文档库 最新最全的文档下载
当前位置:文档库 › 磷酸镁水泥耐水性的影响因素与改进措施

磷酸镁水泥耐水性的影响因素与改进措施

磷酸镁水泥耐水性的影响因素与改进措施
磷酸镁水泥耐水性的影响因素与改进措施

水泥凝结时间的测定及影响因素分析

水泥凝结时间的测定及影响因素分析水泥凝结时间的测定及影响因素分析 2011年08月遑相国蓑旆质检?教学?研究水泥凝结时间的测定及影响因素分析 罗晓卿 (厦门合诚工程检测有限公司) 摘要:本人根据自己近年来积累的工作经验,主要针对影响测定水泥凝结时间的因素进行了分析,并提出一些问题和相应对策. 关键词:凝结时间;测定;影响因素 1定义与意义 1.1水泥凝结时间的定义 水和水泥混合后,从最初的可塑状态逐渐成为不可塑状态,要经历一 定的时间,水泥的凝结时间就是这种过程时间长短的一种定量的表示方法.它以标准试针沉入标准稠度水泥净浆达到一定深度所需的时间来表示,并分为初凝时间和终凝时间.初凝时间是指从水泥全部加入水中到水泥浆开始失去塑性所需的时间.终凝时间是指从水泥全部加入水中到完全失去塑性所需的时间. 1.2水泥凝结时间的长短对水泥混凝土的施工的重要意义试验检测工作对保证工程施工质量具有重要意义,试验数据的准确与否关系到工程施工质量的好坏,试验结果的好坏是监理工程师评判工程质量的依据,因此加强施工过程中的试验监理工作是非常重要的. 水泥凝结时间的长短对水泥混凝土的施工有着重要意义.初凝时间太短,不利于整个混凝土施工工序的正常进行;但终凝时间过长,又不利于混凝土结构的形成,模具的周转,以及会影响到养护周期时间的长短等.因此,水泥凝结时间要求初凝时间不宜过短,终凝时间不宜过长.准确测定水泥凝结时间,不但反

映了水泥质量是否符合有关技术要求,而且为施工单位决定现场施工进度提供了必要的信息.因此检验水泥的凝 结时间的准确性至关重要. 2水泥凝结时间的测定 2.1测定前准备工作 调整凝结时间测定仪的试针接触玻璃板时,指针对准零点. 2.2试件的制备 以标准稠度用水量制成标准稠度净浆一次装满试模,振动数次刮平,立即放入湿气养护箱中.记录水泥全部加入水中的时间作为凝结时间的起始时间. 2.3初凝时间的测定 试件在湿气养护箱中养护至加水后30min时进行第一次测定.测定时,从湿气养护箱中取出试模放在试针下,降低试针与水泥净浆表面接触.拧紧螺丝l,2s后,突然放松,试针垂直自由沉入水泥净浆.观察试针停止下沉或释放试针3Os时指针的读数.当试针沉至距底板4mm+1him 时,为水泥达到初凝状态;由水泥全部加入水中至初凝状态的时间为水泥的初凝时间,用"min'茛示. 2.4终凝时间的测定 为了准确观测试针沉入的状况,在终凝针上安装了一个环形附件, 在完成初凝时间测定后,立即将试模连同浆体以平移的方式从玻璃板取下,翻转180.将直径大端向上,小端向下放在玻璃板上,再放入湿气养护箱中继续养护,临近终凝时间时每隔15min测定一次,当试针沉入试件 0.5mm时,即环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态,由水泥全部加入水中至终凝状态的时间为水泥的终凝时间,用 " min"表示. 2.5测定时应注意

煤气化废水中有机物对磷酸铵镁结晶法去除氨氮的影响

第33卷一第11期2014年一一11月环一境一化一学ENVIRONMENTALCHEMISTRYVol.33,No.11 November2014一2014年1月14日收稿. 一?国家自然科学基金(50908109,51178208,51368024);云南省教育厅重点项目(2013Z123);校企预研基金(2013YT02)资助.一??通讯联系人,E?mail:huxuewei.env@gmail.comDOI:10.7524/j.issn.0254?6108.2014.11.010 煤气化废水中有机物对磷酸铵镁结晶法去除氨氮的影响? 胡学伟??一靳松望一王亚冰一夏丽娟一张雅琳(昆明理工大学环境科学与工程学院,昆明,650500) 摘一要一研究了杂环类(吡啶二喹啉)和酚类(间甲酚二二甲酚二苯酚)有机物对磷酸铵镁结晶法(MAP,magnesiumammoniumphosphate)处理废水中氨氮的影响.研究表明,杂环和酚类有机物均对MAP法的除氮效果产生抑制作用,杂环类有机物的抑制作用大于酚类有机物,其中加入吡啶二喹啉二间甲酚二二甲酚二苯酚相比于对照组(21mg四L-1),氨氮残余浓度分别升高45.17二56.66二43.01二50.68二49.72mg四L-1.因为络合作用和吸附作用,多组分体系MAP晶体产生的抑制作用强于单一组分体系. 关键词一杂环类有机物,酚类有机物,MAP,氨氮,煤气化废水. Effectoforganicsincoalgasificationwastewateronammonianitrogenremovalbymagnesiumammoniumphosphateprecipitation HUXuewei??一一JINSongwang一一WANGYabing一一XIALijuan一一ZHANGYalin (CollegeofEnvironmentalScienceandEngineering,KunmingUniversityofScienceandTechnology,Kunming,650500,China)Abstract:Lab?scalebatchexperimentswerecarriedouttoinvestigatetheeffectsofheterocyclicandphenoliccompoundsontheammonianitrogerremovalbymagnesiumammoniumphosphate(MAP)crystallization.Themorphologyoftheprecipitatesobtainedwasobservedwithmicroscope,andtheconcentrationofheterocyclicandphenoliccompoundswasanalyzedbyHPLC.TheresultsshowthatheterocyclicandphenoliccompoundssuppressedammoniumnitrogenremovalbyMAPcrystallization.Withtheadditionofpyridine,quinoline,m?cresol,dimethylphenolandphenol,theresidualammoniumnitrogenincreasedby45.17,56.66,43.01,50.68mg四L-1and49 72mg四L-1,respectively.Thesuppressionofheterocycliccompoundswasmoresignificantthanthatofphenoliccompounds.Becauseofcomplexationandadsorption,thesuppressionofmulti?componetsystemisstrongerthanthatofsingle?componetoneonammoniumremovalinMAPcrystallization. Keywords:heterocycliccompounds,phenoliccompounds,magnesiumammoniumphosphate(MAP),ammoniumnitrogen,coalgasificationwastewater.煤制油对于解决我国能源问题具有重要意义,但煤制油过程(煤气化制二甲醚路线)中煤气化废水作为一种难降解工业有机废水[1],对环境产生严重威胁,对煤制油的产业化应用造成严重障碍.煤制气废水主要组成成分为酚[2?3]二挥发酚二氨氮二石油类以及众多杂环化合物.煤气化废水中成分复杂的各类有毒有机物,会对传统的厌氧?缺氧?好氧(A/A/O)等脱氮工艺中的硝化反硝化微生物产生严重的毒性抑制,导致生物脱氮效率低下,出水难以满足排放及回用要求. 磷酸铵镁结晶法(MAP)法可去除废水中的氨氮[4],产生的MAP沉淀可回收并资源化利用[5?7],因此MAP方法已受到广泛关注[8?11],掌握各种因素对MAP法的影响规律,对提高MAP法的除氮效果具

普通硅酸盐水泥技术要求

普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%~15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号P.O。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替。 掺非活性混合材料时,最大掺量不得超过水泥质量10%。 P.C 42.5R水泥 P.C:复合硅酸盐水泥; 42.5:28天抗压强度≥42.5MPa; R :早强型,3天强度较同强度等级水泥高。 如果速凝剂是合格的,以掺加4%为宜,多掺会影响强度 II级粉煤灰,细度小于25%,烧失量小于8%,需水量比小于105% 高效减水剂 高效减水剂对水泥有强烈分散作用,能大大提高水泥拌合物流动性和混凝土坍落度,同时大幅度降低用水量,显著改善混凝土工作性。但有的高效减水剂会加速混凝土坍落度损失,掺量过大则泌水。高效减水剂基本不改变混凝土凝结时间,掺量大时(超剂量掺入)稍有缓凝作用,但并不延缓硬化混凝土早期强度的增长。 能大幅度降低用水量从而显著提高混凝土各龄期强度。在保持强度恒定时,则能节约水泥10%或更多。

氯离子含量微少,对钢筋不产生锈蚀作用。能增强混凝土的抗渗、抗冻融及耐腐蚀性,提高了混凝土的耐久性。 聚羧酸 1、掺量低、减水率高:减水率可高达35%,可用于配制高强以及高性能混凝土。 2、坍落度轻时损失小:预拌混凝土2h坍落度损失小于15%,对于商品混凝土的长距离运输及泵送施工极为有利。 3、混凝土工作性好:用PC聚羧酸系高性能减水剂配制的混凝土即使在高坍落度情况下,也不会有明显的离析、泌水现象,混凝土外观颜色均一。对于配制高流动性混凝土、自流平混凝土、自密实混凝土、清水饰面混凝土极为有利。用于配制高标号混凝土时,混凝土工作性好、粘聚性好,混凝土易于搅拌。 4、与不同品种水泥和掺合料相容性好:与不同品种水泥和掺合料具有很好的相容性,解决了采用其它类减水剂与胶凝材料相容性问题。 5、混凝土收缩小:可明显降低混凝土收缩,显著提高混凝土体积稳定性及耐久性。 6、碱含量极低:碱含量≤0.2%。 7、产品稳定性好:低温时无沉淀析出。 8、产品绿色环保:产品无毒无害,是绿色环保产品,有利于可持续发展。 9、经济效益好:工程综合造价低于使用其它类型产品

混凝土凝结时间偏长影响因素

影响混凝土凝结时间偏长因素 缓凝 判断依据 工程施工要求混凝土凝结时间一般为6 h~10 h左右(特殊要求混凝土除外)。桩基、承台、墩身、隧道混凝土喷涂、衬砌及混凝土砌体等超过24 h甚至几天不凝结。原因分析 1)人为因素。 a.搅拌站人员未按混凝土外加剂厂家外加剂使用说明要求,盲目多掺外加剂(一般掺量为0.8%~1%)。 b.按混凝土配合比要求,将水泥误当粉煤灰使用。 c.工作疏忽导致外加剂混淆使用,如将缓凝剂当早强剂使用。 d.混凝土浇筑过程中,施工人员看混凝土发干流动性小擅自给混凝土加水。 2)机械因素。 a.计量器具未按照要求自检、送检,长期使用产生较大误差。 b.盛放混凝土外加剂的料仓要使用塑料或防腐漆,杜绝外加剂与铁器直接接触。 c.放料口传感器失灵,或放料口长期磨损计量不准误差较大。 3)水泥因素。 a.水泥自身凝结时间长。水泥生料配比不合理或水泥煅烧过程中温度控制不够,导致煅烧后水泥有效成分少,主要靠调凝石膏来调整凝结时间。 b.水泥厂或施工单位不注重水泥存放,将水泥长期漏天放臵导致水泥吸潮结块。 c.水泥厂家根据季节性温度对水泥凝结时间的影响适当的调整水泥,比如夏季温度高,水泥凝结时间快,厂家会适当降低C3A含量,冬季温度低,水泥凝结时间短,会

适当提高C3A含量。 d.水泥工艺流程的重大改变,水泥性能不稳定。 e.水泥生料来源变迁,矿物含量根据实际情况改变工艺流程。 f.水泥厂家大量加粉煤灰作为外掺料提高水泥产量。 4)粉煤灰因素。 从粉煤灰颜色来辨别一般为灰色,颜色越黑含碳量越高,发黄含钙比较高。 a.粉煤灰掺量过高,一般1级粉煤灰需水量为90%,可减少用水量并代替一部分水泥使用,改善工作性能,但过量使用粉煤灰凝结时间长,强度低。 b.粉煤灰厂家为提高粉煤灰产量掺合磨细矿渣等以次充好。 5)矿粉因素。矿粉以玻璃体结构为主,主要化学成分为SiO2,Al2O3,这些活性物质与水泥中C3S和C2S反应填充混凝土孔隙。超掺矿粉会使混凝土凝结时间变长。 6)砂、石料因素。 砂、石料含泥量和泥块含量对混凝土凝结时间影响较大,除此还有如下情况: a.冬季施工应特别注意,含水高的砂料有冻结现象,无形中加重了含水量。 b.砂质量问题,砂厂在砂中掺合大量的土、碎石等提高砂量,而土对外加剂的影响非常大。 c.砂、石料中含泥量和泥块含量偏高。 7)外加剂因素。 a.外加剂种类繁多,工地上不注意外加剂标识,误用外加剂。 b.外加剂对运输、储存、使用掺量有严格要求,未按外加剂厂家说明使用。 c.外加剂有一定适应性,调试过程中混凝土满足各项指标要求,但在大批量生产供货过程中,由于原材料的不稳定,会在凝结时间上有一定的误差。

磷酸镁水泥耐水性研究进展

第45卷第12期 当 代 化 工 Vol.45,No.12 2016年12月 Contemporary Chemical Industry December ,2016 基金项目: 重庆市自然科学基金项目,项目号:cstc2012jjB50009。 收稿日期: 2016-06-15 作者简介: 姜自超(1990-),男,山东临沂人,在读硕士,师承汪宏涛副教授,研究方向: 磷酸镁水泥胶凝材料研究。E-mail :614327919@https://www.wendangku.net/doc/019640262.html, 。 磷酸镁水泥耐水性研究进展 姜自超,丁建华,张时豪,戴丰乐 (后勤工程学院 化学与材料工程系,重庆 401311) 摘 要:磷酸镁水泥(MPC )是一种快凝快硬的新型胶凝材料,具有干缩小、抗冻性好、早期强度高等优良特性,应用于工程修补和有害物质的固化。从磷酸镁水泥的水化产物出发,分析了磷酸镁水泥耐水性的机理,讨论了其耐水性的影响因素,包括原料配比、MgO 颗粒细度、养护湿度和温度、缓凝剂和水胶比,提出了通过使用防水剂、增加预养护时间、掺入外加剂和掺合料等措施改善磷酸镁水泥的耐水性。 关 键 词:磷酸镁水泥;耐水性;机理 中图分类号:TU528 文献标识码: A 文章编号: 1671-0460(2016)12-2872-04 Research Progresses in Water Resistance of Magnesium Phosphate Cement JIANG Zi-chao, DING Jian-hua, ZHANG Shi-hao, DAI Feng-le (Dept. of Chemistry & Material Engineering, LEU, Chongqing 401311, China ) Abstract : Magnesium phosphate cement (MPC )is a new rapid hardening cementitious material with fast condensation, which possesses many advantages including small dry shrinkage, excellent resistance to freezing, high early strength and so on, it has been applied to the engineering repair and solidification of harmful substances. Based on the hydration products of MPC, the mechanism of water resistance of MPC was analyzed, and the influence factors of the water resistance were discussed, such as proportion of raw materiasl, MgO grain fineness, curing humidity and temperature, retarder and so on. Some measures for improving water resistance of MPC were put forward, such as using the waterproofing agent, increasing maintenance time, adding additive and admixture. Key words : magnesium phosphate cement; resistance to water; mechanism 磷酸镁水泥(MPC )是一种基于酸碱中和反应的胶凝材料,其主要组成为重烧氧化镁和酸式磷酸盐,其中重烧MgO 由菱镁矿(主要成分为MgCO 3) 在1 700 ℃左右高温煅烧而成[1-3] ,酸式磷酸盐多采用磷酸二氢铵或磷酸二氢钾,对应的主要水化产物分别是MgNH 4PO 4·6H 2O (MAP )或MgKPO 4·6H 2O (MKP )[4-7] 。重烧氧化镁和酸式磷酸盐反应迅速, 需加入缓凝剂保证施工操作时间[8] ,目前多使用硼 砂作为缓凝剂[9] 。与普通硅酸盐水泥(OPC )相比,MPC 具有快凝快硬、早期强度高、粘结强度高、耐磨性和抗冻性好等优点,在机场跑道、道路、桥梁的快速修补以及重金属离子和放射性核素等有害物 质的固化等方面有着重要用途[10-12] 。 然而,有学者研究表明[13,14] MPC 在水中长期浸泡会发生强度倒缩。MPC 耐水性的好坏会对其耐久性产生影响,另外,耐水性差将会很大程度上限制其广泛应用。因此,有必要对MPC 的耐水性问题进行探讨。 1 MPC 耐水性的机理分析 MPC 在与水接触的情况下其强度下降很快,耐 水性能较差。毛敏等[15] 采用溶解-迁移-重结晶理论对MPC 耐水性差的机理进行了研究,结果表明,当MPC 长期与水接触时,一方面,未反应的氧化镁和磷酸二氢铵以及主要水化产物鸟粪石都会溶解,并且溶解度较大的磷酸盐首先被溶蚀,形成酸性溶液,从而加速了鸟粪石、氧化镁及凝胶的溶解,致使在MgO 颗粒表面和空隙之间起胶结作用的水化产物减少,使得形成的水泥石结构疏松;另一方面,MgO 和NH 4H 2PO 4在水中形成的Mg 2+、NH 4+ 和PO 43-迁移到表面重结晶成鸟粪石,迁移的过程不仅使得浆体内部形成孔隙,还有可能在表面或内部孔隙中重结晶产生裂纹,导致孔隙率增大、结构密实度降低, 从而使得其耐水性较差。李东旭等[14] 研究表明,MPC 耐水性差是由于少量未反应的磷酸盐溶出,改变了水溶液的pH 值,致使主要水化产物MKP 在酸性溶液中水解,导致孔隙率增大、强度降低,耐水性差。 2 MPC 耐水性的影响因素 MAP 或MKP 是MPC 中的主要水化产物,起到连接、粘结反应剩余重烧氧化镁的作用,主要水化产物的结构和性能会对MPC 的耐水性产生影响。杨 万方数据

磷酸镁水泥的水化过程调控

磷酸镁水泥水化过程调控及其结构演变 摘要:针对磷酸镁水泥(MPC)凝结速度难以控制的缺点,用MgO、KH2PO4、复配缓凝剂(硼砂+氯化钠)和水制备了凝结时间可控、强度高的新型MPC胶凝材料。研究了硼砂和氯化钠复合添加剂对磷酸镁水泥的性能的影响,分析了其初始水化过程中的相组成及形貌的演变,探讨了其缓凝机理。研究结果表明:单独添加硼砂或氯化钠时,磷酸镁水泥的凝结时间有所延长,但都不超过15min,且掺量较大时,强度大幅下降。而添加适量硼砂与氯化钠复配的缓凝剂后,能显著延长磷酸镁水泥的凝结时间。XRD分析表明添加复合缓凝时,有KMP、Mg2(B2O5) 、5Mg(OH)2·MgCl2·8H2O三种水化产物,但Mg2(B2O5)、5Mg(OH)2·MgCl2·8H2O峰强较弱。水化产物随复配缓凝剂掺量的改变而有显著差异。 关键词:磷酸镁水泥;水化过程;复合缓凝剂;结构演变 1引言 化学结合磷酸镁胶凝材料(MPC)是由氧化镁与可溶性磷酸盐通过化学反应生成以磷酸盐为黏结相的胶凝材料,具有凝结时间快、早期强度高、与旧混凝土粘接牢固、体积变形小、环境温度适应性强、耐磨、抗冻和防钢筋锈蚀等良好性能,可广泛用于军事或民用土木工程的道路、桥梁、机场等工程的修补和抢建[1-3];同时,由于其能与核废料及重金属有害物质产生化学结合,固化的有害物或放射性废料溶出率低,因此,它也是固化核废料尤其是高放核废料或其它有害物质的重要胶凝材料[4-5]。 但目前磷酸镁水泥研究与应用的瓶颈是:(1)凝结时间不易控制,施工节奏跟不上,不适宜进行大面积修补或大体积施工;(2)为了达到缓凝效果,氧化镁烧结温度很高,能源消耗大;或氧化镁粒子较粗,未水化颗粒多,其效能没有充分发挥;(3)添加较多缓凝剂控制凝结时间后,强度大幅度下降。这些都与磷酸镁水泥凝结的调节有关,因此,寻找新型缓凝剂控制其水化过程及对磷酸镁水泥缓凝机理、微结构的变化进行深入研究,才能为这种具有潜力的胶凝材料的应用奠定基础。 2 实验 2.1原材料 (1)死烧氧化镁(MgO):电熔氧化镁粉,MgO含量≥95%,由辽宁省桓仁东方红水电站镁砂厂生产的电工级镁砂,经过球磨机研磨10分钟得到。 (2)磷酸二氢钾(KH2PO4),华东师范大学化工厂生产,分析纯,白色晶体或粉末。 (3)四硼酸钠(硼砂Na2B4O7·10H2O),上海市化学试剂有限公司生产,分析纯,

磷酸铵镁

1 文献综述 1.1 课题研究背景 现代工业的高速发展在给人类社会带来舒适便捷的同时,也衍生出许多威胁生态环境平衡的废水废气废渣。为了减少工业废弃物对环境的伤害,世界环保组织规定工业废弃物的排放需先经过处理知道达到排放标准。水是生命之源,因而在“三废”中工业废水是最常见且危害巨大的。工业废水中比较多见的是高氮磷废水,高氮磷废水虽然不含有重金属等有毒物质,但若直接排放入江海河流中也将会带来严重的环境问题,比如水体富营养化。 水体富营养化是水体因自然或人为因素纳人过量营养盐(主要为N、P),在适宜流场条件下藻类与其它水生生物的数量与结构发生异常变化,导致水质下降,甚至可能致使水体各项功能彻底瘫痪。富营养化会影响水体的水质,会造成水的透明度降低,使得阳光难以穿透水层,从而影响水中植物的光合作用,可能造成溶解氧的过饱和状态。溶解氧的过饱和以及水中溶解氧少,都对水生动物有害,造成鱼类大量死亡。同时,因为水体富营养化,水体表面生长着以蓝藻、绿藻等大量水藻,形成一层“绿色浮渣”,这样堆积于底层的有机物质会在厌氧条件下分解产生大量有害气体。此外,浮游生物产生的生物毒素也会伤害鱼虾。富营养化水中往往含有超标的硝酸盐和亚硝酸盐,人畜长期饮用这些有毒物质严重超标的水体,也会中毒或致病[1]。 因此,工业废水必须经过处理才能排放到湖泊江河中。其中高氮磷废水的传统处理方法有吹脱气提法、折点氯化法、离子交换法、混凝交换法、吸附法、生物法。 吹脱的优点是操作简便、易于控制且处理效果稳定,但使用石灰易产生水垢,塔板容易堵塞,且受环境温度影响较大,水温降低,脱氨效果降低,吹脱所需空气量较大,动力消耗大,运行成本较高,此外,逸出的游离氨易造成二次污染。 汽提法的优点:气提后的冷凝液可充分利用,对脱氨尾气进行有效回收,防止二次污染。但能量消耗大且控制步骤复杂。 折点氯化法优点:反应迅速,处理率达90%-100%,且处理效果稳定,不受水温影响,所需设备投资少。但液氯的安全使用和储存要求高,加氯量大,同时需要消耗碱来中和产生的酸,处理成本高,此外,副产物氯胺和氯代有机物会造成二次污染。 离子交换法:优点是工艺成熟,去除效率高。但操作过程复杂且饱和后再生费用高。 混凝沉淀法:优点:操作简单,易于控制,处理设备简单。但需要和其它工艺联合使用,单独使用很难满足出水要求,对水体pH值要求高,pH值改变时,沉淀物可能会溶解,还产生大量污泥,给污泥的处理带来了极大不便,污泥浓缩时,磷酸根会重新释放到上清液中,从而造成对水体的二次污染。

水泥凝结时间影响因素

水泥的凝结时间分为初凝和终凝。水泥加水拌和到水泥浆体开始失去可塑性的时间。水泥加水拌和到水泥完全失去可塑性并开始产生强度的时间为终凝时间。对于大多数硅酸盐类水泥这两个阶段是很明显的,1初凝时间大多超过1小时,终凝时间一般在初凝后1小时左右,由于水泥水化速度除与自身物理化学因素有关还与水灰比、温度等因素有关,因此凝结时间受到测定时水泥浆状态,环境温度、湿度等诸多因素的影响。 2、水泥凝结时间 水泥凝结时间是水泥的重要技术指标,国家标准对每一种水泥的凝结时间都有规定。这种规定一是基于水泥使用时水泥凝结时间过早导致来不及施工和水泥凝结时间过迟导致施工周期长而影响施工进度。二是基于不同地域水泥生产企业和水泥用户需要有一个根据生产和使用情况选择水泥凝结时间的范围。因此研究对水泥凝结时间的影响因素并确定适宜的凝结时间,是水泥生产过程中一项重要技术工作。 2.1水泥凝结时间的检测概念 水泥初凝时间和终凝时间有国家标准规定的检测方法测定,它是在相同要求的条件下检测出来的不同水泥的凝结时间,这种检测的水泥凝结时间是一种对水泥实际凝结时间的比较,一种总目标的控制要求。凝结时间符合水泥国家标准规定范围内的水泥都是合格的,但合适与优良的评价要靠用户和市场的反映,为了满足用户和市场要求,水泥凝结时间也需要进行合理

确定。

3、水泥凝结时间测定 测定水泥凝结时间的方法目前有维卡法和吉尔摩法两种,我国及世界大多数国家用维卡法。 3.1方法原理 水泥凝结时间的测定方法是采用一定重量的试针自由沉入水泥标准稠度净浆至一定深度所需的时间,由于试体随着时间的延长凝结固化的状态不同,致使试针进入试体深度不同,以此来测定水泥的初结时间和终凝时间。 3.2凝结时间的测定 3.2.1调零 调整凝结时间测定仪的试针接触玻璃板时指针对准标尺零点。 3.2.2试件的制备 将水泥试样按规定程序以标准稠度用水量制成标准稠度净浆,一次装满试模,振动数次并刮平,做好标记,放入湿气养护箱中养护。记录水泥全部加入水中的时间作为凝结时间的起始时间。 3.2.3初凝时间的测定 试模在湿气养护箱中养护至加水后30分钟时进行第一次测定,测定时,从湿气养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触,拧紧螺丝1-2秒后,突然放松,试针垂直、自由的沉入水泥净浆。观察试针停止下沉或释放试针

磷酸镁水泥快速修补材料的研究进展

Hans Journal of Civil Engineering 土木工程, 2018, 7(4), 574-579 Published Online July 2018 in Hans. https://www.wendangku.net/doc/019640262.html,/journal/hjce https://https://www.wendangku.net/doc/019640262.html,/10.12677/hjce.2018.74066 Research Progress on Rapid Repair Materials of Magnesium Phosphate Cement Jianan Liu1, Zimeng Ye1, Bowen Guan1, Jianhong Fang2 1School of Materials Science and Engineering, Chang’an University, Xi’an Shaanxi 2Qinghai Research Institute of Transportation, Xining Qinghai Received: Jun. 14th, 2018; accepted: Jun. 28th, 2018; published: Jul. 5th, 2018 Abstract The rapid repair materials of magnesium phosphate cement have many advantages over other pavement repair materials. However, their shortcomings such as excessively fast setting speed and poor water resistance are also prominent. In order to make a better application of magnesium phosphate cement, the hydration mechanism, modification and application progress of magnesium phosphate cement are summarized and analyzed. The problems in the development process of magnesium phosphate cement are reviewed and the guidance for the following study of magnesium phosphate cement is provided. Keywords Magnesium Phosphate, Modification, Repair Materials, Hydration, Application Progress 磷酸镁水泥快速修补材料的研究进展 刘佳楠1,叶梓萌1,关博文1,房建宏2 1长安大学材料科学与工程学院,陕西西安 2青海省交通科学研究院,青海西宁 收稿日期:2018年6月14日;录用日期:2018年6月28日;发布日期:2018年7月5日 摘要 磷酸镁水泥快速修补材料有很多优于其他路面修补材料的性能,但其凝结速率过快、耐水性差等缺点也

磷酸镁铵的性质

磷酸镁铵的性质、制备方法及应用 山西大学环境资源学院程芳琴贺寿宝 磷酸镁铵,又名磷酸铵镁,俗称磷酸镁铵石、鸟粪石。英文名:Ammonium Magnesium Phosphate,分子式:NH4MgPo4·6H2O,分子量245.41.磷酸镁铵最早发现于鸟粪中,因而成为鸟粪石。除六水物外,还有一水物。 一、磷酸镁铵的性质和用途 磷酸镁铵属于无色斜方晶系。性状:白色结晶细粒或粉末,密度1.71g/ml,微溶于冷水,溶于热水和稀酸,不溶于乙醇,遇碱溶液则分解。磷酸镁铵在氨气流中加热到100℃时,脱去5分子结晶水,成为一水物。继续加热至600℃,分解成焦磷酸镁;其水溶液加热至48℃—50℃,析出一水物。 磷酸镁铵用作饲料添加剂,肥料添加剂。在医药上也有应用,也可用于提料,氨基甲酸酯、软泡阻燃剂的制造。磷酸镁铵在国外已被列入肥料之列,用作长效无机氨肥,主要用于果树、草坪、花卉等。 二、制备方法 1、磷酸盐法 ①磷酸二氢铵(钠)法 a、将磷酸二氢铵与氢氧化镁按一定比例,在40℃—65℃下反应生成磷酸镁铵,其反应式如下:NH4H2PO4+Mg(OH)2+4H2O—

NH4MgPO4·6H2O↓.上述反应在75℃—100℃下进行,生成NH4MgPO4·H2O,其反应式如下:NH4H2PO4+Mg(oh)2—NH4MgPO4·H2O+H2O. b、将氯化镁货硫酸镁溶液加入磷酸二氢铵(钠)溶液中,边搅拌边加入氨水,控制PH在6.0—6.5,可得硫酸镁按。其反应式如下:(NH4)2HPO4+MgSO4+NH3·H2O+5H2O—NH4MgPO4·6H2O↓+(NH4) 2SO4或Na2HPO4+MgCl2+NH3·H2O+5H2O—NH4MgPO4·6H2O↓+2NaCl.另外硫酸镁和氢氧化铵反应也可制成。 2、磷酸法 由磷酸、氧化镁货氢氧化镁、氨水直接反应制成,其反应式如下: H3PO4+MgO+NH3·H2O+4H2O—NH4MgPO4·6H2O↓或 H3PO4+Mg(OH)2+NH3·H2O+3H2O—NH4MgPO4·6H2O↓ 实验室方法:用磷酸和氢氧化镁支取磷酸镁铵。分2步进行:首 先在50—65℃,PH=4-6下,氢氧化镁和磷酸反应生成三水磷酸 铵镁,然后在75-100℃,PH=6-8下用浓氨水氨化生成磷酸铵镁, 其反应式:H3PO4+Mg(OH)2+H2O—MgHPO4·3H2OMgHPO4·3H2O+NH3— NH4MgPO4·6H2O↓+H20 3、硫铵过磷酸钙法 首先利用硫酸铵和过磷酸钙反应制得磷酸二氢铵,然后在镁离子 存在下,用碳酸氢铵调节同业的PH值在6-6.5制得,其反应式 如下:(NH4)2SO4+Ca〈H2PO4〉2·H2O+H2O—CaSO4·2H2O↓ +2NH4H2PO4,NH4H2PO4+MgSO4+2NH4HCO3+4H2O—NH4MgPO4·6H2O↓+2CO2

硅酸盐水泥___论文

河南大学土木建筑学院课题:硅酸盐水泥

硅酸盐水泥 胶凝材料是指在物理、化学作用下,从具有可塑性的浆体逐渐变成坚固石状体的过程,能将其他物料胶结为整体并具有一定机械强度的物质。因其具有原料丰富、生产成本低、耐久性好、适应性强、耐火性好等众多优点而广泛应用于工业、民用建筑、水利工程等建设之中,成为在国民经济及人民生活中不可缺少的重要材料。 胶凝材料一般可分为有机和无机两类。有机胶凝材料是指各种树脂和沥青等;无机胶凝材料又可分为水硬性和非水硬性。水硬性胶凝材料在拌水后技能在空气中硬化一,又能在水中硬化并具有强度,通常称为水泥,如硅酸盐水泥、铝酸盐水泥、硫酸盐水泥等;非水硬性胶凝材料是指不能在水中硬化,但能在空气中或其他条件下硬化,如石灰、石膏、镁质胶凝材料等等。 在众多的胶凝材料中,水泥占有尤为突出的,它是基本建设的主要原料之一,广泛应用于工业、农业、国防、交通、城市建设、水利及海洋开发等工程建设。水泥工业的发展对保证国家建设和提高生活水平具有十分重要的意义。水泥按其主要矿物组成可分为硅酸盐水泥、铝酸盐水泥、铁铝酸盐水泥、氟铝酸盐水泥、少熟料或无熟料水泥。水泥的主要技术特征是:水硬性(分为快硬和特快硬两类);水化热(分为中热和低热两类);抗硫酸盐性(分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀);膨胀性(分为膨胀和自应力);耐高温性(铝酸盐水泥的耐高温性以水泥中氧化铝含量分级)。 在水泥诸多品种中,硅酸盐水泥是应用最广泛和研究最多的。在此从硅酸盐水泥的分类、生产、技术要求、性能及应用等方面对硅酸盐水泥进行简单的研究分析。 所谓硅酸盐水泥是指从黏土和石灰石为原料,经高温煅烧得到以硅酸盐钙为主要成分的熟料,加入0—5%的混合材料和适量石膏磨细制成的水硬性胶凝材料,国际上统称为波特兰水泥。 硅酸盐水泥的分类 硅酸盐水泥包括纯熟料硅酸盐水泥和掺混合材料硅酸盐水泥两类,我国按其混合材料的掺加情况,共分为如下五类:纯熟料硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥粉煤灰硅酸盐水泥。 纯熟料硅酸盐水泥在硅酸盐水泥熟料中加入适量石膏,磨细而成的水泥,分425、525、625、725四个标号。其早期强度比其他几种硅酸盐水泥高5~10%,抗冻性和耐磨性较好,适用于配制高标号混凝土,用于较为重要的土木建筑工程。 普通硅酸盐水泥简称普通水泥。由硅酸盐水泥熟料掺加少量混合材料和适量石膏磨细而成。混合材料的加入量根据其具有的活性大小而定。普通水泥分为275、325、425、525、625和725六个标号,广泛用于制做各种砂浆和混凝土。 矿渣硅酸盐水泥简称矿渣水泥。由硅酸盐水泥熟料和粒化高炉矿渣,加

水泥凝结时间影响因素

水泥凝结时间影响因素 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

水泥的凝结时间分为初凝和终凝。水泥加水拌和到水泥浆体开始失去可塑性的时间。水泥加水拌和到水泥完全失去可塑性并开始产生强度的时间为终凝时间。对于大多数硅酸盐类水泥这两个阶段是很明显的,1初凝时间大多超过1小时,终凝时间一般在初凝后1小时左右,由于水泥水化速度除与自身物理化学因素有关还与水灰比、温度等因素有关,因此凝结时间受到测定时水泥浆状态,环境温度、湿度等诸多因素的影响。 2、水泥凝结时间 水泥凝结时间是水泥的重要技术指标,国家标准对每一种水泥的凝结时间都有规定。这种规定一是基于水泥使用时水泥凝结时间过早导致来不及施工和水泥凝结时间过迟导致施工周期长而影响施工进度。二是基于不同地域水泥生产企业和水泥用户需要有一个根据生产和使用情况选择水泥凝结时间的范围。因此研究对水泥凝结时间的影响因素并确定适宜的凝结时间,是水泥生产过程中一项重要技术工作。 2.1水泥凝结时间的检测概念 水泥初凝时间和终凝时间有国家标准规定的检测方法测定,它是在相同要求的条件下检测出来的不同水泥的凝结时间,这种检测的水泥凝结时间是一种对水泥实际凝结时间的比较,一种总目标的控制要求。凝结时间符合水泥国家标准规定范围内的水泥都是

合格的,但合适与优良的评价要靠用户和市场的反映,为了满足用户和市场要求,水泥凝结时间也需要进行合理确定。 3、水泥凝结时间测定 测定水泥凝结时间的方法目前有维卡法和吉尔摩法两种,我国及世界大多数国家用维卡法。 3.1方法原理 水泥凝结时间的测定方法是采用一定重量的试针自由沉入水泥标准稠度净浆至一定深度所需的时间,由于试体随着时间的延长凝结固化的状态不同,致使试针进入试体深度不同,以此来测定水泥的初结时间和终凝时间。 3.2凝结时间的测定 3.2.1调零 调整凝结时间测定仪的试针接触玻璃板时指针对准标尺零点。 3.2.2试件的制备 将水泥试样按规定程序以标准稠度用水量制成标准稠度净浆,一次装满试模,振动数次并刮平,做好标记,放入湿气养护箱中养护。记录水泥全部加入水中的时间作为凝结时间的起始时间。 3.2.3初凝时间的测定 试模在湿气养护箱中养护至加水后30分钟时进行第一次测定,测定时,从湿气养护箱中取出试模放到试针下,降低试针与

磷酸镁水泥

新型磷酸镁水泥的研究 ?作者:单位: [2009-3-10] 关键字:磷酸镁 ?摘要: 0 前言 磷酸镁水泥(Magnesium phosphate cement MPC)具有快凝快硬、高早期强度、高粘接强度、干缩变形小等优良性能,非常适用于高速公路、机场跑道和市政主干道的快速修补,在军事工程的抢修抢建及有害物质的固化方面也有着广阔的应用前景。然而目前制备磷酸镁水泥所用的磷酸盐原料主要是磷酸二氢铵,水化反应过程中会释放出刺激性的氨气。 为解决该问题,作者采用磷酸二氢钾替代磷酸二氢铵来制备新型磷酸镁水泥,并就该新型磷酸镁水泥的性能及水化产物进行了初步研究。 1 试验原材料与试验方法 1.1 试验原材料 氧化镁(MgO,缩写为M),由菱镁矿(MgCO3)经工业窑炉于1500℃高温煅烧后破碎而成,颜色为棕黄色,细度为2610cm2/g,其化学成分见表1。 磷酸二氢钾(KH2PO4,缩写为P),化学纯;硼砂(Na2B4O7·10H2O,缩写为B),化学纯。 1.2试验方法 凝结时间测定:采用维卡仪测定磷酸镁水泥的凝结时间,由于MPC凝结速度太快,搅拌时间要控制在3分钟之内,初始阶段每隔30秒钟测一次,临近初凝时每隔15秒钟测一次。考虑到MPC水泥的初、终凝时间间隔很短,试验中主要测定初凝时间,并作为MPC 的凝结时间。室内温度为20℃。 净浆强度测定:原材料加水搅拌3分钟后立即成型,试件尺寸为 40mm×40mm×160mm,试件必须1h内脱模,在室内空气中自然养护到2h、1d、3d、7d、28d测其抗折与抗压强度,养护温度为(20±2)℃。 微观分析:将试样养护至规定龄期,用无水乙醇终止水化,分别用于XRD分析。 2 试验结果与讨论

磷酸钾镁水泥耐高温性能研究_姜自超_齐召庆_李帅_张时豪_丁建华_戴丰乐

第45卷第11期 当 代 化 工 Vol.45,No.11 2016年11月 Contemporary Chemical Industry November ,2016 基金项目: 重庆市自然科学基金项目(cstc2012jjB50009)。 收稿日期: 2016-05-11 作者简介: 姜自超(1990-),男,山东临沂人,在读硕士,主要从事磷酸镁水泥胶凝材料研究。E-mail :614327919@https://www.wendangku.net/doc/019640262.html, 。 磷酸钾镁水泥耐高温性能研究 姜自超1,齐召庆1,李 帅2,张时豪1,丁建华1,戴丰乐1 (1. 后勤工程学院化学与材料工程系,重庆 401311; 2. 重庆电子工程职业学院建筑与材料学院,重庆 401311) 摘 要:研究了不同温度处理对磷酸钾镁水泥性能的影响,并利用X 射线衍射仪、综合热分析仪、扫描电子显微镜对机理进行了分析。试验结果表明,在100 ℃以上的高温环境下,磷酸钾镁水泥质量会减少、强度会发生降低;物相分析的结果显示,高温处理后磷酸钾镁水泥的主要水化产物MgKPO 4·6H 2O 衍射峰会降低;热重分析的结果显示,磷酸钾镁水泥试样在108 ℃左右有一个明显的吸热谷并伴随着明显的质量损失;微观形貌分析的结果显示,经高温处理后磷酸钾镁水泥的水化产物减少,过烧氧化镁会大量裸露。磷酸钾镁水泥经高温处理后性能下降是水化产物在高温下分解导致的。 关 键 词:磷酸钾镁水泥;高温;性能;机理 中图分类号:TQ172 文献标识码: A 文章编号: 1671-0460(2016)11-2541-04 Study on High Temperature Resistance of Magnesium Potassium Phosphate Cement JIANG Zi-chao 1, QI Zhao-qing 1, LI Shuai 2, ZHANG Shi-hao 1, DING Jian-hua 1, DAI Feng-le 1 (1. Department of chemical and materials engineering, Logistical Engineering University, Chongqing 401311,China ; 2. Department of Construction and materials, Chongqing College of Electronic Engineering, Chongqing 401311,China ) Abstract : Effect of high temperature treatment on the properties of magnesium potassium phosphate cement (MKPC )was studied, and the mechanism was analyzed by XRD ,TG-DSC and SEM. The experimental results show that the quality and strength of MKPC decrease in high temperature environment. The results of phase analysis show that the diffraction peak of MgKPO 4·6H 2O(the main hydration products of MKPC) decreases after high temperature treatment. According to the results of the TG-DSC, MKPC has a clear endothermic valley at about 108℃ and accompanied by obvious mass loss. The results of micro morphology analysis show that the hydration products of MKPC reduce after high temperature treatment, and magnesia particles are exposed. The performance degradation of MKPC after high temperature treatment is the result of MgKPO 4·6H 2O decomposing at high temperature. Key words : magnesium potassium phosphate cement; high temperature; performance; mechanism 磷酸镁水泥(MPC )是由氧化镁、酸式磷酸盐和缓凝剂等按一定比例混合,加水后通过酸碱中和反应得到的高度结晶的材料,与普通的硅酸盐水泥相比,它具有凝结硬化速度快(初凝时间只有几分钟)、早期强度高、干燥收缩小、耐磨性好和抗冻性能强等优点 [1-4] 。磷酸钾镁水泥(MKPC ),一般是指 采用磷酸二氢钾作为磷源的磷酸镁水泥,同采用磷酸二氢铵作为磷源的磷酸铵镁水泥(MAPC )相比,它克服了MAPC 制备时放出氨气的缺点,减少了对施工人员健康的危害以及对施工设备的腐蚀,因此,近些年来诸多学者对磷酸钾镁水泥进行了大量的研究 [5-7] ,磷酸钾镁水泥也呈现出广泛的应用空间[8-11] 。 磷酸钾镁水泥应用面广、应用环境复杂,在放射性核废料固化、机场跑道抢修等领域,都对材料的耐高温性能有不同的要求,但是目前关于环境温 度对磷酸镁水泥性能的影响研究较少,已有研究温 度设置区间大,对于MKPC 性能改变最大的温度区间研究不充分细致。本文详细研究了磷酸钾镁水泥在50~250 ℃的重量损失、抗压强度变化,并使用TG-DSC 、XRD 、SEM 等手段分析了机理。 1 实验部分 1.1 原料 重烧氧化镁,MgO 含量88.18%,比表面积为227.5 m 2 /kg ;磷酸二氢钾(KH 2PO 4),白色晶体,工业级,纯度≥98%;硼砂(Na 2B 4O 7·10H 2O ),工业级,纯度≥95%。 1.2 试验方法 制备MKPC 时重烧氧化镁和磷酸二氢钾的质量比(M/P )为4/1,水胶比为0.12,硼砂掺量为氧化 DOI:10.13840/https://www.wendangku.net/doc/019640262.html,21-1457/tq.2016.11.014

相关文档