文档库 最新最全的文档下载
当前位置:文档库 › FD-HM-I亥姆霍兹线圈磁场测定仪说明书(100318修订)

FD-HM-I亥姆霍兹线圈磁场测定仪说明书(100318修订)

FD-HM-I亥姆霍兹线圈磁场测定仪说明书(100318修订)
FD-HM-I亥姆霍兹线圈磁场测定仪说明书(100318修订)

FD-HM-I 亥姆霍兹线圈磁场测定仪

一、概述

亥姆霍兹线圈磁场测定仪是综合性大学和工科院校物理实验教学大纲重要实验之一。该实验可以学习和掌握弱磁场测量方法,证明磁场迭加原理,根据教学要求描绘磁场分布等。传统的亥姆霍兹线圈磁场测量实验,一般用探测线圈配以指针交流电压表测量磁感应强度。由于线圈体积大,指针式交流电压表等级低等原因,测量的误差较大。

近年来,在科研和工业中,集成霍耳传感器由于体积小,测量准确度高,易于移动和定位,所以被广泛应用于磁场测量。例如:A SS 95型集成霍耳传感器就是一种高灵敏度的优质磁场传感器,它的体积小(面积mm mm 34?,厚mm 2),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特计,可以准确测量mT 000.20~的磁感应强度,其分辨率可达T 6

101-?。因此,用它探测载流线圈及亥姆霍兹线圈的磁场,准确度比用探测线圈高得多。用高灵敏度集成霍耳传感器测量T T 3

5

102101--??~弱交、直流磁场的方法已在科研与工业中广泛应用。

本仪器采用先进的95A 型集成霍耳传感器作探测器,用直流电压表测量传感器输出电压,探测亥姆霍兹线圈产生的磁场,测量准确度比探测线圈优越得多,仪器装置固定件牢靠,实验内容丰富。

本仪器经复旦大学物理实验教学中心使用,取得良好的教学效果。 二、原理

(1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为:

I N x R R B ?+?=

2

/322

2

0)

(2μ

(1)

式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为:

I N R

B ?=

20

(2)

轴线外的磁场分布计算公式较为复杂,这里简略。

(2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。

设z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为:

??

??????????????????? ??-++??????????? ??++???='-22

2/322202221z R R z R R R I N B μ

(3)

而在亥姆霍兹线圈上中心O 处的磁感应强度'

0B 为: R I N B ??='

02/305

(4)

三、 用途

(1)测量单个载流圆线圈轴线上各点磁感应强度,把测量的磁感应强度与理论计算值比较; (2)在固定电流下,分别测量单个线圈(线圈a 和线圈b )在轴线上产生的磁感应强度)(a B 和

)(b B ,与亥姆霍兹线圈产生的磁场)(b a B +进行比较;

(3)测量亥姆霍兹线圈在间距分别为2/R d =,R d =,R d 2=(R 为线圈半径)时,轴线上

的磁场分布,并进行比较,进一步证明磁场迭加原理; (4)描绘载流圆线圈及亥姆霍兹线圈的磁场分布; (5)测量地磁场的水平分量。 四、仪器组成

(1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离cm 0.1间隔的网格线;

(2)高灵敏度三位半数字毫特斯拉计、三位半数字电流表及直流稳流电源组合仪一台;

(3)传感器探头是由2只配对的95A 型集成霍耳传感器(传感器面积4mm ×3mm ×2mm )与探头盒。

(与台面接触面积为20mm ×20mm ) 五、附件:

(1) 电源线 1根

(2) 连接线 4根

(3)不锈钢直尺 1把(cm 30) (4)铝合金靠尺 1根 (5)传感器探头 1套。

仪器简图如下:

图1

1、毫特斯拉计

2、电流表

3、直流电流源

4、电流调节旋钮

5、调零旋钮

6、传感器插头

7、固定架

8、霍耳传感器

9、大理石 10、线圈 注:A 、B 、C 、D 为接线柱

六、技术指标

(1)高灵敏毫特斯拉计 量程 0—1.999mT ;

分辨率 mT 001.0;

(2)直流稳流电源 输出电流 mA 40050~(两线圈并接); mA 20050~(两线圈串接); 稳定度 %1; (3)线圈 匝数 500; 外径 cm 0.21;

内径 cm 0.19; 平均半径 cm 0.10; (4)交流电源 电压范围 V 240200~; 频率 Hz 50; (5)仪器整体 总重 kg 10;

(6)尺寸 线圈工作台 3

272532cm ??; (7)磁感应强度测量 误差 %3< 七、调试步骤

(1)将两个线圈和固定架按照图1所示简图安装。大理石台面(图1中9所示有网格线的平面)

应该处于线圈组的轴线位置。根据线圈内外半径及沿半径方向支架厚度,用不锈钢钢尺测量台面至线圈架平均半径端点对应位置的距离(在cm 2.11处),并适当调整固定架,直至满足台面通过两线圈的轴心位置; (2)开机后应预热10分钟,再进行测量;

(3)调节和移动四个固定架(图1中7所示),改变两线圈之间的距离,用不锈钢钢尺测量两线圈

间距;

(4)线圈边上红色接线柱表示电流输入,黑色接线柱表示电流输出。可以根据两线圈串接或并接

时,在轴线上中心磁场比单线圈增大还是减小,来鉴别线圈通电方向是否正确;

(5)测量时,应将探头盒底部的霍耳传感器对准台面上被测量点,并且在两线圈断电情况下,调

节调零旋钮(图1中5所示),使毫特斯拉计显示为零,然后进行实验;

(6)本毫特斯拉计为高灵敏度仪器,可以显示T 6

101-?磁感应强度变化。因而在线圈断电情况下,

台面上不同位置,毫特斯拉计所显示的最后一位略有区别,这主要是地磁场(台面并非完全水平)和其他杂散信号的影响。因此,应在每次测量不同位置磁感应强度时调零。实验时,最好在线圈通电回路中接一个单刀双向开关,可以方便电流通断,也可以插拔电流插头。 八、实验方法 (1)必做内容:

载流圆线圈和亥姆霍兹线圈轴线上各点磁感应强度的测量。

1)按图1接线,直流稳流电源中数字电流表已串接在电源的一个输出端,测量电流mA I 100=时,单线圈a 轴线上各点磁感应强度)(a B ,每隔cm 00.1测一个数据。实验中,随时观察毫特斯拉计探头是否沿线圈轴线移动。每测量一个数据,必须先在直流电源输出电路断开)0(=I 调零后,才测量和记录数据;

2)将测得的圆线圈中心点的磁感应强度与理论公式计算结果进行比较; 3)在轴线上某点转动毫特斯拉计探头,观察一下该点磁感应强度的方向; 4)将两线圈间距d 调整至cm d 00.10=,这时,组成一个亥姆霍兹线圈;

5)取电流值mA I 100=,分别测量两线圈单独通电时,轴线上各点的磁感应强度值)(a B 和

)(b B ,然后测亥姆霍兹线圈在通同样电流mA I 100=,在轴线上的磁感应强度值)(b a B +,

证明在轴线上的点)()()(b B a B b a B +=+,即载流亥姆霍兹线圈轴线上任一点磁感应强度是两个载流单线圈在该点上产生磁感应强度之和;

6)分别把亥姆霍兹线圈间距调整为2/R d =和R d 2=,测量在电流为mA I 100=轴线上各点的磁感应强度值;

7)作间距2/R d =、R d =、R d 2=时,亥姆霍兹线圈轴线上磁感应强度B 与位置z 之间关系图,即z B -图,证明磁场迭加原理。 (2)选做内容:

载流圆线圈通过轴线平面上的磁感应线分布的描绘。

把一张坐标纸粘贴在包含线圈轴线的水平面上,可自行选择恰当的点,把探测器底部传感器对准此点,然后亥姆霍兹线圈通过mA I 100=电流。转动探测器,观测毫特斯拉计的读数值,读数值为最大时传感器的法线方向,即为该点的磁感应强度方向。比较轴线上的点与远离轴线点磁感应强度方向变化情况。近似 画出载流亥姆霍兹线圈磁感应线分布图。 九、实验数据例(仅供参考)

(注:本实验数据引自复旦大学物理系98级学生测量结果)

(1)载流圆线圈a 轴线上不同位置磁感应强度)(a B 的测量结果见表1,这里电流mA I 100=,线

圈平均半径cm R 00.10=,线圈匝数500=N ,并且真空磁导率m H /1047

0-?=πμ。

表1.

这里电流mA I 100=,线圈平均半径cm R 00.10=,线圈匝数500=N ,并且真空磁导率

m H /10470-?=πμ。

根据毕奥—萨伐尔定律,载流圆形线圈在线圈轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为:

I N x R R B ?+?=

2

/322

2

0)

(2μ

式中R 为线圈的平均半径,N 为线圈匝数,I 为通过线圈的电流强度,x 为圆心到该点的距离。因此,圆心处的磁感应强度为:

I N R

B ?=

20

在cm x 00.0=处,

mT I N R a B 314.01000

.02100

.05001042)(70

0=????=?=-πμ

实验测量值mT a B 316.0)(0='

,两者百分误差等于%64.0。 在cm x 00.5=处,

mT I N x R R a B 2248.0)0500.0100.0(2100

.0500100.0104)(2)(2

/322272/3222

05=+????=?+?=

-πμ

测量值mT a B 225.0)(5='

,两者间百分误差极小,小于%3。 (2)直流电通过亥姆霍兹线圈,证明磁场迭加原理成立。

亥姆霍兹线圈通过I=100mA 直流电流,两线圈间距d=R =10.00cm 。取两线圈轴线中心点为原点。轴线为轴,所得数据见表2,其中a 表示一个单线圈,b 表示另一个单线圈,(a+b)表示亥姆霍

兹线圈。

表2

表2(续)

从表2中数据看出)()(b B a B +值与)(b a B +值在误差范围内相当一致,说明磁场满足迭加原理。坐标cm 50.2-至cm 50.2之间为均匀磁场;在cm x 00.0=处,测得磁感应强度

mT B 449.0=实验,而该点磁感应强度的理论计算值为:

mT R I

N B 450.01000.0100.05001045

85

872/302

/3=???=???

=

-πμ理论

实验结果和理论计算相当一致,百分误差小于%1。

(3)改变两线圈间距d ,使两线圈间距分别为2/R d =,R d =,R d 2=,测量轴线上不同位置的磁感应强度,所得数据描绘后如图2所示:

十、注意事项

SS95型集成霍耳传感器,灵敏度高,因而地磁场对实验影响不可忽略,1.实验探测器采用配对A

移动探头测量时须注意零点变化,可以通过不断调零以消除此影响;

2.接线或测量数据时,要特别注意检查移动两个线圈时,是否满足亥姆霍兹线圈的条件;

3.两个线圈采用串接或并接方式与电源相连时,必须注意磁场的方向。如果接错线有可能使亥姆霍

兹线圈中间轴线上磁场为零或极小。

参考资料:

贾起民郑永令《电磁学》复旦大学出版社

(20100318修订)

FD-HM-I亥姆霍兹线圈磁场测定仪说明书(100318修订)

FD-HM-I 亥姆霍兹线圈磁场测定仪 一、概述 亥姆霍兹线圈磁场测定仪是综合性大学和工科院校物理实验教学大纲重要实验之一。该实验可以学习和掌握弱磁场测量方法,证明磁场迭加原理,根据教学要求描绘磁场分布等。传统的亥姆霍兹线圈磁场测量实验,一般用探测线圈配以指针交流电压表测量磁感应强度。由于线圈体积大,指针式交流电压表等级低等原因,测量的误差较大。 近年来,在科研和工业中,集成霍耳传感器由于体积小,测量准确度高,易于移动和定位,所以被广泛应用于磁场测量。例如:A SS 95型集成霍耳传感器就是一种高灵敏度的优质磁场传感器,它的体积小(面积mm mm 34?,厚mm 2),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特计,可以准确测量mT 000.20~的磁感应强度,其分辨率可达T 6 101-?。因此,用它探测载流线圈及亥姆霍兹线圈的磁场,准确度比用探测线圈高得多。用高灵敏度集成霍耳传感器测量T T 3 5 102101--??~弱交、直流磁场的方法已在科研与工业中广泛应用。 本仪器采用先进的95A 型集成霍耳传感器作探测器,用直流电压表测量传感器输出电压,探测亥姆霍兹线圈产生的磁场,测量准确度比探测线圈优越得多,仪器装置固定件牢靠,实验内容丰富。 本仪器经复旦大学物理实验教学中心使用,取得良好的教学效果。 二、原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: I N x R R B ?+?= 2 /322 2 0) (2μ (1) 式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N R B ?= 20 0μ (2)

水分检测仪中文操作手册

1 HALO-H2O 超高精度高纯气体微量水分仪用户操作手册 指导手册 M7000 系列 版本 B

2 重要标识 这个警告标志提醒用户人身安全 这是高压标志提示有高压存在 这个警告标志提醒用户有激光射线存在 警告标签 注意:在操作HALO-H2O之前请确认已阅读手册中所有的警告注释,为了您的使用方便我们已经列出所有的警示信息,您必须在操作仪器之前通读此手册,否则可能对仪器造成损害。  使用有毒,易燃易爆或混合后易爆气体(如氢气和氧气混合)之前,请先用惰性气体彻底吹扫管路,否则气体管路中的残余气体可能会引起爆炸等危险,对仪器造成损害。  使用合格的独立电源线(1米,120V或220V, 2极3相电源,接地,耐压15A)  在进行任何维修维护装箱之前,请切断电源

3 目录 1. 规格和图表 1.1 规格 1.2 尺寸图 1.3 单HALO-H2O 尺寸图 1.4 HALO-H2O 前面板 1.5 HALO-H2O 后面板 2. 安装HALO-H2O 2.1 总论 2.2 拆包 2.3 产品序列号 2.4 采样管路的准备 2.5 组装采样管路 2.6 采样管路渗漏试验 2.7 HALO-H2O 的放置 2.8 排空压力的考虑 2.9 采样管路进口和出口的连接 2.10 封盖采样管路进口和出口,防止污染 2.11 连接考虑 3. 启动和操作 3.1 介绍 3.2 用户界面 3.3 操作模式 3.4 其他工具栏功能 4. 远程操作 4.1 概述 4.2 界面连接 4.3 指令 5. 发现并修理故障及日常维护 5.1 概述 5.2 定期检修 5.3 故障指南

红外线水分测定 说明书

SFY-20红外线快速水分测定仪 使用说明书 上海高致精密仪器有限公司 第一章概述 首先感谢您选用本公司生产的SFY-20红外线快速水分测定仪。请您在使用前详细阅读本说明书, 1.1用途、特点 SFY-20红外线快速水分测定仪,采用热解重量原理设计的,是一种新型快速水分检测仪器。水分测定仪在测量样品重量的同时,红外加热单元和水分蒸发通道快速干燥样品,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。与国际烘箱加热法相比,红外加热可以最短时间内达到最大加热功率,在高温下样品快速被干燥,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。一般样品只需几分钟即可完成测定。该仪器操作简单,测试准确,显示部分采用红色数码管,示值清晰可见,分别可显示水分值,样品初值,终值,测定时间,温度初值,最终值等数据,并具有与计算机,打印机连接功能。因此该水分仪可广泛应用于一切需要快速测定水分的行业,如医药,粮食、种子,菜籽,烟草,化工,茶叶,食品、肉类、种子、石墨、油墨、锯末、沙土、砂石以及纺织,农林、造纸、橡胶、塑胶等行业中的实验室与生产过程中。 1.2 SFY-20主要技术指标 水分测定范围(%): 0.01%-100% 测定试样重量(g): 0-90 最大称重量:(g): 20 称量最小读数(g): 0.001 水分含量可读性(%): 0.01 温度设定范围(℃):室温-160 显示参数: 7种 通讯接口:标准RS232接口 波特率:9600/S比特 通讯方式:MCS51系列单片机通讯方式2。 供电电源:电压220v±10%频率50HZ±1HZ 试样温度:-40℃-50℃ 工作环境温度:-5℃-50℃ 相对湿度:≤80%RΗ 外形尺寸:380mm×205mm×325mm 净重量:3.7kg 1

杜海龙 21102019 计算电流线圈产生的磁场

求截面为矩形的圆线圈周围产生的磁场 一、数值方法 (一)数学模型:所研究的电流圆线圈产生磁场的问题在柱坐标系下研究, 根据磁场强度跟矢势之间的关系,得到磁场; 磁场为B ,矢势为A B A =?? r r z z A A e A e A e θθ=++ A e θθ= (,)A r z e θθ= (由A 具有轴对称得到) 所以B A =?? A e θθ=?? 在柱坐标系中,由公式1()()11()()r r z z z r r z r z f f e f e f e f f f r z f f f z r f f rf r r r θθθ θθθθ ?=++??????=-?????????=-?????? ???=-???? -得 B A =?? 1()r z f e rf e z r r θθ?? =-+?? 即r A B z θ ?=-?,1()z B rA r r θ? =? (1)先求矢势A 4L Idl A r μπ=? 一个电流为I ,半径为a 的线圆环周围空间产生的磁场,其矢势表示为 202220cos (,)42cos Ia A r z d r z a ar πθμ? ?π?=++-? 推广到截面为矩形的圆环线圈中 22 11202220 cos (,)4()2cos R z R z I r A r z d dz dr s r z z r r r πθμ? ?π?'''='''+-+-??? 其中S 为矩形截面的面积,12,R R 为矩形截面的两边距圆环中心的距离,12,z z 为矩形截面的上下面的z 轴坐标。 (二)数值模型离散化(均匀网格有限差分) (1)高斯方法计算三重积分(参考书:徐士良常用算法程序集第二版)

KF-1水分测定仪说明书共6页

KF-1型水分测定仪说明书 一、原理 本仪器为卡尔费休(Kart fischer)滴定法测定水分仪器,采用“永停法”来确定终点:根据半电池反应:I2+2E=2I 溶液中同时存在I2及I时上述反应分别在两个电极上进行,即在一个电极上I2被还原,而在另一个电极上I被氧化,因此在两个电极之间有电流通过。如果溶液中只有I而无I2则电极间无电流通过。当滴定终点时溶液中有微量卡尔费休试剂存在才有I及I2同时存在,这时溶液导电,电流表指针偏转,指示达到终点。 反应式:I2+SO2+3C5H5N+CH2→2C4H5.HSO4CH3 根据滴定反应中消耗的碘来计算水分 二、仪器的性能及适用范围 1、仪器性能 A电源:220V±10% 50HZ B相对湿度:小于80% C环境湿度:5摄氏度-40摄氏度 D测量范围:1ppm-100ppm E相对误差:小于等于3%(平行测定以水为标准样品,测定卡氏试剂的水当量)注意:它的水当量必须大于等于3.00毫克/毫升 2、适用范围 本仪器主要用于测定化肥,医药。化工原料及其他工业产品的水分含量。一般测定水分含量在0.1%-10%时用10ml自动滴定管(最小分度为0.05ml)

根据资料及美国材料协会标准ASTM,使用卡氏法可直接测定的化合物包括: 有机化合物-饱和的不饱和碳化物,缩醛,酸类,酰基卤,醇类,稳定的酰,酰胺,弱的胺,酐,二硫化物,酯类,醚卤化物,碳氢化合物,稳定的酮,过氧化物,原酸酯,亚硫酸盐,硫氢酸盐及硫醚。 无机化合物-酸,酸性氧化物,氧化铝,酐,过氧化钡,碳化钙,氧化铜,干燥剂,硫酸肼,部分有机盐和无机盐。 采用KF-1型自动水分测定仪,可达到与国外仪器同样的效果,本产品经辽宁省江苏省上海市等各药检所与瑞士(METTLE)公司生产的DL-18型做对比测试,验证,具有同样的准确性和稳定性,而价格仅为进口仪器的百分之五,可以称为国产唯一准确,可靠,经济实惠的卡氏水分测定仪器。并被许多行业推荐为贯彻国家标准的仪器,其生产计量许可证批号为011 30020号。 该仪器曾获市产品稳定证书,市星火杯奖,近又获上海市质量技术监督局颁发的计量合格确认单位,质量、信誉双保障示范单位并荣获中国质量万里行荣誉证书。 三、仪器特点 1、电源电压为220V,经过变化整流,稳压保证仪器的稳定。 2、电磁搅拌器采用进口直流电机无极调速,搅拌速度可以任意调节。 3、滴定系统采用标准磨口,便于不同容量规格的滴定系统互换使用。 4、用空气加压排除反应瓶中的废液,操作方便,整个操作过程在密闭 系统中进行,安全可靠。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

亥姆霍兹线圈磁场实验

亥姆霍兹线圈磁场实验 实验名称:亥姆霍兹 日期: 2017.3.8 专业班级:环境工程163班 试验人: 李璐驿 学号:58021161000 指导老师: 钟双英 实验目的 (1) 学习感应法测量磁场的原理和方法; (2) 研究研究亥姆霍兹线圈周线上的磁场分布. 主要仪器 磁场测试仪、亥姆霍兹线圈架和亥姆霍兹磁场实验控制箱.工作温度10~35℃,相对湿度25%~75%. 两个励磁线圈各500匝,圆线圈的平均半径105R =mm,两线圈中心间距105mm.感应线圈距离分辨率0.5mm. 实验原理 一、 载流圆线圈与亥姆霍兹线圈 1、载流圆线圈磁场 半径为R 通以电流为I 的圆线圈,周线上磁场的公式为 ) (2222 320 X R R N I B += μ 式中0N 为线圈的匝数;x 为轴上某一点到圆心O 的距离;710410H m μπ-=??.本次实验取I=200mA. 2、亥姆霍兹线圈 两个相同线圈彼此靠近,使线圈上通以同向电流理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合场在轴附近较大范围内是均匀的.这时线圈称为亥姆霍兹线圈,如图所示. 实验内容 1. 测量亥姆霍兹线圈周线上的磁场分布 2. 验证公式cos m m NS B εωθ= 3. *研究励磁电流频率改变对磁场强度的影响 数据记录与处理: 表 1

X/mm -50 -45 -40 -35 -30 -25 -20 B/mT 0.422 0.447 0.468 0.489 0.508 0.528 0.546 X/mm -15 -10 -5 0 5 10 15 B/mT 0.558 0.568 0.576 0.580 0.579 0.574 0.565 X/mm 20 25 30 35 40 45 50 B/mT 0.555 0.540 0.520 0.502 0.481 0.464 0.436 单线圈 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 表二 X/mm -100 -90 -80 -70 -60 -50 -40 B/mT 0.553 0.615 0.672 0.723 0.761 0.805 0.835 X/mm -30 -20 -10 0 10 20 30 B/mT 0.846 0.855 0.853 0.853 0.850 0.846 0.844 X/mm 40 50 60 70 80 90 100 B/mT 0.828 0.802 0.764 0.722 0.667 0.602 0.548

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

KF-1B型水份测定仪说明书

KF-1B水份测定仪说明书 一、原理: 本仪器为卡尔·费休(Kart Fischer)容量滴定法测定水份含量的仪器,采用“永停法”来确定终点,。 根据半电池反应:I2+2e<=>2Iˉ 溶液中同时存在I2及Iˉ时上述反应分别在两个电极上进行,既在一个电极上I2被还原,而再另一个电极上Iˉ被氧化,因此在两个电极之间有电流通过。如果溶液中只有Iˉ而无I2则电极间无电流通过。 当滴定终点时溶液中有微量卡尔·费休试剂存在,即有Iˉ及I2同时存在,这时溶液导电,仪器显示滴定到达终点。 反应式:I2+SO2+3C5H5N+CH3OH+H2O→2C4H5N.HI+C5H5N.HSO4CH3 根据滴定反应中所消耗的卡尔·费休试剂量来算出样品中水份的含量。 二、仪器性能及适应范围: 1、仪器性能: a、测量范围:30×10ˉ6~100%。 b、以水为标样,测定卡尔·费休试剂的水当量,平行测定相对误差≤5%。 c、电源电压:交流220±10%。 2、适应范围: 本仪器主要用于测定化肥、医药、食品、轻工、化工原料以及其它工业产品中的水份含量。 根据资料及美国材料协会标准ASTM,使用卡尔·费休法可直接测定的化合物包括: 有机化合物-饱和的不饱和的碳氢化合物,缩醛、酸类、酰基卤、醇类、稳定的酰、酰胺、弱的胺、酐、二硫化物、酯类、醚卤化物、碳氢化合物,稳定的酮、过氧化物,原酸酯,亚硫酸盐、硫氰酸盐及硫醚等。 无机化合物-酸、酸性氧化物、氧化铝、酐、过氧化钡、碳化钙、氧化铜、干燥剂、硫酸肼、部分有机和无机酸的盐等。 测定水份含量在0.1%-10%时,选用10毫升滴定管(最小分度为0.05毫升)。 测定水份含量<0.1%时,应适当增大取样量并可选用5毫升或2毫升滴定管(最小分度为0.02毫升)。 测定水份含量>10%时,应适当减小取样量并可选用25毫升滴定管(最小分度为0.05毫升)。

实验十一亥姆霍兹线圈磁场测定全解

实验十一 亥姆霍兹线圈磁场测定 一、概述 亥姆霍兹线圈磁场测定仪是综合性大学和工科院校物理实验教学大纲重要实验之一。该实验可以学习和掌握弱磁场测量方法,证明磁场迭加原理,根据教学要求描绘磁场分布等。传统的亥姆霍兹线圈磁场测量实验,一般用探测线圈配以指针交流电压表测量磁感应强度。由于线圈体积大,指针式交流电压表等级低等原因,测量的误差较大。 近年来,在科研和工业中,集成霍耳传感器由于体积小,测量准确度高,易于移动和定位,所以被广泛应用于磁场测量。例如:A SS 95型集成霍耳传感器就是一种高灵敏度的优质磁场传感器,它的体积小(面积mm mm 34?,厚mm 2),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特计,可以准确测量mT 000.20~的磁感应强度,其分辨率可达 T 6101-?。因此,用它探测载流线圈及亥姆霍兹线圈的磁场,准确度比用探测线圈高 得多。用高灵敏度集成霍耳传感器测量T T 35102101--??~弱交、直流磁场的方法已在科研与工业中广泛应用。 本仪器采用先进的95A 型集成霍耳传感器作探测器,用直流电压表测量传感器输出电压,探测亥姆霍兹线圈产生的磁场,测量准确度比探测线圈优越得多,仪器装置固定件牢靠,实验内容丰富。 本仪器经复旦大学物理实验教学中心使用,取得良好的教学效果。 二、原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: I N x R R B ?+?= 2 /3222 0)(2μ (1) 式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N R B ?= 20 0μ (2)

快速水分仪标准操作指南

快速水分仪标准操作指南 规范快速水分仪的操作方法,使水分仪发挥更大的作用。 一、快速水分仪结构图示 二、适用范围 本水分仪适用于一切需要快速测量水分的行业,如医药、粮食、烟草、化工、茶叶、食品、纺织、农历等。该仪器可与计算机通讯,,并通过计算机把测试水分数据结果打印出来,也可以通过选配的打印机把测试水分数据结果打印出来。 三、工作原理 采用干燥失重法原理。在干燥过程中,快速水分测定仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。与国际烘箱加热法相比,混合加热可以在高温下将样品均匀地快速干燥,样品表面不易受损,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。智能化操作,一般样品只需几分钟即可完成测定,是一种新型的快速检测仪器。 四、操作方法 A、开机 开箱后,检查配件是否遗漏。然后把仪器连上220v交流电源,掀开加热装置,在样品仓内依次放入三角支架、托架、样品盘,再打开仪器电源开关,仪器进入自检状态(9,8,7,6……)。注意,仪器第一次使用时,应该预热半小时。 B、准备样品 准备好待测样品,大颗粒状的固体样品应该处理成粉状或小条状。 C、测试步骤 在测试前,应根据厂家提供的测试条件,提前设置好温度、时间等参数。然后取适量的

处理过的样品,均匀的平铺于样品盘中,按“测试”键,仪器开始自动工作。测试完成后,仪器发出响声,提醒操作人已经测试完成,这时按下“显示”键,解除警报。连续按“显示”键,可依次显示“水分值”“现时重量”“初始重量”“测试时间”“判别时间”,可记录数据。 在进行下一次测试之前,需要待仪器冷却到室温后,在进行测试。 D、用注意事项 1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。 2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。 3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。 4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压、冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。 5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。 6.测定后须待称量盘完全冷却后,再放入下一个试样。 五、相关资质 专利号:2005301013706 《中华人民共和国制造计量器具许可证》MC粤制03000235号; 通过ISO9001:2008质量管理体系认证。

圆线圈和亥姆霍兹线圈的磁场

圆线圈和亥姆霍兹线圈的磁场 磁场测量是磁测量中最基本的容,最常用的测量方法有三种;感应法、核磁共振法和霍尔效应法。本实验要求学生用霍尔效应法测量载流亥姆霍兹线圈的磁感应强度沿轴线的分布。 〔实验目的〕 1.掌握弱磁场测量原理及如何用集成霍尔传感器测量磁场的方法。 2.验证磁场迭加原理。 3.学习亥姆霍兹线圈产生均匀磁场的特性。 〔实验原理〕 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图3.14.1所示。 根据毕奥-萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R R B ?+?= 2 /322 2 0) (2μ (3.14.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.14.2) 轴线外的磁场分布情况较复杂,这里简略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.14.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B '为 3/23/22222201222R R B N I R R x R x μ--????????????'=???++++-?????? ? ????????????????? (3.14.3) 在亥姆霍兹线圈轴线上中心O 处磁感应 强度大小'0B 为 003/2 85N I B R μ??'= (3.14.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴线上任一点的磁感应强度大小B ''为 3/23/22222201222d d B N I R R x R x μ--????????????''=???++++-?????? ? ????????????????? (3.14.5) 四、霍尔传感器 1.霍尔传感器

《大学物理实验》2-11实验十一 亥姆霍兹线圈磁场测定

实验十一 圆线圈和亥姆霍兹线圈磁场测定 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N 匝的圆环电流。 当它们的间距正好等于其圆环半径R 时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1.学习和掌握弱磁场测量方法, 2.验证磁场迭加原理, 3.描绘载流圆线圈和亥姆霍兹线圈轴线磁场分布。 二、实验原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点(如图1所示)的磁感应强度为: 2 0223/2 2()R B N x μ?= +I ? (1) 式中0μ为真空磁导率, R 为线圈的平均半径,x 为圆心到该点P 的距离,为线圈匝数,N I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N B ?= 200μ (2) (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈(如图2所示),两线圈内的电流方向一致,大小相同,线圈之间的距离正好等于圆形线圈的半径d R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,设x 为亥姆霍兹线圈中轴线上

某点离中心点处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: O ?? ???????????????????????++??????????????++=??2/3222/322 202221x R R x R R NIR B μ (3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 为: ' 00 3/285N I B R μ??= (4) 三、实验仪器 FD—HM—Ⅰ圆线圈和亥姆霍兹线圈实验平台, 毫特斯拉计,三位半数字电流表及直流稳流电源组合仪一台;传感器探头, 电源线 1根,连接线 4根,不锈钢直尺 1把,铝合金靠尺1把。 图3 实验装置图 1-毫特斯拉计,2-电流表,3-直流电流源,4-电流调节旋钮, 5-调零旋钮,6-传感器插头, 7-固定架, 8-霍耳传感器, 9-大理石台面, 10、线圈, 注:A、B、C、D 为接线柱 四、实验内容和步骤 1.仪器调试 (1)开机后应预热10分钟,再进行测量; (2)将两个线圈和固定架按照图3所示简图安装。大理石台面(图3中9所示有网格线的平面)应该处于线圈组的轴线位置。根据线圈内外半径及沿半径方向支架厚度,

水分测定仪的原理和使用方法

水分测定仪(水分测定仪怎么分类): 能够检测各类有机及无机固体、液体、气体等样品中含水率的的仪器叫做水分测定仪,按测定原理可以分类物理测定法和化学测定法两大类。物理测定法常用的有失重法、蒸馏分层法、气相色谱分析法等,化学测定方法主要有卡尔费休法(Karl Fischer)、甲苯法等,国际标准化组织把卡尔费休(Karl Fischer)方法定为测微量水分国际标准,我们国家也把这个方法定为国家标准测微量水分。 常见的失重法水分仪有卤素水分测定、红外水分测定仪、微波水分测定仪等; 常见的卡尔费休水分测定仪主要有容量法卡尔费休水分测定仪和库仑法(电量法)卡尔费休水分测定仪。 另外还有便携式水份测定仪 红外线水分测定仪: 红外线水分测定仪,采用热解重量原理设计的,是一种新型快速水分检测仪器。水分测定仪在测量样品重量的同时,红外加热单元和水分蒸发通道快速干燥样品,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。与国际烘箱加热法相比,红外加热可以最短时间内达到最大加热功率,在高温下样品快速被干燥,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。一般样品只需几分钟即可完成测定。

仪器操作简单,测试准确,显示部分采用红色数码管,示值清晰可见,分别可显示水分值,样品初值,终值,测定时间,温度初值,最终值等数据,并具有与计算机,打印机连接功能。 水分仪可广泛应用于一切需要快速测定水分的行业,如医药,粮食、饲料、种子,菜籽,脱水蔬菜、烟草,化工,茶叶,食品、肉类以及纺织,农林、造纸、橡胶、塑胶、纺织等行业中的实验室与生产过程中。

驱动高频亥姆霍兹线圈的三种方法探讨研究

驱动高频亥姆霍兹线圈的三种方法探讨研究 诸如磁场感应、校准和科学实验的许多应用都经常用高频亥姆霍兹线圈来产生均匀但随时间变化的高频磁场。产生这样的磁场需要用到高频亥姆霍兹线圈驱动器。因为磁场密度正比于电流,所以为了产生大的磁场,需要产生大的电流。然而,在高频情况下线圈阻抗也变成高阻抗了。 对于一个给定的驱动器电压幅度,线圈电流反比于线圈阻抗。因此影响磁场的两个相反因素是电流和频率。实现高频磁场是很困难的。本文讨论了三种帮助高频亥姆霍兹线圈产生强磁场的技术。 高频亥姆霍兹线圈基础 亥姆霍兹线圈是因德国物理学家Hermann von Helmholtz而命名的,由两个完全相同且并行放置的电磁线圈组成,这两个线圈中心在同一轴线上,就像镜像一样,如图1所示。当电流以相同方向经过这两个高频亥姆霍兹线圈时,就会在线圈内的三维空间内产生一个高度均匀的磁场。这些亥姆霍兹线圈经常用于抵消背景(地球)磁场、测量和校准,以及电子设备敏感性测试中的磁场。 图1:单轴高频亥姆霍兹线圈由一对半径为R、间距等于R的两个线圈组成。 亥姆霍兹线圈的设计和制造 高频亥姆霍兹线圈是由两个线圈搭建而成的。因为两个磁性线圈设计成完全相同,因此当线圈半径等于间隔距离时就能产生均匀的磁场。这两个线圈以串联的方式连接在一起,因此给它们馈送的电流相同,从而产生两个相同的磁场。这两个磁场叠加在一起就会在两个并行线圈中心的圆柱形空间中产生均匀的磁场。 这个圆柱形空间的均匀磁场约等于25%的线圈半径(R),长度等于两个线圈之间间距的50%。高频亥姆霍兹线圈可以做成1、2或3轴。多轴磁性线圈可以在亥姆霍兹线圈对内部的三维空间内产生任意方向的磁场。最常见的高频亥姆霍兹线圈是圆形的。方形的亥姆霍兹线圈也经常使用。

Sh10A型水份测定仪说明书

一、仪器的用途 本仪器可供工矿企业、农业、科研机构的试验室需要对化工、制药原料、燃料、成品、半成品、颗粒或粉状及谷物、土壤、造纸、食品、茶叶等所含的游离水分进行测试,它们的含水量大多是一项重要的技术经济指标,Sh10A型烘干法水分测定仪对于试样能够经受红外线辐射波照射而不至于被挥发或分解的物质均能使用本仪器,并能及时指导生产。 二、主要技术参数 最大载荷10g 定时器范围0~30min 微分标尺分度值5mg 恒温精度±2℃ 微分标尺读数范围0~1g 秤盘直径φ100mm 准确度等级一级电源及功耗220V/50Hz 260W 调温范围80~160℃外形尺寸28×37.5×56cm 重量(净量)12kg 三、仪器原理与结构 Sh10A型烘干法水分测定仪是根据称重法和烘箱法原理设计,将物质在烘干前和烘干后的质量进行比较,以得到物质内所含水分的百分比。本仪器由单盘上皿式天平、红外线干燥箱及电器控温三大部件组成,天平的秤盘置于红外线干燥箱内,当试样物质受穿透性强的红外线辐射波热能后,游离水分迅速蒸发,当试样物中的游离水分充分蒸发后,通过天平的光学投影装置,可直接读出试样物质含水率的百分比。烘干速度快,重复性好,控温电路采用半导体热敏电阻及可控硅控温线路,其升温速度快,恒温性能好,电网电压波动时对温度变化影响小,该仪器还装有定时器及报警装置,操作简单。 图一、图二、图三为仪器结构示意图。

1. 投影屏11.支架21.光学柱 2. 控温旋钮12.横梁22.秤盘 3. 定时旋钮13.大平衡螺母23.秤盘架 4. 电源开关14.指针24.小平衡螺母 5. 垫脚15.光源灯座25加码盘 6. 水平调整脚16.光源灯支架26.阻尼片 7. 水准器17.集光镜 8. 天平开关旋钮18.微分标尺 9. 电源插头19.物镜筒 10.重心铊20.上三棱镜

亥姆霍兹线圈磁场 南昌大学 物理实验(可打印修改) (2)

南昌大学物理实验报告 课程名称:普通物理实验(1) 实验名称:亥姆霍兹线圈磁场 学院:理学院专业班级:应用物理学152班学生姓名:学号: 实验地点:基础实验大楼B212 座位号:26 实验时间:第七周星期四上午十点开始

一、实验目的: 1.学习和掌握霍尔效应原理测量磁场的方法。 2.测量载流圆线圈和亥姆霍兹线圈轴线上的磁场分布。 二、实验原理: 1.载流圆线圈与亥姆霍兹线圈的磁场(1)载流圆线圈磁场 根据比奥-萨伐尔定律,载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点磁感应强度B 为 (1) 2 3222 00)(2x R IR N B += μ式中为真空磁导率,R 为线圈的平均半径,为圆线圈的匝数,I 通过线圈的电流x 为轴线上某H/m 10π47-0?=μ0N 一点到圆心O 的距离.因此它在轴线上磁场分布图如图(1)所示。 (2)亥姆霍兹线圈 所谓亥姆霍兹线圈是两个相同的圆线圈,彼此平行且共轴,通以同方向电流I ,理论计算证明:当线圈间距a 等于线圈半径R 时,两线圈合磁场在轴线上(两线圈圆心连线)附近比较大范围内是均匀的,如图(2)所示.这种均匀磁场在工程运用和科学实验中应用十分广泛。

1.测量圆电流线圈轴线上磁场的分布 (1)仪器使用前,请先开机预热5min接好电路,调零. (2)调节磁场实验仪的输出功率,使励磁电流有效值为I=200mA,以圆电流线圈中心为坐标原点,每隔10.0 B mm测一个值,测量过程中注意保持励磁电流值不变,记录数据并作出磁场分布曲线图. m 2.测量亥姆霍兹线圈轴线上磁场的分布 (1)关掉电源,把磁场实验仪的两组线圈串联起来(注意极性不要接反),接到磁场测试仪的输出端钮,调零. (2)调节磁场测试仪的输出功率,使励磁电流有效值仍为I=200mA,以两个圆线圈轴线上的中心点为坐标原点,B 每隔10.0 mm测一个值.记录数据并作出磁场分布曲线图. m 五、实验数据与处理: 1.圆电流线圈轴线上磁场分布的测量数据(注意坐标原点设在圆心处,要求列表记录,表格中包括测点位置,并在表格中表示出各测点对应的理论值),在坐标纸上画出实验曲线。 ≈ Bmax时,记录x53.0mm x/mm010******** △x/mm-53-43-33-23-13-3 Bm/mT 测量值0.4190.4620.5020.5360.5550.564 Bm/mT 标准值0.4250.4740.5190.5570.5840.597 Bm/mT 误差值0.0060.0120.0170.0210.0290.033 x/mm60708090100110 △x/mm71727374757 Bm/mT 测量值0.5560.5330.5000.4600.4150.368 Bm/mT 标准值0.5940.5750.5440.5020.4550.406 Bm/mT0.0380.0420.0440.0380.0400.038

红外线水份测定仪说明书

红外线水份测定仪说明书 首先感谢您选用本公司生产的《冠亚牌》快速水分测定仪。请您在使用前详细阅读本说明书,如有疑问,可与本公司取得联系。 一、用途、特点 《冠亚牌》SFY-20E红外线水份测定仪,是一种新型快速水分测定仪器,可用来测定任何物质的水分含量(通过加热发生危险化学反应的物质除外),该仪器采用热解重量设计原理,仪器测量样品重量的同时,加热单元和水分蒸发通道快速干燥样品.在干燥过程中,仪器持续测量并即时显示干燥过程中样品丢失的水分含量%,干燥完成后,最终测定的水分含量锁定,按显示键可显示水分值、重量初始值、现时值、测试时间等数据.与传统的烘箱加热法相比,新型加热装置可在最短时间达到最大加热功率,可使样品在高温下快速被干燥,大大减少了测定时间.该仪器可用于一切需要快速准确测量水分的行业。 二、SFY-20E红外线水份测定仪技术参数 1、称重范围:0-90g 2、水分测定范围:0.01-100% 3、样品质量:0.1-90g 4、加热温度范围:起始-205℃ 加热方式:可变混合式加热微 调自动补偿温度最高15℃5、水分 含量可读性:0.01% 6、显示参数:7种 红色数码管独立显示模式 7、外型尺寸:380×205×325(mm)

8、电源:220V±10% 9、频率:50Hz±1Hz 10、净重:3.7Kg 三、红外线水份测定仪仪器特点 检测速度快,只需几分钟,创行业之最; 采用最新一代传感技术,快速、简便,一键式操作; 操作简单,全自动操作模式,无可动部件; 关键零部件均采用纯进口高端材料,以保证产品检测结果的准确性; 零易损件,样品盘采用耐酸耐碱耐变形的纯不锈钢材料,无易耗品,样品盘克循环利用; 采用特质的环形卤素光源,加热均匀,加热器更耐用; 四、键盘操作(主要按键操作) 1、校准 该校准功能是专门用来校准称重系统的,显示窗零位状态下,按“校准”键,仪器显示“—20—”,此时把20克砝码放到称量盘上,等待几十余秒,直到仪器显示砝码重量(即20.000或20.00),此时校准完成。 2、置零

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

COMSOL-4.4-模拟螺线管线圈产生的磁场分布

COMSOL 4.4 螺线管线圈产生的磁场分布 1.模型向导>三维>选择物理场,添加“磁场(mf)”和“电路(cir)”,“求解”中选择“瞬态”,然后“完 成”。 2.“几何”里面长度单位设置为所需单位,此处设置为“mm”。在“几何”菜单中点击“工作平面”,右 击“模型开发器”中的“几何1”>“工作平面1”>“面几何”,选择“圆”,设置“圆”的参数:对象类型选为“曲线”,位置选择“中心”,“层”中的“层1”厚度设置为线圈的厚度,如1mm。 3.关闭“工作平面”,点击“几何菜单”中的“拉伸”: 4.设置外界空气: “几何”菜单中选择“长方体”,设置好参数,在“图像”工作区点击“线框渲染”工具,得到如下图:

5.右击“模型开发器”中的“定义”>“视图1”,选择“隐藏几何实体”,在“隐藏几何实体”编辑区, 选择“几何实体层次”中的“边界”,手动选择需要隐藏的边界:长方体的六个面,则可以得到下图: 6.定义各个域和边界: 定义线圈:点击“定义”菜单栏中的“显示”,“模型开发器”中的“定义”下面会出现“显示1”,右击并重命名为“线圈”,然后在“显示”工作区将“几何实体层次”选择为“域”,再选择图中看到的圆筒,此时圆筒有四个域,由于圆筒与后来的长方体重合,所以长方体现在变成了“域1”,而圆筒变成了“域2,3,4,5”:

定义线圈边界:同样的方法在“定义”中得到“显示2”,并重命名为“线圈边界”,在“显示”编辑区的“几何实体层次”中选择“边界”,并在图形中选择圆筒的各个边界,此时圆筒中的四个域中接触面也算一个边界。本例中可以在“显示”编辑区点击“粘贴选择”按钮,输入“7-14,16-19,21-14”,点击“确认”。 定义空气:同样的方法,选择“域1”位空气,就是刚刚建立的长方体,此时空气的边界已被隐藏,所以此处看不见长方体。

相关文档
相关文档 最新文档