃烧操作中的配风方法示范文本

链条炉在实际燃烧操作中的配风方法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

链条炉在实际燃烧操作中的配风方法示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 链条炉燃烧操作原则配风方法有三种,即尽早配风 法,推迟配风法和强风后吹法。 1、尽早配风法 这种方法是根据燃料层对空气的消耗能力尽早配风。 在燃烧前期燃料放出大量的挥发物,此时就开始送人大量 空气,并且随着燃料温度的提高和燃烧的加强,尽可能加 大送风,直至燃尽。以五个风室为例:第一风室按燃煤挥 发分的高低适量送风,一般到第二风室就送人大风(全开), 第三风室也如此,直至第四风室,送风稍有减少。其后燃 料层的燃烧转入燃尽阶段,空气消耗量进一步减少,送风 量也随之大幅度减少,因此第五风室只需稍开或全关(供漏

风供风)。这种配风方式有如下特点: (1)尽早配风法适用于高挥发分的燃煤,前期燃煤吸收热量释放大量的挥发物,为使可燃气体(挥发物)得到充分的燃烧,需要送入大量空气,形成炉排前部燃烧强烈。 (2)由于前部燃烧强烈,前拱区容易结渣,甚至烧坏煤闸门,因此要注意控制前部送风量;同时由于前部燃烧强烈,烟气体积急剧膨胀,致使后拱内的烟气流出不畅,形成烟气在后拱出口处的闷塞。 (3)燃烧高温区在靠前部,炉排后部弱燃烧区面积较大,温度降低,难以维持焦炭燃尽,导致炉渣含碳量增加,降低了锅炉的燃烧效率。 2、推迟配风法 推迟配风法仍以五个风室为例:第一风室为引燃期,不专门送风(只靠风室漏风供风);第二风室已进入燃烧旺

链条炉排常见故障的原因

链条炉排常见故障的原因 在小型锅炉的日常应用中,炉排的故障较多,维修量大,影响着锅炉的正常使用。锅炉炉排出现故障的原因是多方面的。 (1)材质要求不高。为降低造价,炉排侧密封铁多采用HT200,其耐热温度较低易造成高温烧损、变形卡链条。由于炉膛内温度较高,故宜采用耐热铸铁制造。如RQTA122,在空气炉气中耐热温到1100℃。炉排主链条也宜采用耐热铸铁,以保证长久良好的机械性能。 (2)炉排制造精度要求不高,误差大。作为快装锅炉,炉排前后轴的平整度影响着炉排行进阻力大小及应力平均程度,易造成炉排跑偏、断片。炉排跑偏时两侧螺栓调整没有参考标尽,单凭经验,给用户造成不便。 (3)炉排主动链齿工装误差大,造成链齿磨损,炉排因受力不均撕裂、起拱、炉排轴弯曲。链齿插铣键槽时没有统一校准或装配时秩序有误,造成链齿不同步。例如一台10t/h 锅炉链齿误差达12mm,锅炉运行中炉排经常大面积撕裂,炉排轴弯曲,不得已全面检修,耗时费力。 (4)风室落灰装置亟待改进。风室内积灰及时排除有利于正常供风,炉梁得以冷却。落煤灰得不到及时排除会因炉内高温而燃烧,烧坏炉梁道轨。除去运行操作人员要正确及时操作外,摇灰把手或拉杆要省力可靠,落灰板最好整板制作,摩擦面经打磨加工,充分考虑热变形带来的影响。另外,第一风室是煤的预热干燥阶段,所需风量小,运行时一般关闭,而漏灰多为细煤,极易燃烧。曾发现有几台锅炉多次出现炉梁过烧变形,大都集中在第一、二风室,后来维修时将第一风室封闭,使之不漏煤,使用效果良好。 (5)风门风量控制粗糙。由于炉排烘烤,风门处温度一般在100℃左右,受胀缩影响,部件易变形,造成关不严、开度与实际不符等故障。 (6)前后大轴润滑方式亟待改进。前后大轴多采用轴瓦滑运摩擦,用润滑脂润滑,一般由4~8个加油孔径组成。由于前后大轴工作温度在100℃附近,普通钙基脂易固化,宜采用耐温润滑脂。但油路过细过长,加油仍很困难。有的锅炉房尝试用30#机油杯代替,目前使用效果良好。 (7)运行过程中维护不当。很多单位的司炉人员工作素质偏低,缺乏锅炉的相关知识,有的则是责任心不强,如清灰不及时,导致通风不畅,油杯缺油,使得润滑不佳。很多细小的毛病得不到及时的发现,最终酿成在事故。 (8)领导管理出现问题。如不燃用规定煤种,以至于锅炉和燃煤不相适应,不做定期的检查保养。不恰当地减少司炉操作人员。 作为锅炉制造厂家,在制造过程中,应重视炉排燃烧部件的质量。作为使用者,在日常运行中也应重视对设备的精心维护。

生物质直燃锅炉设计计算

生物质直燃锅炉设计计算 生物质直燃锅炉设计计算 3.1锅炉设计时主要的结构尺寸 1)炉膛净空尺寸:250×250×1400 2)炉排有效面积250×600,共做3块,炉排小孔4mm,开孔率40%,炉排下两侧装导轨,机械传动 3)前拱高200,长50; 4)后拱高180,长300 3)炉顶出口:天圆地方结构,出口60mm 4)点火炉门80×80,装在侧强 5)看火孔42mm 6)炉前装料斗 7)料层厚度60mm 6)炉顶装省煤器,管子18mm,前后各布置测点一个。 8)每隔300mm一个测点,测点预留孔14mm,烟囱上布置一个测点 9)支架高度800mm 10)炉膛内衬80mm厚,布置抓钉 11)整体用不锈钢外包装 12)支架高度800mm 13)整体外形长宽高:760×410×2200

3.2试验原料 本试验是采用生物质颗粒燃料(玉米秸秆颗粒燃料),是由生物质燃料成型机压制而成的。其尺寸是圆柱形,直径是8mm,燃料颗粒自然堆积密度为554.7kg/m3,其颗粒密度为1200kg/m3。 实验前用氧弹式量热仪测定玉米颗粒燃料的收到基净发热量qnet,ar , qnet,ar=15132kJ/kg。 由燃料元素分析仪分别测定其收到基中C,H,N,S,O的含量,得到: Car=44.92%,Har=5.77%,Nar=0.98%,Sar=0.21%,Oar=31.26%。 用燃料工业分析仪分别测定其收到基水分含量(Mar),收到基挥发分含量(Var),收到基固定炭含量(Far),收到基灰分含量(Aar)。如下: Mar= 9.15%,Var= 75.58%,Far= 7.56%,Aar= 7.71%。 3.3直燃锅炉设计的相关参数 1)锅炉功率要求:10 kW; 2)温度:查阅暖通空调设计指南(P63)可以得到室内空气温度在16-24℃范围内[2],在试验期间实际测得当时温度为16℃,室外环境温度t0=10℃,排烟温度tpy低于烟气露点,150℃左右 [20],tpy =165℃; 3)热负荷:查相关锅炉设计手册得炉排单位面积热负荷经验值700~1050kW/m2 [3-8],由于低温及燃料易燃尽时取上限,所以取qF= 1050 kW/m2;炉膛单位容积热负荷经验值235~350kW/m3 [3-8],

链条炉排结构型式有哪几种它们的结构型式和技术性能如何

链条炉排结构型式有哪几种?它们的结构型式和技术性能如何为了实现加煤和除灰的机械化,链条炉排结构作为燃煤工业锅炉的一种燃烧方式,已应用相当广泛。锅炉中采用的链条炉排型式有链带式,横梁式和鳞片式三种。一、链带式炉排它们的炉排片的形状好象链节,用圆钢串连成一个宽阔的链带。炉排的传动有变速箱传动、间歇液压传动和晶闸管无级调速传动等。间歇液压传动机构简单,但间歇运动对燃料稳定燃烧不利,且液压设备容易漏油,现在已很少采用。一般采用晶闸管和其他机械无级变速传动机构,其效果较好。链带式炉排具有如下几点特性:1、链带式炉排结构简单,金属耗量较少,制造成本低,安装制造和运行管理都比较方便。 2、由于自身结构原因,链带式炉排的通风截面是一般的16%左右,甚至更高。这使得漏煤量比较大,且运行一段时间后炉排片之间磨损严重,加大了通风间隙与漏煤量,一般漏量可达3%~7%。 3、轻型链带式炉排长时期运行后,圆钢拉杆极易变形,同时炉排片较薄、强度较低,许多炉排片串在一根圆钢拉杆上,有时互相配合不良;主动轴上的链轮直接和主动炉排片楔合,使主动炉排片在热应力和拉应力的作用下,容易折断,折断后更换比较困难。 4、容量较小的锅炉,大多数采用轻型链带式炉排。它只适用于10t/h以下的锅炉应用。 5、为了解决轻型链带式炉排片断裂问题,我国很多地区研制了大块炉排片,其结构就是把原来分为多片的炉排片合起来铸

成一块。在这基础上经过改进,研制了带活络芯片型链带式炉排片,在使用上取得较好的效果。二、横梁式炉排横梁式炉排的炉排片是安装在横梁上,炉排片不受力。横梁固定在两根或三根的链条上,链条的传动,一般用前轴做主动轴,与电动机变速机械相连,前后轴上链轮啮合,完成炉排的运行。链条上固定的许多横梁,横梁槽内装有几种型号的炉排片,有普通的炉排片,调整炉排片以及封闭炉排片等。横梁式炉排的特点有: 1、横梁式炉排的结构钢性大,炉排片装在钢性较强的横梁上,主动轴上链轮通过链条带动横梁运动,而炉排片不受力,故工作条件较好,不容易发生受热变形。 2、炉排面比较平整,而且耐用。有的炉排片有一个长长的犟三,筐前亏护排片互相交叠,可以大大减少漏煤损失。炉排通风截面比约 4.5%~9.4%。3、维修方便,即使有炉排片损坏,亦可在运行中方便地更换炉排片:它可在20t/h以下锅炉中应用,并能燃用无烟煤。 4、其缺点是结构笨重,金属耗量太大。另外,这种炉对链条的强度要求较高。由于链条所承受的载荷大,使得链条与链轮的啮合力量也较大。提高了对链条,链轮的加工精度要求。如果几根平行的链条由于加工质量、安装质量不好,个别链节与链轮脱离啮合,爬到链轮的齿顶上去,即产生爬牙现象,严重时会损坏链条或磨掉链轮齿牙。横梁式炉排除一些旧式锅炉外,目前国内已很少使用。三、鳞片式炉排鳞片式炉排整个炉排根据宽度不同有4到12根互相平

锅炉基础知识大全,涵盖各方面

锅炉基础知识大全,涵盖各方面 锅炉的用途及工作原理: 锅炉是国民经济中重要的热能供应设备。电力、机械、冶金、化工、纺织、造纸、食品等行业, 以及工业和民用采暖都需要锅炉供给大量的热能。) 锅炉是利用燃料燃烧释放出的热能或其他能量将工质( 中间载热体) 加热到一定参数的设备。应用于加热水使之转变为蒸汽的锅炉称为蒸汽锅炉,也称为蒸汽发生器。应用于加热水使之提高温度转变为热水的锅炉, 称为热水锅炉;而应用于加热有机热载体的锅炉称为有机热载体锅炉。 从能源利用的角度看,锅炉是一种能源转换设备。在锅炉中,一次能源( 燃料) 的化学贮藏能通过燃烧过程转化为燃烧产物( 烟气和灰渣) 所载有的热能,然后又通过传热过程将热量传递给中间载热体( 例如水和蒸汽), 依靠它将热量输送到用热设备中去。 这种传输热量的中间载热体属于二次能源,因为它的用途就是向用能设备提供能量。 当中间载热体用于在热机中进行热一功转换时, 就叫做“工质“。如果中间载热体只是向热设备传输、提供热量以进行热利用,则通常被称为“热媒“。 锅炉按其用途可以分为电站锅炉、工业锅炉、船舶锅炉和机车锅炉等四类。前两类又称为固定式锅炉,因为是安装在固定基础上而不可移动的。后两类则称为移动式锅炉。本文介绍的是固定式工业锅炉。 在锅炉中进行着三个主要过程: (1)、燃料在炉内燃烧,其化学贮藏能以热能的形式释放出来,使火焰和燃烧产物( 烟气和灰渣) 具有高温。

(2)、高温火焰和烟气通过“受热面“向工质( 热媒) 传递热量。(3)、工质(热媒) 被加热,其温度升高或者汽化为饱和蒸汽,或再进一步被加热成为过热蒸汽。 以上三个过程是互相关联并且同时进行的,实现着能量的转换和传递。 伴随着能量的转换和转移还进行着物质的流动和变化: (1) 工质,例如给水( 或回水〉进入锅炉,最后以蒸汽( 或热水) 的形式供出。 (2) 燃料,例如煤进入炉内燃烧,其可燃部分燃烧后连同原含水分转化为烟气,其原含灰分则残存为灰渣。 (3) 空气送入炉内,其中氧气参加燃烧反应,过剩的空气和反应剩余的惰性气体混在烟气中排出。 水一汽系统、煤一灰系统和风二烟系统是锅炉的三大主要系统, 这三个系统的工作是同时进行的。 通常将燃料和烟气这一侧所进行的过程( 包括燃烧、放热、排渣、气体流动等) 总称为“炉内过程“; 把水、汽这一侧所进行的过程( 水和蒸汽流动、吸热、汽化、汽水分离、热化学过程等) 总称为“锅内过程“。 第二章 锅炉的分类 一、按用途分类: 1. 电站锅炉:用于发电,大多为大容量、高参数锅炉,火室燃烧,效率高,出口工质为过热蒸汽。

链条锅炉操作规程

链条锅炉操作规程 一、设备特性 设备型号:DZL4-1.25-AⅡ 锅炉编号:1057167 额定蒸发量:4t/h 额定蒸汽压力:1.25Mpa 安全阀整定压力:0.6MPa 锅炉运行规定压力:0.5~0.55 MPa 给水水箱运行水位:以水箱玻璃管水位计上标示的高低红线之间为准 汽包水位:保持在±30mm范围内 额定蒸汽温度:193℃ 设计热效率:76% 给水温度:20℃ 受热面积:102.8m2 设计燃料:Ⅱ类烟煤

二、结构简介 本锅炉为单锅筒纵置式水火管锅壳式锅炉,燃烧设备为链条炉排。炉膛左右两侧水冷壁为辐射受热面,炉膛两翼为对流受热面,锅筒内布置螺纹烟管对流受热面,前后拱采用耐热混凝土整体浇注捣制成型新工艺,锅炉主机外侧为立体形护板外壳。 三、锅炉的燃烧过程 燃料自煤斗落在炉排前部,随着炉排运转,煤经过预热干馏、着火、燃尽,煤渣落入渣斗,由除渣机随时排出炉外,烟气在前后拱间的喉部能形成涡流与空气充分混合,并加热前拱、改善着火条件,经过拱上部出口烟窗进入两翼对流管束,通过前烟箱进入螺纹烟管,经过省煤器、除尘器,由引风机引至烟囱排出。 四、锅炉的烘炉 1、烘炉前应具备的条件 1.1、锅炉及附属装置全部组装完毕并进行水压试验合格; 1.2、防腐和保温结束,并且烟道内杂物已经清除干净; 1.3、锅炉的热工仪表校验合格; 1.4、锅炉各个辅机试转完毕,具备启动条件。

2、烘炉方法及注意事项 2.1 火焰应在炉膛中央,燃烧均匀,不得时断时续; 2.2 炉排在烘炉过程中应定期转动,防止烧坏炉排; 2.3 烘炉升温根据炉膛出口处烟气温度来控制,每天升温不得超过80℃,后期烟温不应超过160℃; 2.4 耐热混凝土炉拱、炉墙应待三昼夜正常保养期满后方可开始烘炉; 2.5 烘炉时间一般为5天左右,第一天用木柴烘炉,第二天后逐渐加煤燃烧,间断地开启鼓、引风机进行机械通风。 五、锅炉的煮炉 1、煮炉的目的 煮炉的目的是在锅炉中加入NaOH和Na3PO4·12H2O进行化学处理,采用碱性煮炉法,把锅内油污、铁锈除去,以保证锅炉受热均匀、运行正常。 2、煮炉时的加药量应符合设备技术文件规定,以下表为准:

燃煤锅炉炉排大修施工方案设计

2吨燃煤锅炉炉排大修 施工方案 编制: 审核: 审批: XXXX有限公司

2015年3月23日 一、工程概况 贵州盘江精煤股份有限公司山脚树矿2吨锅炉以满负荷运行多年,炉排各部份零件磨损严重,运行时有故障发生,影响正常生产,对个零件全部拉出细致的检查,技术参数按图纸尺寸核对后,再按要求装配。拆卸的零件必须放在指定地点,并设专人看管,以防丢失。 鳞片式链条炉排其工作原理是炉排托着燃料由前向后不断移动,使燃料完成着火、燃烧、燃尽三个阶段,从而保证锅炉外网形成一个封闭的供热系统。 二、鳞片式炉排的连接部件较多,如滚筒、衬管、夹板等,工作环境较差,出现故障机会较多,常见故障及解决的方法: 1.炉排片掉落 锅炉运行几年后,常常发生炉排片掉落的现象,其危害不仅造成漏煤和燃烧工况差,严重的是常卡死炉排而导致被停炉,造成的主要原因: 1.1炉链各零件铸造质量差 主要表现在炉排片和夹板的尺寸不准确,如炉排片长度尺寸过小时,炉排片松动及至掉落,夹板的长度过大时,前后夹板硬顶,特别是在前轴转弯处终止段,前后夹板的硬顶会造成成组炉排片的掉落,这种现象的避免就是在进备件时把好进库关,质量不好的拒收。 1.2串条拉紧力不足 造成这一问题的主要原因是外套衬管尺寸过小或串条两端松动,均促使两夹板尺寸的变动,引起炉排片的掉落,因此,串条组装衬管及滚筒时,两端必须拧紧并加销子。 1.3链条长度的尺寸相对过大 相邻两链条的长度过大时,炉排前轴下部转弯起始处,由于拉紧相对长度发生变

化,两夹板横向间距过大引起炉排片倾斜及至掉落,当出现炉排片掉落时,因燃层出现孔洞或在出渣处捡到炉排片二及时发现,此时应拆掉前挡风门,从炉排前部两侧观察并检出炉排片,当确信炉链内部没有掉落,查找原因处理妥当后,再重新组装炉排片。 2.炉排卡死 炉排卡死是炉链故障的又一种常见现象。引起的主要原因是煤中混杂的金属等硬物及修理质量差等造成的,常见的有: 2.1 煤中加杂的石块、金属等硬物夹在炉排两侧密封处或炉排片掉落造成卡死,且炉排片掉落的空当正是挡渣器前端卡住炉排. 2.2 侧墙板后部炉链倾斜处的侧压板,因与支架连接采用一个螺栓,且前后压板间存在间隙,当积渣严重或其他原因挤压时,极易造成压板的转动而卡死炉链。 2.3 炉底的细灰不能及时清理而拖住链条造成炉排负荷过重而卡死。要求当班的人员按要求操作拉灰器进行卸灰,每年停炉后对所有的都要进行彻底的检修。 2.4 炉排松紧度不合适。当炉排过松时,与下部导轨的摩擦力增大,增加炉链负荷而卡死。炉排松紧度对于炉链的平稳转动是有很大的影响的。炉排修理、组装完毕后,应调节炉排的松紧度,并通过冷态试运转使其恰到好处。运行时间较长的炉链,往往连接孔磨损过大造成炉排过松。或修理后对炉排松紧度没有进行适当的调节。都会引起炉链过松而卡死炉排。炉排的卡死后果是比较严重的,破坏力很大,因炉链卡死而造成减速机弹簧保险装置不起作用时,其破坏常发生在对轮和减速机内部零件的损坏。修理时间较长,一旦发生炉排卡死应立即停炉查找原因并进行处理。炉排运行中,在发生炉链卡死的故障时,减速机弹簧保险装置起跳的同时,会发出咔咔的响声。其处理方法:1)关掉减速机电源,停止减速机运转。 2)首先确定造成炉排卡死的原因部位,减速机输出轴处轴承卡死时,也会造成炉排不转,因此必须明确故障发生位置。

生物质直燃发电机组效率计算

生物质直燃发电机组效率计算方法和说明国能生物发电集团有限公司生产技术部本文依据现有燃煤电厂效率计算的基本方法,结合生物质直燃发电厂性能试验取得的经验数据,编制了生物质直燃发电机组效率计算方法和说明。 一、生物质锅炉效率计算 (一)基本原则 (1)采用反平衡法(热损失法)测定锅炉热效率,正平衡法(输入-输出热量法)计算作为参考。 (2)将送风机入口的空气温度作为锅炉热效率计算的基准温度,也即送风机附近的大气温度。 (3)因本文主要目的是计算实际工况下的锅炉热效率,故未进行修正。 (二)正平衡计算 1、正平衡热效率计算(η1) (1-1) 式中:——锅炉热效率,%; ——输入热量,kJ; ——输出热量,kJ。 2、输入热量(Qr)

因目前大部分生物质发电厂无外来热源加热空气和燃料雾化蒸汽,为简化计算,忽略入炉燃料显热,将燃料收到 基低位发热量作为输入热量。即(1-2) 式中:——燃料收到基低位发热量,kJ/kg。 3、输出热量(Q1) (1-3) 式中: ——燃料消耗量,kg; ——锅炉主汽流量,kg/h; ——锅炉主蒸汽出口焓值,kJ/kg; ——锅炉给水焓值,kJ/kg; ——锅炉排污水量,%; ——锅炉排污水的焓值,kJ/kg。 因连续排污和定期排污水量很少,一般约为主蒸汽流量2%左右,为简化计算,不考虑锅炉排污水量。 蒸汽和给水焓值通过水和水蒸气热力性质通用计算模型IAPWS—IF97编程实现。 (三)反平衡计算 1、入炉燃料元素成分的确定 由于现场不具备开展入炉燃料的元素分析工作,且影响燃料低位发热量的主要成分是水分和灰分,所以通过折算实

际入炉燃料与典型燃料水分和灰分的差异,拟合实际入炉燃料元素分析的方法来解决。 (1)典型燃料元素分析成分 因入炉燃料种类多,所以选择国能高唐电厂性能试验时入炉燃料作为典型燃料。具体如下: (2)入炉燃料元素成分的拟合方法 根据现场工业分析所得的水分(Mar)和灰分(Aar)数值,按照公式(1-4)进行拟合计算入炉燃料的元素成分: (1-4) 式中:——拟合的入炉燃料收到基下含碳量; 、——入炉燃料工业分析收到基下水分和灰分; 、、——典型燃料收到基下含碳量、水分和灰分。 含氢量、含氧量、含氮量和含硫量计算同含碳量。 2、反平衡热效率计算(η2) (1-5) 式中:——锅炉热效率,%;

锅炉基础知识

锅炉基础知识 一.锅炉的工作过程: 锅炉是一种利用燃料燃烧后释放的热能或工业生产中的余热传递给容器内的水,使水达到所需要的温度(热水)或一定压力蒸汽的热力设备。它是由“锅”(即锅炉本体水压部分)、“炉”(即燃烧设备部分)、附件仪表及附属设备构成的一个完整体。锅炉在“锅”与“炉”两部分同时进行,水进入锅炉以后,在汽水系统中锅炉受热面将吸收的热量传递给水,使水加热成一定温度和压力的热水或生成蒸汽,被引出应用。在燃烧设备部分,燃料燃烧不断放出热量,燃烧产生的高温烟气通过热的传播,将热量传递给锅炉受热面,而本身温度逐渐降低,最后由烟囱排出。“锅”与“炉”一个吸热,一个放热,是密切联系的一个整体设备。 锅炉在运行中由于水的循环流动,不断地将受热面吸收的热量全部带走,不仅使水升温或汽化成蒸汽,而且使受热面得到良好的冷却,从而保证了锅炉受热面在高温条件下安全的工作。 二、常见问题 1.什么叫自然循环锅炉? 所谓自然循环锅炉,是指蒸发系统内仅依靠蒸汽和水的密度差的作用,自然形成工质循环流动的锅炉。2.什么叫锅炉的循环回路? 由锅炉的汽包、下降管、联箱、水冷壁、汽水导管组成的闭合回路,称为锅炉的循环回路。 3.自然循环锅炉的蒸发系统由哪些设备组成? 主要由汽包、下降管、水冷壁管、联箱及导管组成。 4. 水冷壁为什么要分若干个循环回路? 因为沿炉膛宽度和深度方向的热负荷分布不均,造成每面墙的水冷壁管受热不均,使中间部分水冷壁管受热最强,边上的管子受热较弱。若整面墙的水冷壁只组成一个循环回路,则并联水冷壁中,受热强的管子循环水流速大,受热弱的管内循环水流速小,对管壁的冷却差。为了减小各并列水冷壁管的受热不均,提高各并列管子水循环的安全性,通常把锅炉每面墙的水冷壁,划分成若干个循环回路。 5.汽包的作用主要有哪些? 汽包的作用主要有: (1)是工质加热、蒸发、过热三个过程的连接枢纽,同时作为一个平衡容器,保持水冷壁中汽水混合物流动所需压头。 (2)容有一定数量的水和汽,加之汽包本身的质量很大,因此有相当的蓄热量,在锅炉工况变化时,能起缓冲、稳定汽压的作用。 (3)装设汽水分离和蒸汽净化装置,保证饱格蒸汽的品质。 (4)装置测量表计及安全附件,如压力表、水位计、安全阀等。 6.电站锅炉的汽包内部主要有哪些装置?它们的布置位置和作用怎样? 电站锅炉随参数容量的不同,其汽包内部装置也不完全一样,现以高压和超高压锅炉的汽包为例,介绍其内部装置、它们的布置及主要作用。 沿汽包长度在两侧装设若干旋风分离器,每个旋风分离器筒体顶部配置有百页窗(波形板)分离器,它们的主要作用是将由上升管引入的汽水混合物进行汽和水的初步分离。在汽包内的中上部,水平装设蒸汽清洗孔板,其上有清洁给水层,当蒸汽穿过水层时,便将溶于蒸汽或携带的部分盐分转溶于水中,以降低蒸汽的含盐。靠近汽包的顶部设有多孔板,均匀汽包内上升蒸汽流,并将蒸汽中的水分进一步分离出来。汽包中心线以下150mm左右设有事故放水管口;正常水位线下约200mm处设有连续排污管口,再下面布置加药管。下降管入口处还装设了十字挡板,以防止下降管口产生漩涡斗造成下降管带汽。 7.旋风分离器的结构及工作原理是怎样的? 旋风分离器由筒体、引入管、顶帽、溢流环、筒底导叶和底板等部件组成。 旋风分离器是一种分离效果很好的汽水分离设备。其工作原理及工作过程是:较高流速的汽水混合物,经引入管切向进入筒体而产生旋转运动,在离心力的作用下,将水滴抛向筒壁,使汽水初步分离。分离出来的水通过筒底四周导叶,流入汽包水容积中。饱和蒸汽在筒体内向上流动,进入顶帽的波形板间隙中曲

锅炉基础知识培训讲义1

锅炉基础知识培训讲义 1 第一章锅炉基本知识 第一节概论 一、锅炉定义组成和分类 锅炉是将燃料蕴藏的能量,经过燃烧释放,把工质加热到规定温度和压力供生产和生活使用的一种热能设备。 锅炉是由“锅”和“炉”以及为保证“锅”和“炉”安全运行所必 需的附件、控制仪表、附属设备三大部分组成。 锅──指锅炉中盛水和蒸汽的密封受压部分,其作用是工质吸收“炉”释放出的热量,从而使工质达到一定参数。主要包括:汽包、水冷壁、对流管、集箱(联箱)、过热器和省煤器等。 炉──指锅炉中将燃料进行燃烧产生热源的部分,其作用是将燃料燃烧时放出的热量供“锅”吸收。主要包括:燃烧设备、炉墙、炉拱、隔烟箱、烟囱和钢架等。燃料在“炉”通过燃烧所产生的高温烟气,经过炉膛和各烟道向锅炉受热面放热,最后从锅炉尾部烟囱排出。 锅炉附件仪表——指安装在锅炉受压部件上用来控制锅炉安全和经 济运行的一些附件与仪表装置。主要包括:安全阀、压力表、水位表、高低水位警报器、排污装置、给水系统、锅炉的汽水管道、常用阀门

和有关仪表等。此外,近年来由于对锅炉的机械化和自动化要求不断提高,工业锅炉上配置机械操作和自动控制的附件及仪表也越来越多,如给水自动调节装置、燃烧自动调节装置、自动点火熄火保护装置以及鼓、引风机联锁装置等。 锅炉附属设备──指燃料的供给与制备系统。主要包括:上煤、磨粉、燃煤、燃油、燃气装置以及鼓、引风机、出渣、清灰、空气预热、除尘等装置。 锅工质为水,从低温水变成高温水的称之为热水锅炉。锅工质为水,加热转变为蒸汽的称之为蒸汽锅炉。锅工质为导热油的,加热有机热载体的称之为有机热载体锅炉。有机热载体锅炉分为液相炉和汽相炉。 锅炉按其用途可分为电站锅炉、工业锅炉、船舶锅炉和机车锅炉等四类。锅炉按燃料分类可分为煤炉、油炉、气炉和电加热锅炉。 二、锅炉的工作过程 锅炉的工作包括三个连续进行的过程,即:燃料的燃烧放热过程、热量向锅水的传热过程和水被加热和汽化的热力过程。 1.燃料的燃烧放热过程指燃料在炉膛,在一定的温度下,与空气中的氧气发生化学反应(燃烧)放出热量的过程。燃烧过程是否完善,是锅炉工作正常的根本条件之一。要保证燃料进行良好的燃烧,必须

链条炉排锅炉对煤炭质量的要求

链条炉排锅炉对煤炭质量的要求 链条炉排锅炉对煤炭质量的要求及煤质指标供参考 ? ?水分 煤的水分对于燃烧的影响具有两重性。煤中适当的水分使碎屑和块煤粘在一起能使漏煤和飞灰减少。燃烧碎屑较多的煤时,保持炉前有一定的水分是必要的。对于细粉较多、易粘结的高发热值煤,加入适当的水分在运行上已经取得了良好的效果,还可使煤层不致过分结焦。同时由于水分蒸发能疏松煤层,使煤粒间空隙加大,减少通风阻力。在常压下,由水变成水蒸汽体积要增加 ?? 倍,因而水分从煤层中燕发出来,在煤层内要留下很多空隙,这有利于通风,有利于强化燃烧。但另一方面,由于煤中水分增加使干燥时间加长,水分蒸发要吸收热量,这对煤的着火是不利的。而且水分增加时,水蒸汽混合到口??燃气体中,既增加了???燃气体的热容量又降低了它的浓度,这对口??燃气体燃烧也是不利的,因而使燃烧室温度下降。同时水分增加,烟气体积增加,使排烟损失也跟着增加。 煤中加入的水量应当根据煤的粒度组成而定,细粉越多,加水量就应增加,但要适量,同时要加得均匀,要有 ???的渗透时间。 煤中水分还与煤的变质程度有关,对低煤化度煤如长焰煤、不粘煤等,它们挥发分高、焦炭的化学活性高,极易着火,往往一进入炉膛就会着火,这样易烧坏煤斗。为了防止烧坏煤斗,就要提高煤的水分,推迟着火时间。 对

于高煤化度煤,特别是无烟煤、挥发分低,焦炭活性差,着火困难,为了减少蒸发煤中水分的热损失,应降低煤中水分。但降低煤中水分后,会增加漏煤和飞灰,因此,燃用无烟煤应尽量减少粒度小于 ??的含量。 如低煤化度煤和高煤化度煤按合适比例掺烧,则煤中水分取决于它们的粒度组成。 ? ?粒度 煤的粒度对链条炉的工作影响很大,未经筛分的原煤在链条炉排上燃烧是十分不利昀。因为粒度不一,粉煤和末煤嵌于块煤之间,煤层容易堆得很结实,使热量不易传到煤层深处,同时十燥过程中的水蒸汽不易散发出来,因此煤层着火困难。另一方面,煤层中夹杂粉煤和末煤使火床阻力增加易于产生火口。颗粒度不均在煤中易产生机械分离,大块煤易集中在炉排的两边,使得炉排通风不均,火床上燃烧不均匀。另外,如粉煤量增高时,为了减少粉煤的损失,需要提高煤的水分,因而增加吸热量,使干燥时间延长,增加了可燃气体的热容量,并降低其浓度,不利于可燃气体燃烧,使燃烧室温度下降,使排烟损失增加等等。另一方面如大粒度煤量增加,由于大粒度煤不能烧透,而使机械未完全燃烧损失增加。可见,用于链条炉排的煤,在粒度方面,应是大小合适,粒度均匀,粉煤和大块煤越少越好。粒度最佳范围是 ? ????。小于 ??的粉煤含量越少越好,一般应少于 ? ??。 但从我国煤矿生产现状来看,大多数煤矿还没有合适的筛分系统和储运系统把大于 ??的块煤筛去同时使小于 ??的粉煤含量

链条炉燃烧操作原则配风方法有三种

链条炉燃烧操作原则 配风方法有三种,即尽早配风法,推迟配风法和强风后吹法。 1、尽早配风法 这种方法是根据燃料层对空气的消耗能力尽早配风。在燃烧前期燃料放出大量的挥发物,此时就开始送人大量空气,并且随着燃料温度的提高和燃烧的加强,尽可能加大送风,直至燃尽。以五个风室为例:第一风室按燃煤挥发分的高低适量送风,一般到第二风室就送人大风(全开),第三风室也如此,直至第四风室,送风稍有减少。其后燃料层的燃烧转入燃尽阶段,空气消耗量进一步减少,送风量也随之大幅度减少,因此第五风室只需稍开或全关(供漏风供风)。这种配风方式有如下特点: (1)尽早配风法适用于高挥发分的燃煤,前期燃煤吸收热量释放大量的挥发物,为使可燃气体(挥发物)得到充分的燃烧,需要送入大量空气,形成炉排前部燃烧强烈。 (2)由于前部燃烧强烈,前拱区容易结渣,甚至烧坏煤闸门,因此要注意控制前部送风量;同时由于前部燃烧强烈,烟气体积急剧膨胀,致使后拱内的烟气流出不畅,形成烟气在后拱出口处的闷塞。 (3)燃烧高温区在靠前部,炉排后部弱燃烧区面积较大,温度降低,难以维持焦炭燃尽,导致炉渣含碳量增加,降低了锅炉的燃烧效率。 2、推迟配风法 推迟配风法仍以五个风室为例:第一风室为引燃期,不专门送风(只靠风室漏风供风);第二风室已进入燃烧旺期,但仍送小风或中风;在燃烧中期(第三、四风室)送强风;第五风室已处于炉排末段,只需很小风量,一般以保证炉排的可靠冷却为宜,因此风门全关,靠邻近风室漏风供风。 推迟配风法的特点是: (1)推迟配风法与尽早配风法的主要差别在于第二风室的配风量:推迟配风法是故意压减其送风量,而尽早配风法则是按可燃气体需要量送入大量空气。由于故意压减其风量,前部大量释放出的可燃气体形成一个缺氧的“饥饿”空间,极需炉排后部的过量空气及炉膛漏风供氧燃烧,有效地降低总的过量空气系数。 (2)由于燃煤层进入后拱后才送以强风,必然在后拱出口处或炉排中部形成一个高温区。这个高温区向前冲的高温风流容易深入前拱起着引燃的作用,对于向后通过辐射加热保持了燃烬区的高温,促进焦碳的燃尽,形成了“烧中间、促两头”的燃烧方式。 (3)推迟配风法的使用是有条件的,那就是要求炉拱的混合性能好,以保证后部富氧的烟气和前部较多燃气的烟气充分混合,达到可燃气体燃尽的目的。 3、强风后吹法 这是一种极端推迟的特殊配风法。从新煤进炉起的一段很长的炉排下不送风,直至最后一、二个风室才送以强风。此时因燃煤温度已较高,见风立即着火并强燃烧。后吹的强风将后部燃烧区大量灼热细粒煤从炉排煤层中吹起,随烟气向前飞去,撒落在前部的新煤上,形成一灼热煤粒覆盖层。这一覆盖层对新煤持续地加热,直至一、二风室处完成引燃。 这种配风法主要特点: (1)送风的极端推迟和后吹强风,创建了一个灼热煤粒覆盖层,目的是促进燃料的引燃,即所谓“烧后部、促前头”。 (2)强风后吹法的主要优点可以燃烧低挥发分无烟煤,是福建地区为燃烧当地无烟煤而提出来的。它的主要缺点是由于送风过于集中,燃烧强度大幅度增高,容易导致火床严重结渣,破坏后部燃烧区煤层,导致过量进风,影响正常燃烧。另外由于新煤上的覆盖层过厚,影响新燃料吸收辐射热,反而使着火恶化。

生物质直燃锅炉讲义

生物质直燃锅炉讲义 浙江旺能环保股份有限公司 周玉彩 2011-8-5

生物质直燃发电厂主要有以下系统:1、燃料收集储运系统 2、轻油点火系统 3、燃烧系统 4、热力系统 5、除灰渣系统 6、化学水处理系统 7、电气及输出系统8、给排水系统 9、废水处理系统 10、烟风及净化系统 11、接入系统等。 第一章生物质的概述 一、生物质的定义和资源状况 广义的生物质能包括一切由植物光合作用转化和固定下来的太阳能,生物质作为生物质能的载体有许多种定义,美国能源部(DOE)把生物质定义为:生物质是来源于植物和动物的有机物质。 生物质资源十分丰富,目前全球每年水、陆生物质产量约为全球总能耗量的6~10倍左右。据统计,生物质资源潜力可达100亿吨,仅森林、草原和耕地这三项的产量就达50亿吨干生物质,相对于20亿吨标准煤。我国可以开发利用的生物质能源有:各种农业废弃物(秸秆和谷壳等)、薪柴、林业废弃物(树叶和枝桠等)、有机垃圾和人畜粪便等。统计表明,我国秸秆、薪柴、粪便和垃圾四项资源分别为3.08、1.3、0.77和1.43亿吨标准煤,总计约6.58亿吨标准煤。根据“九五”规划,我国薪材林面积应达到650万公顷,到2010年将达到860万公顷。 二、生物质的种类和特点 一般而言,生物质主要有三类:木质、非木质和动物粪便。从这三大类可以细分为七种:森林、农业的种植物(木质)、森林之外的树木(木质)、农作物(非木质)、庄稼的废弃物(非木质)、加工过程的废弃物(非木质)和动物粪便(粪便)。通常用作能量转化的生物质可以分为四大类:木材残余物(涵盖所有来源于木材和木材产品的物质,主要包括:燃料木材、木炭、废弃木材和森林的残余物)、农业废弃物(所有与种植业和庄稼处理过程有关的废弃物。例如:稻谷壳、秸秆和动物的粪便)、能源庄稼(专门用于能量生产的庄稼。如:甘蔗杆和木薯)和城市固体垃圾(MSW)。 生物质的组成成分包括:纤维素、半纤维素、木质素、蛋白质、单糖、淀粉、水分、灰分和其它化合物。每一种组分的含量比例是由生物质种类、生长时期和生长条件等因

链条炉排对煤种的基本要求

链条炉排对煤种的要求 链条炉排燃用挥发分15%以上、热值大于4500kcal/kg、灰熔点高于1260摄氏度、粘结性弱的烟煤最为适宜。 一般水分、灰分增加、挥发分减少对燃料的引燃和燃烧都是不利的。 1、水分:煤中适当的水分可使碎屑和块煤粘在一起,使漏煤和飞灰减少。另外,水分蒸发可使煤层松动,加大煤粒间的间隙,通风阻力随之减小,有利于通风,起到强化燃烧的作用。不利的一面是不利于煤的着火,还会使烟气体积增加,使排烟热损失增加。对于在细粉较多且易粘结的高发热值的煤中掺入适量的水分,不但有利于燃烧,提高锅炉效率,还可减轻煤层的结焦。 2、灰分:灰分增加可使燃烧成分减少,发热量降低,不利于煤的着火和燃烧。过多的灰渣会阻碍焦炭与空气的接触,也就是阻碍了焦炭的燃烧,增加了燃烧时间,最后导致不完全燃烧损失增加。燃烧过程中,由于还原作用而产生大量的还原气体,主要是CO,它能将灰渣中的氧化铁还原为氧化亚铁,使原有的灰熔点降低,这就容易在炉排上结焦,影响炉排的正常工作,严重时会使炉排片过热变形和烧坏。反之,灰分太少,灰渣层太薄,也可能使炉排片过热。 3、挥发分:一般来讲,挥发分含量越高,越容易着火和燃烧。挥发分含量低,着火困难,在炉排长度有限情况下,燃烧和燃尽的时间就相对减少,机械未完全燃烧损失就增加。挥发分含量高时,对于炉膛容积热负荷较高的锅炉,由于炉膛容积相对较小,易增加化学

未完全燃烧损失。 4、热值:热值较低时,锅炉的出力和效率都会降低。当燃用热值较低的煤的时候,燃煤量就要加大,炉排速度和煤层厚度就要相应提高,这将不利于燃料的着火和燃尽。 5、粘结性强的煤:粘结性强的煤在炉内受到高温辐射,表面软化熔融,形成板状结焦,使通风不利,严重时会导致燃烧无法连续进行。 6、煤的颗粒度:粒度不一的煤粒,容易堆得结实,水蒸气不易散发出来,热量也不容易传到煤层深处,着火就困难。并且火床层的阻力增加易产生火口。

相关文档
相关文档 最新文档