文档库 最新最全的文档下载
当前位置:文档库 › 地铁无线通信系统介绍

地铁无线通信系统介绍

地铁无线通信系统介绍
地铁无线通信系统介绍

PIS车地无线系统LTE技术方案新版

B2.1系统概述 乘客信息系统PIS是以计算机及多媒体应用为平台,以车站和车载显示终端为媒介向乘客提供信息的系统。乘客信息系统在正常情况下,提供乘车须知、服务时间、列车到发时间、列车时刻表、管理者公告、政府公告、出行参考、股票信息、媒体新闻、赛事直播、广告等实时动态的多媒体信息;在火灾、阻塞及暴恐等非正常情况下,提供动态紧急疏散提示。车载设备通过无线传输实时或预录接收信息,经处理后在列车客室LCD显示屏上进行音视频播放。 车地无线系统作为地铁PIS的重要组成部分,是中央控制中心、车站分中心与移动中的列车保持实时信息交互的重要通道,可以让处于隧道、停车场、车辆段中的列车实时与上级中心进行信息交互,使地铁车站和运营中心值班人员可以实时观察运行中列车乘客车厢、司机室内情况,司机能实时观察本列车乘客车厢内情况;运营中心向运行中列车发布及时信息,实时转播数字电视节目;运行中列车的紧急状态,如火灾报警、紧急开关车门,实时上传到运营中心和车辆段车场调度中心,便于进行地铁运营管理和为乘客信息化服务。 车地无线网络主要用来实现车-地之间的实时信息交换功能。为实现列车上信息与车站局域网内信息的双向传输,保证对运行过程中的列车车厢内情况进行实时监控,同时为车厢内的乘客提供电视直播信息等服务,需要在地铁系统内建设一套高带宽、无缝漫游的车地无线网络系统。 本工程乘客信息系统(PIS)是依托多媒体网络技术,以计算机系统为核心,通过设置在站厅、站台、列车客室的显示终端,让乘客实时准确地了解列车运营信息和公共媒体信息的多媒体综合信息系统。在正常情况下,运营信息、公共媒体信息共同协调使用;在紧急情况下运营信息优先使用。 深圳地铁11号线一期工程包含18座车站(其中高架站4座)、1座控制中心、1座车辆段、1座停车场,同时初期配备33列列车(未来近期50列,远期59列)。乘客信息系统在各车站、控制中心、车辆段、停车场和区间隧道设置PIS设备,为乘客提供信息服务。

地铁无线通信系统的设计研究

地铁无线通信系统的设计研究 摘要:我国交通自改革开放以来快速的发展,地铁的发展促进了城市经济的进步,减轻了城市的交通压力。在地铁上无线通信技术的应用也是非常重要的,地 铁无线通信系统,不仅能够保证地铁车辆的行驶效率,还能够保证地铁的安全性,对于地铁来说无线通信技术的设计与实现对未来的发展非常重要。 关键词:地铁;无线通信技术;设计 1前言 移动通信由于应用方式的不同,包含专业移动通信网与公众移动通信网两种。无线频道集群系统是专用移动系统的主要形式,该系统融入了动态分配以及多信 道共用等技术。传统的模拟集群系统能够实现服务、设备与频率的资源共享,集 中管理并维护系统。当前新型的TDMA移动通信系统在频谱利用率方面要大幅优 于传统移动信息系统,尤其在系统容量方面,数字集群系统所体现出来的优势更 加明显。 2地铁通信系统概述 地铁通信系统主要是由传输子系统、时钟子系统、无线通信系统、公务通信 系统、专用通信系统、电视监控系统、广播子系统、旅客向导系统和电源及接地 系统等一系列重要的子系统组成。地铁通信系统的主要任务是通过控制中心对车站、机车进行高层次控制,为列车运行提供信息服务,为旅客提供信息服务。地 铁无线通信系统主要采用数字集群技术进行组网,主要由设置在车站的集群基站、功分器和耦合器、设置在中心的集群中心交换设备和操作控制台、天线和车站电台,敷设在区间的漏泄同轴电缆及配件、设置在车上的机车台、设置在车辆段等 处的光纤直放站、操作控制台以及为移动工作人员配备的手持台等设备构成,是 运行的列车与车站运营管理人员之间唯一的通信手段。地铁传输系统是地铁通信 系统的基础,也是地铁通信系统的关键环节。它主要是以光纤宽带业务为基础, 保证地铁能够有效传送所需信息。其中最为重要的就是传输子系统,它是组建轨 道交通通信网络的基础及骨干,是连接车站和列车调度指挥中心、车站和车站之 间信息传输的主要手段,此外它还支持 RPR、MSTP、SDH 等业界先进技术。电源 及接地系统也极为重要,它主要为地铁通信系统设备提供可靠性高,质量高的电 源供应,确保列车在出现主电源中断或超限波动的情况下还能使通信设备在规定 时间里进行正常工作,在等待着主电源恢复的同时还能为通信设备和通信电源系 统设备提供接地保障。广播子系统不仅可以为车站值班员及中心调度员提供相应 区域的有线广播,还能在发生事故时提供组织指挥、事故抢险以及疏导乘客安全 撤离时的中心防灾广播。电视监控系统也是地铁通信系统中必不可少的一部分, 它由行车司机发车监视、车站值班员客运管理监视以及控制中心调度员监视系统 组成。它可以为车站值班员和调度员提供列车运行时的监控,便于他们能掌握客 流大小及流向,并能以此作为辅助提高列车的指挥透明度,同时也方便行车司机 在车站停车后监视乘客的上下车情况以便掌握好开关车门时间。当发生事故灾情时,电视监控系统能为防灾调度员指挥乘客安全撤离及抢险工作提供一定的方便。 3对无线通信技术系统的设计 3.1地铁无线通信技术的设计分析 无线通信系统是由泛欧集群无线电系统基站组成的,在设计的过程中也有很 多的难题,例如:无线磁场的覆盖和信号强弱的问题,主要的环节包括对网络的 设置管理、泛欧集群无线电的管理、光纤直放站的管理、列车车载台的管理等等。

上海地铁TETRA无线通信系统网络

上海地铁TETRA无线通信系统网络介绍 全国已有30多个城市轨道交通线获国务院批准在建。目前我国轨道交通线路运营里程约2000公里。到2020年我国轨道交通线路总里程将达到6000公里以上。十二五期间全国地铁建设投资规模将超过1万亿元。 2013年底上海地铁开通运营14条地铁(含磁浮线),331座车站,通车里程达567公里,配属车辆逾4000辆,最高日客流量超过800万人次,承担全市公交出行量近40%;至2015年,上海将建成15条线路、350余座车站、超过600公里的轨道交通基本网络;至2020年,上海将实现800公里的轨道交通网络建设目标。 上海地铁曾创造100台盾构齐头并进、100座车站同时建设、100公里新线同时投运等工程奇迹。上海地铁,作为我国现代化轨道交通的先行者,已成为中国城市轨道交通建设史上的一个亮点,其运营里程和客流量均已进入世界前列,并正在向“地铁世界第一”逼进。 上海地铁TETRA无线通信系统网络 上海地铁TETRA无线通信系统网络构成框图

上海地铁TETRA无线通信系统开通时间表

上海地铁800MHz专用无线设施设备 上海地铁800MHz专用无线设施设备用的是摩托罗拉增强型数字集群通信系统,具体如下。 主要的Dimetra系统架构

射频站点和移动交换局(MSO)射频站点: ——是一个地理区域,双向移动对讲机能够在其中进行通信。 移动交换局(MSO): ——负责操作多站点系统的中央控制点;

——执行控制、呼叫处理和网络管理等功能。 上海地铁的射频站点和MSO 上海地铁无线系统资源分配情况

上海地铁专用无线系统结构 采用Motorola基于TETRA的Dimetra IP系统,由三个区域(ZONE)组成一个大区,一个大区最多可包含7个区域,大区中部署了系统级服务器负责控制大区的运行;一个区域中包含一个移动交换局、区域级服务器和最多100个收发系统(BTS)站点,BTS为移动台提供RF接口。 移动交换局(MSO)分主、备用,主用MSO设置在3号线东宝兴路控制中心,备用MSO设置在8号线西藏北路控制中心。MSO依托上海地铁上层网传输系统连接区域内的各个基站。

5.8G频段的CBTC车地无线通信子系统

5.8G频段的CBTC车地无线通信子系统 解决方案 一、项目的开发背景 众所周知,在2012年11月份深圳地铁信号多次受到便携式Wi-Fi的干扰造成地铁列车停止运行。便携式Wi-Fi一般使用2.4Ghz这个频率,这个属于非注册频率,不需要申请,谁都可以用,可以说是最方便但是最不安全的。而且,许多家用电子设备都使用2.4Ghz进行通讯,例如无线路由器、iPad、无线鼠标、无绳电话、蓝牙设备等,甚至微波炉也是使用这一频率。基于无线通信的列车自动控制系统,即CBTC(Communication based Train Control),也称移动闭塞信号系统。该系统借助无线网络进行数据传输,也使用公用频段2.4Ghz。这势必会造成信号系统频率的干扰,随着现在移动通信系统上网速度越来越快,采用便携式WIFI的设备也会越来越多,也势必造成更大的信号冲突。因此,基于无线通信的列车自动控制系统采用新的频段也迫在眉睫、刻不容缓! 二、地铁2.4G与5.8G通信系统的比较分析 目前,在新建地铁信号系统的方案选择上,采用CBTC无线AP(无线接入点)接入方式的线路已越来越多。采用AP接入,具有成本较低、通讯带宽高、可部分使用商用设备、安装调试方案灵活、施工时间短等优点。 现在我国在建或改造的的地铁线路中采用无线AP点接入就有北京地铁4号线,10号线,深圳地铁2号线等。这些方案在无线频率的选择上又分为2.4G ISM频段和5.8G ISM频段。我国开放这两个频段为ISM频段

的时间还比较短,应用在大型工程上的案例还不多,尤其是5.8G 频段更是较少。 1、地铁列车的拓扑模型 地铁也是铁路运输的一种模式,它的运营组织和线路结构和大铁路相比虽然简单,但基本要素相同。采用AP 无线覆盖时的结构如图1。 图 1 为提高可靠性采用的对向双信道覆盖 地铁列车运行时不断从一个小区(AP 的覆盖范围)进入到下一个小区。这时,影响车地通信的可靠性的的因素,应从二个方面考虑: i. 小区内:因高速移动产生的多普勒频移;隧道壁反射无线电波引起的多径反射;地铁列车对信号的阻隔影响等。 ii. 穿越小区时:高速移动产生的多普勒频偏使AP 切换时检测不到临区;频繁的AP 位置登记和认证造成通信的暂时中断等。 从图1可以看出,同大铁路的GSM-R 相似,地铁AP 覆盖的拓扑模型是典型的一维链状小区,而不是商用无线系统常用的蜂窝状结构。其模型如图2。 图2 通信系统的一维链状小区模型 这样,在移动电台在穿越通信小区时的信道切换关系大为简化。由于以地铁机车作为载体,电台的功率和尺寸比手持电台的限制小的多。同时,地铁

城市轨道交通车地无线通信组网及应用探讨

城市轨道交通车地无线通信组网及应用探讨 李颀 北京地铁运营四分公司北京 摘要:随着城市轨道交通的快速发展,车地无线通信技术作为城市轨道交通的关键性技术也越来越受到各方面的重视。轨道交通车地无线通信一般包含列车信号系统(CBTC)和乘客信息系统(PIS)两个部分。而在国内目前在建轨道交通项目中,PIS系统和CBTC系统的无线网络均采用WLAN技术,因此就需要避免其在各种隧道环境中产生相互干扰以及其他系统对它们的影响。本文从组网、占用带宽、应用特点等方面对比了PIS系统和CBTC系统的车地无线通信部分,并提出了建设和运营中应注意的一些问题以及车地无线通信技术的发展趋势。 Abstract:With the development of urban rail transit, train-ground wireless communication technology as a key technique for urban rail transit is becoming more and more attention of the various aspects. Rail transport in wireless communication generally contain signal system (CBTC) and passenger information system (PIS) two parts. In domestic rail transportation project under construction currently, PIS system and wireless network of CBTC system adopt WLAN technology, so they need to avoid the interference in the tunnel environment and other systems for their impact. In this paper, from the aspects of network, bandwidth, application characteristics compared the PIS system and train-ground wireless communication part of CBTC system, and puts forward some problems that should be paid attention to in the construction and operation as well as the trend of the development of the train-ground wireless communication technology. 关键词:轨道交通车地无线通信乘客信息系统基于通信的列车自动控制系统WLAN Key words: urban rail transit, train-ground wireless communication, PIS ,CBTC, WLAN 1 城市轨道交通车地无线通信系统概述 当前,随着我国城市化的不断发展,越来越多的城市已经开始建设或规划建设城市轨道交通线路。城市轨道交通已凭借其安全、快速、环保等特点,进入到空前繁荣的发展时期。由于轨道交通一般建设在人口密集和流动性大的大中型城市,因此,公共安全和乘客体验是考量其运营情况的重要指标,而车地无线通信正是影响这一指标的关键因素之一。 按照应用的方向,轨道交通车地无线通信一般包含列车信号系统(CBTC)和乘客信息系统(Passenger Information System,以下简称PIS)两个部分。其中列车信号系统是列车运行的核心系统。其功能相对单一,主要提供高可靠、高精度列车自身定位,以及连续、高容量的车地双向数据通信。列车信号系统(CBTC)是车地通信系统中对于安全性能要求最高的部分。 PIS系统的基本概念是指地铁运营商采用成熟可靠的网络技术和多媒体传输、显示技术,在指定的时间,将指定的信息显示给指定的人群。是依托多媒体网络技术,以计算机系统为核心,以车站和车载显示终端为媒介向乘客提供信息服务的系统,使乘客通过正确的服务信息引导,安全、便捷地乘坐轨道交通。PIS在正常情况下,提供乘车须知、列车到发时间、列车时刻表、管理者公告、政府公告、出行参考等实时动态的多媒体信息;在火灾、阻塞及恐怖袭击等非正常情况下,提供动态紧急疏散提示。 在列车运行中车载设备要实时接收来自地面运营中心的节目,在列车车厢显示屏上播出音视频。同时通过车厢内监控摄像头,监控旅客乘车情况,将监控视频信息实时上传至运营中心,作为管理部门安全决策的支持信息。 随着科技的不断发展,乘客服务及资讯信息不仅要实现运营中心与车站、车站与车站间的通信,还要完成列车与地面间的实时通信,例如:运营中心向列车实时转播数字视频等多媒体信息,列车实时上传车厢内的监控信息等。 由于列车是在高速运行环境下进行信息的实时传输,而且为了给乘客提供高质量的信息服务,PIS要求列车在高速运行情况下,保证图像质量,不会出现马赛克、中断等现象,这就要求车地系统要有足够的带宽并且保证车地间信息的可靠传输。

浅析车地无线通信传输系统构成及原理

技术与市场技术应用2019年第26卷第6期 浅析车地无线通信传输系统构成及原理 万 建 (深圳地铁运营集团有限公司,广东深圳518000) 摘 要:重点对深圳地铁11号线信号系统车地无线通信传输系统构成及原理进行分析,皆在为相关工作提供参考。 关键词:CBTC;AP;DCS;TRE doi:10.3969/j.issn.1006-8554.2019.06.066  引言 随着无线通信技术的发展。基于自由空间传输的无线传输技术在CBTC系统中得到了应用。无线的频点一般采用共用的2.4GHZ或5.8GHZ频段,采用接入点(AP)天线作为和列车进行通信的手段。  车地无线通信传输系统构成及原理 1.1 无线网络的构成 DCS无线网络用于承载车载和轨旁CBTC系统间信号数据流的通信,它由位于轨旁的无线接入点(AP)、功分器、轨旁定向天线,及车载无线天线、车载无线调制解调器组成。1.2 无线网络系统原理 1)车地双向通信网络。每个TRE(轨旁无线设备)由红网、蓝网接入点组成,此红、蓝接入点与其各自的无线网络相连接。无线网采用802.11gq协议,采用带宽为6MHz的窄带技术,红网采用中心频率为2.472GHz,蓝网采用频点2 417GHz。 2)轨旁无线网络。TRE是配置于轨旁的无线传输设备,用于与车载无线设备之间进行无线通信。TRE箱内主要有2个无线调制解调器、2个电源转换器、2个光电转换器。红色、蓝色无线调制解调器分别连接到各自的功分器上,功分器连接到定向天线上用于传输射频(RF)信号。 3)车载无线网络。每辆列车安装2个无线调制解调器,用于CBTC业务传输,每个无线调制解调器连接2个位于车体上方的天线,用于与轨旁天线进行无线信息传输。为满足列车双向行驶以及在岔区和车辆段等处保持通信,列车每端必须配置两个车载天线。车载无线调制解调器在无线覆盖区域能与无线网络快速完成握手及授权并接入,保证列车正常投入运营及故障恢复满足系统功能、性能及运营效率要求。 1.3 DCS无线系统冗余结构 DCS无线网络采用冗余结构,由红网和蓝网组成。无线系统的冗余结构能保证当任一轨旁或车载无线设备故障时包括单个接入点的故障、单个轨旁设备电源的故障、单个光交换设备的故障均不影响系统的正常工作。DCS无线系统的典型冗余结构,如图1 所示。图1 DCS无线系统的典型冗余结构图 1)正常情况下的连续通信。列车在隧道内运行,列车进入无线单元(B)和无线单元(C)的重叠覆盖区域。在该重叠覆盖区域内,车头红网车载无线调制解调器收到由红网接入点(C)和红网接入点(B)循环生成的识别信息。车尾蓝色车载无线调制解调器收到由无线单元(A)蓝网接入点(A)循环生成的识别信息 红网车载无线调制解调器将测量并对比收到的功率,如果从红网接入点(C)接收的功率高于从红网接入点(B)接收的功率,调制解调器将执行从红网接入点(B)到红网接入点(C)的交接。如图2所示。 9 4 1

现代地铁民用通信中的无线覆盖建设研究

现代地铁民用通信中的无线覆盖建设研究 摘要:地铁以其运输量大、速度快、节约土地等优点成为各大中城市解决市民 交通出行需求的首先方案,近年来地铁建设如火如荼。作为保障地铁运营指挥、 安全防护、安全治理、旅客服务的通信系统在地铁的应用方案也得到不断完善与 提高。 关键词:地铁覆盖;多网合路共存;系统间干扰;组网方式; 城市轨道交通建设如火如荼,保障和提升地铁运营服务的无线通信需求也急 剧增加,不同无线技术的特点及有限的频率资源难以满足独立承担起众多的业务 需求。 一、地铁无线覆盖的特点及思路 1.地铁无线覆盖的特点。地铁的无线覆盖分为地面和地下两部分。通常是指 地面站和高架地面站,通常由大型的室外网络覆盖,部分运营商在一些交通高地 面站和建设高架站街站天线阵列来吸收交通或分配系统。地下部分是指地铁的地 下车站,通常被称为地下部分。与室外的大型车站和普通建筑相比,地铁的无线 覆盖具有以下特点。(1)地铁车站由三部分组成,即车站层、站台层和隧道区,覆盖范围很广。(2)地铁的高峰和休闲时间有很大的不同,瞬时的交通量是高的。(3)地铁一般采用由多家运营商构建的覆盖系统,具有较大的干扰性和较 高的工程复杂性。(4)地下部分基本上是一个信号盲区,没有室外信号。(5) 隧道长度不固定,施工方案不同。 2.地铁无线覆盖方式。通常有几种无线覆盖地铁的方式。(1)各运营商应构 建一套自己的无线覆盖分销系统。(2)每个运营商应建立一个分销系统,以满 足所有无线系统的接入。(3)由第三方建设分配系统,电信、媒体运营商根据 自身需要租赁系统。目前,建设的主要方式是第三方建设的配送体系,每个运营 商都可以根据自己的需求进行租赁。集约化建设方式示意图如图1所示 3.地铁无线覆盖思路。(1)考虑到地铁隧道空间的局限性,从节约成本的角 度出发,每个运营商应共享一套配送系统。(2)在地铁隧道无线覆盖设计中, 设计为纯被动系统。在增加隧道区间内的活动设备后,系统稳定性较差。地铁运 行后,隧道间隔时间较短,应急处理能力较差。(3)道路的运营者进行更多的 覆盖,将导致各系统之间的干扰,通过发送和接收点的分配系统,引入系统平台(POI),抑制系统,增强隔离比之间的相互干扰。(4)为了保证车站通信的稳 定性,建议在各车站设置独立的微元系统,以避免光纤直接停车的施工方式。(5)根据地铁车站的使用情况,地铁的位置和规划面积应更合理,在一定的房 间面积扩大后,尽量安排在站台上,以及基站。 二、地铁无线覆盖解决方案 1。新分配系统的设计思想。地铁车站通常由站台、站台层和双向通道组成。该站设有通道、自动扶梯、进出检票口和地铁控制中心。站台是旅客候车、上下 游的区域,地铁站站台结构有岛型站和侧型站分,岛站站台在中间,轨道两侧; 侧站的轨道在中间,平台在两边。地铁车站、站台、隧道区配电系统的设计思路:(1)隧道区域覆盖有泄漏电缆。(2)海岛站平台层由天线阵与泄漏电缆相结合。(3)侧站平台层覆盖天线阵。(4)站场及出入口通道及设备层应覆盖天线阵。(5)传输站的传输通道覆盖天线阵。 2.大厅无线覆盖设计。地铁站的地铁车站通常是开放的大厅,面积3000-3000

地铁车地无线通信实施方案探讨

地铁车地无线通信实施方案探讨 发表时间:2019-09-11T15:49:08.923Z 来源:《基层建设》2019年第17期作者:董招[导读] 摘要:目前国内轨道交通行业高速发展,地铁车地无线通信一直是地铁通信专业关注的焦点。 中建五局安装工程有限公司湖南省 410000摘要:目前国内轨道交通行业高速发展,地铁车地无线通信一直是地铁通信专业关注的焦点。本文通过分析频段2.4G传输时钟同步车地无线通信方案、频段1.8G近远端机同步车地无线通信方案和频段5.8G-GSU同步车地无线通信方案,提出更适合的频段5.8G分组传输网时钟同步车地无线通信方案,以及未来车地无线通信发展的前景。 关键词:地铁通信;车地无线通信;方案 引言 车地无线通信系统是城市轨道交通的重要基础设施,是地铁安全运营所必须的信息交互系统,系统的通信质量和可靠性直接决定地铁的运营状况,与人们的出行体验息息相关,是城市进行地铁建设时需要重点考虑的问题。近些年,随着车地无线通信技术的发展,形成多种无线通信技术,如何选择合适的车地无线通信技术,满足地铁运营的需要成为设计、施工人员需要重点思考的问题。 1地铁车地无线通信概述 车地无线通信网络是乘客信息系统(简称PIS系统)主干网络的延伸,PIS系统能通过组播方式实现线路播控中心到列车的信息下发,并能实现广播和寻址功能,将特定的信息发送给指定的一列或者几列列车;视频监控系统(简称CCTV系统)也能通过该网络实现将车辆客室监视信息实时上传至中心CCTV服务器,列车驾驶室显示终端能调看对应车站站台屏蔽门侧的监控图像。车地无线网络提供的双向传输有效带宽应能满足列车与中心之间的实时双向数据传输的带宽要求,保证所传图像顺畅清晰,不出现画面中断或者跳播等现象,且系统具有QoS分级控制功能。车地无线网络确保沿轨道线安装的无线接入点和在移动列车上的移动单元之间建立稳定、安全且能避免冲突的连接。在列车高速运行时,不应丢失连接和引起画面质量降低,无线设备应遵循完善的切换机制无缝切换至最合适的接入点。 2地铁车地无线通信整体规划 2.1通信信号各自独立建设LTE单网 通信信号专业各自建设一套LTE硬件传输网络,通信专业单网承载无线调度业务和列车运行紧急数据业务。考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,则由通信专业为信号专业配置冗余无线数据传输通道,以满足信号系统冗余需求。优点:该方案同样整体降低本工程LTE车地无线信息传输网络的造价,实现资源的整合和充分利用,技术上满足信号系统对车地无线数据传输的要求,节约频带资源的使用宽度。缺点:信号系统与通信系统在无线数据传输系统增加了接口,同时信号系统的冗余通道的可靠性和安全性需要由通信系统保障。 2.2通信独立建设单网,信号专业独立建设冗余双网 通信专业独立建设一套LTE硬件传输网络设备,承载无线调度业务和列车运行紧急数据业务。考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,信号专业独立建设一套冗余无线数据传输网络设备。优点:该方案通信信号两个系统在无线信息传输系统上完全独立,工程安装、调试,后期的设备维护都相对独立,降低了专业之间的依赖,管理上更为便利。缺点:增加了工程建设的成本,增加了无线频带资源的使用宽度。 3地铁车地无线通信实施方案解析 3.1频段1.8G近远端机同步车地无线通信方案 该方案车地无线通信采用1.8G频段,通过地面无线发射网关+车站近端机+区间光远端发射机的组合模式,地面有线网络中心交换机通过光缆与各站地面无线网管相连,这样能保证无线发射信号的频率一致,基本不存在延时。为解决列车高速在区间行驶时,列车基站信号接收器频繁切换信号源,出现不断跟信号源通讯握手的死循环模式,导致无法正常进行通信状态。区间基站采用无线接收基站和光远端发射机,在对应列车内配置车载无线接收网关、车载无线发射网关和车载通信控制器。该方案无线接收和发射通道分开,但能很好的解决高速行驶时无线信号越区切换通信故障问题。该方案带宽仍然有限,一般为30M左右,其中控制中心设备可调看单列车6路监控图像(带宽需求在12M左右),而列车播控系统能播放直播信号(带宽需求在6M左右)。但通过地面无线发射网关+车站近端机+区间光远端发射机的模式,控制中心能够实时调看低码流列车监控图像。该方案,区间光远端发射机一般800m左右安装一个,天线覆盖范围较远,但是为保持同步并解决信号越区切换问题,各站无线发射网关需敷设光缆与地面有线网络中心交换机相连,光缆数量非常大,施工成本较高。 3.2频段2.4G传输时钟同步网车地无线通信方案 该方案车地无线通信采用2.4G频段,轨旁基站与车载基站之间无线使用IEEE802.11n用于覆盖列车运行沿线,无线骨干连接带宽可达到15Mbps,而区间基站与车站交换机有线信息传输网之间的连接有效带宽为100Mbps。传输系统采用数字同步多业务传送平台(简称MSTP)和时钟同步网络(简称BITS),即MSTP+BITS同步传输方案。车站车地无线系统通过传输系统分配的1000M光通道传输至控制中心,关键在于该传输系统能提供严格的时钟同步功能,保证区间基站发射信号的同步,以至于列车行驶跨越无线覆盖区间时,基站发射信号保持同步。区间无线基站与无线管理交换机无线控制器模块之间通过有线网络进行互联,采用CAPWAP标准隧道协议,同时,在保证802.11安全的前提下采用集中控制分布式转发。 4城市轨道交通中常见的车地无线通信技术 4.1TRainCom-MT技术 该技术是由德国公司研发的城市轨道交通专用通信系统,能够在高速移动环境下保持良好的通信效率和质量,车地最大通信传输速度可达16Mb/s。但是,该系统受到保密性协议的限制,其系统升级和开发只能依靠德国公司实现,市场维护和选择方面相对教差,在国内中的应用相对较少。 4.2LTE无线传输技术 LTE无线传输技术是当前应用最为广泛的车地无线通信技术,是在3G的基础上发展而来的,通过对空中接入技术的改进和增强,在保有3G原有技术优势的同时,实现无线传输的低延迟、高传输速度、分组传输、向下兼容和光域覆盖。因其技术优势,LTE无线传输技术在郑州、深圳等多个城市轨道交通中有所应用。

浅析车地无线通信传输系统构成及原理

浅析车地无线通信传输系统构成及原理 发表时间:2019-09-03T17:03:18.493Z 来源:《科学与技术》2019年第07期作者:沈斌 [导读] 接下来本文对地铁的车地无线通信传输系统构成及原理做具体阐述,希望给行业内人士以借鉴和启发。 深圳市傲硕科技有限公司广东深圳 518028 摘要:随着无线通信技术的发展。基于自由空间传输的无线传输技术在CBTC系统中得到了应用。无线的频点一般采用共用的2. 4GHZ或5.8GHZ频段,采用接入点(AP)天线作为和列车进行通信的手段。接下来本文对地铁的车地无线通信传输系统构成及原理做具体阐述,希望给行业内人士以借鉴和启发。 关键词:CBTC;AP;DCS;TRE 引言 早期的地铁车地无线传输系统存在的最大问题就是抗干扰能力较差,信号传输的质量较弱,在一定程度上会制约地铁运输的安全性。为了提高地铁车地无线传输系统的通信能力,需要加强技术设计。 1车地无线通信传输系统构成及原理 1.1无线网络的构成 DCS无线网络用于承载车载和轨旁CBTC系统间信号数据流的通信,它由位于轨旁的无线接入点(AP)、功分器、轨旁定向天线,及车载无线天线、车载无线调制解调器组成。 1.2无线网络系统原理 1)车地双向通信网络。每个TRE(轨旁无线设备)由红网、蓝网接入点组成,此红、蓝接入点与其各自的无线网络相连接。无线网采用802.11gq协议,采用带宽为6MHz的窄带技术,红网采用中心频率为2.472GHz,蓝网采用频点2.417GHz。2)轨旁无线网络。TRE是配置于轨旁的无线传输设备,用于与车载无线设备之间进行无线通信。TRE箱内主要有2个无线调制解调器、2个电源转换器、2个光电转换器。红色、蓝色无线调制解调器分别连接到各自的功分器上,功分器连接到定向天线上用于传输射频(RF)信号。3)车载无线网络。每辆列 车安装2个无线调制解调器,用于CBTC业务传输,每个无线调制解调器连接2个位于车体上方的天线,用于与轨旁天线进行无线信息传输。为满足列车双向行驶以及在岔区和车辆段等处保持通信,列车每端必须配置两个车载天线。车载无线调制解调器在无线覆盖区域能与无线网络快速完成握手及授权并接入,保证列车正常投入运营及故障恢复满足系统功能、性能及运营效率要求。 1.3DCS无线系统冗余结构 DCS无线网络采用冗余结构,由红网和蓝网组成。无线系统的冗余结构能保证当任一轨旁或车载无线设备故障时包括单个接入点的故障、单个轨旁设备电源的故障、单个光交换设备的故障均不影响系统的正常工作。2TD-LTE无线通信传输TD-LTE技术是3GPP标准的4G通信技术,它采用OFDM(OrthogonalFrequencyDivisionMultiple,正交频分多址)和MIMO(MultipleInputMultipleOutput,多入多出)技术作为其无线网络演进的标准,系统采用全IP网络架构,支持良好的移动性,移动速率达到120km/h~350km/h时移动终端能与网络保持连接,确保其不掉线。TD-LTE宽带集群是在TD-LTE技术上,承载数字集群业务,实现了无线数字集群宽带化,实现了语音、数据、视频功能,不仅使调度通信“听得到”,还实现了调度通信“看得见”,实现了现场图像上传、视频通话、视频回传、视频监控等。系统具有上下行工作带宽可灵活配比,系统支持工作在400MHz、1400MHz、1800MHz等多个频段。TD-LTE宽带无线数字集群主要技术指标如下:呼叫建立时间:小于300ms;话权抢占时间:小于200ms;单基站覆盖半径:市区1-3Km,郊区3-10Km;带宽:支持可变带宽,1.4~20MHz;频谱利用率:上行2.5bps/Hz,下行5bps/Hz;峰值传输速率:在20MHz带宽下,下行峰值传输速率100Mbps,上行峰值传输速率50Mbps。 2视频编码技术 地铁的监控摄像头获取的数据量庞大,给主控制器带来较大的存储压力,如果仅仅依靠主控制器进行视频视距的传输将会造成主控制器的系统瘫痪,因此需要考虑在传输的过程中对视频进行压缩处理,减少视频存储的空间。MPEG-4、H.264两种视频压缩编码在近几年的发展中得到了广泛的使用,但是考虑到地铁无线网络传输的情况,采用H.264视频编码技术较为合适。在同等的传输码率下,H.264比MPEG-4信噪比高,H.264中的分离视频编码层具有良好的兼容性,能够适应不同的网络协议。H.264还可以改善传输的性能,通过高效率的压缩降低能耗,适用于列车无线视频传输系统。 3车-地无线通信系统 车地无线通信技术比选城市轨道交通信号CBTC系统车地通信方式主要采用WLAN技术,其发展较为成熟,应用较为广泛。但LTE技术较新,其在市域快线信号系统车地无线传输领域较WLAN有如下优势:1)可靠性:WLAN使用公共频段,干扰源多,尤其公共干扰源,无法彻底清除;且区间有源设备众多,造成整体可靠性下降。LTE与之相比,使用专有频段,可通过清频去除周边干扰源;可采用漏缆覆盖,覆盖距离广,区间设备少,整体可靠性高。从可靠性看,LTE明显优于WLAN。2)可用性:WLAN采用的IEEE802.11g协议信道利用率低,标称54?Mbit/s实际可用带宽为15~20?Mbit/s左右;LTE在5?M、10?M、20?M的峰值速率分别为:43?Mbit/s、87?Mbit/s、150? Mbit/s。从带宽的可用性考虑,LTE明显优于IEEE802.11g。3)可维护性:LTE覆盖距离远,覆盖在1.2?km左右,维护简单。可以减轻运维人员工作量,减少运维成本,可维护性优于WLAN。4)抗干扰能力:LTE专用频段,避免外部系统干扰;小区间干扰协调(ICIC)、干扰合并(IRC),解决系统内干扰问题。高速移动传输LTE支持超高速移动,如450?km/h,能提供高速的接入服务。WLAN最高支持140?km/h 以下的低速环境,随着速度提高,切换失败率升高。高速下数据传输的有效性和可靠性是衡量通信系统无线链路最为重要的指标之一。有效性的测试指标为吞吐量,系统吞吐量是指单位时间内系统从信源到信宿成功传输的数据量。可靠性的测试指标为误块率,误块率(BLER)是数据传输中数据块经过CRC校验后得到错误的概率,用于反映无线链路控制层对差错重传的要求。5)技术发展趋势和政策支持:作为新一代无线移动通信技术,LTE在厂家技术支持与研发力度上远远大于WLAN,并且国家针对LTE在轨道交通的应用,在产业政策、标准建设、行业建设等方面都给予了明确的技术支持,制定一系列标准和规范,为其应用打下了坚实的基础。 结语 移动闭塞是基于通信技术的列车控制(简称CBTC)ATC系统,利用通信技术实现车地通信并实时地传递列车定位信息。通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。系统通过建立车地之间连续、双向、高速的通信,使列车命令

地铁PIS车地无线技术方案研究

地铁PIS车地无线技术方案研究 车地无线通信作为乘客信息系统(以下简称PIS)中重要的组成部分,其主要功能就是列车在快速移动过程中,为车- 地以及地- 车之间的各种数据信息、视频信息和控制信息提供传输通道,这也是PIS 相对于其他系统所特有的需求。而PIS 的实施,尤其是车地无线部分往往面临着比其他系统复杂得多的物理环境。另外,随着高清视频的不断发展及地铁运营的需求增加,对车地无线服务的需求量也不断增大。因此,如何选择能够提供稳定的车地无线服务的集成方案是当前亟需解决的重要课题。 标签:PIS;车地无线;数字电视;LTE;WLAN 1 PIS车地无线技术要求 当前地铁PIS 在车地无线通信方面主要关注下面5个问题。 1.1 带宽 网络承载的数据不仅是数据信息,还包括视频和音频信息,因此对通信带宽有着较高的要求,当前地铁运营要求车地无线网络至少提供15 Mbps 以上的带宽。 1.2 漫游 列车在高速移动情况下,车载无线设备需要不断地与轨旁的无线设备进行通信,考虑到PIS 的车地无线主要为视频数据的双向传输,因此即便是短暂的通信中断也会严重影响视频的播放效果,因此要求漫游切换时间非常短。 1.3 丢包率 因为数据的丢包会对视频播放的效果影响严重,所以本系统需要对无线通信的丢包率有严格的控制,一般为小于1%。 1.4 抗干扰 PIS 系统的车地无线网络的运行环境比较复杂,同时会与其他系统(如信号系统的CBTC 系统等)的无线网络有所叠加,因此必须保证PIS 系统的无线信号和专用无线系统场强能够在全线无缝覆盖,同时避免对地铁其它系统产生相互干扰。 1.5 管理维护 因为PIS 是旅客乘坐地铁出行的一个重要窗口,所以对车地无线通信维护

地铁CBTC信号系统原理及分类

地铁CBTC信号系统原理及分类 移动闭塞是基于通信技术的列车控制(简称CBTC—Communication Based Train Control)ATC系统,该系统不依靠轨道电路向列控车载设备传递信息,而是利用通信技术实现“车地通信”并实时地传递“列车定位”信息。通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。系统通过建立车地之间连续、双向、高速的通信,使列车命令和状态可以在车辆和地面之间进行实时可靠的交换,并确定列车的准确位置及列车间的相对距离,保证列车的安全间隔。 移动闭塞技术是通过车载设备和轨旁设备不间断的双向通信来实现。列车不间断向控制中心传输其标识、位置、方向和速度等信息,控制中心可以根据列车实时的速度和位置动态计算列车的最大制动距离。列车的长度加上这一最大制动距离并在列车后方加上一定的防护距离,便组成了一个与列车同步移动的虚拟分区。由于保证了列车前后的安全距离,两个相邻的移动闭塞分区就能以很小的间隔同时前进,这使列车能以较高的速度和较小的间隔运行,从而提高运营效率。 1.基于基于交叉感应环线技术 2.基于无线电台通信技术 3.基于漏泄电缆无线传输技术 4.基于裂缝波导管无线传输技术 1.基于基于交叉感应环线技术 以敷设在钢轨间的交叉感应环线作为传输媒介的CBTC系统,在城市轨道交通中已经应用了较长时间。交叉感应环线的缺点在于,安装在钢轨中间,安装困难且不方便工务部门对钢轨的日常维修,车-地通信的速率低。但由于环线具有成熟的使用经验,使用寿命长以及投资少等优点,目前仍继续得到应用。 2.基于无线电台通信技术 随着无线通信技术的发展,基于自由空间传输的无线传输技术的在CBTC 系统中得到了应用。无线的频点一般采用共用的2.4GHz或5.8GHz频段,采用接入点(AP)天线作为和列车进行通信的手段。AP的设置保证区间的无线重叠覆盖。自由空间传输的无线具有自由空间转播,对于车载通信设备的安装位置限制少;传输速率高;实现空间的重叠覆盖,单个接入设备故障不影响系统的正常工作;轨旁设备少,安装与钢轨无关,方便安装及维护的特点。 基于无线电台通信传输方式CBTC系统,已经在北京地铁10号线成功应用。 3.基于漏泄电缆无线传输技术 Alstom的CBTC系统在需要的时候也可采用漏泄电缆传输方式,而新研发的系统采用的不多。漏泄电缆方式特点是场强覆盖较好、可控,抗干扰能力强。

地铁无线通信系统网络覆盖优化

龙源期刊网 https://www.wendangku.net/doc/072166810.html, 地铁无线通信系统网络覆盖优化 作者:韦韬 来源:《世界家苑》2017年第08期 摘要:地铁无线通信系统作为地铁专用通信系统,在地铁运行过程中起到信息相互交流 的作用,确保地铁运行安全。地铁所拥有的特殊结构,决定了其所独有的通信网络特点,因此需要通过多种措施不断加强其网络性能。因此,本文就地铁无线通信系统的网络及覆盖优化问题展开研究。 关键词:地铁;无线通信系统;覆盖;网络优化 前言 地铁出行,绿色环保,改善了人们出行的时间,也带动了周边地区及整个城市的经济发展速度。通信系统作为支撑着地铁安全运营的重要系统,地铁运行过程中的信息通畅是确保地铁安全运行前提。因此,优化地铁无线通信覆盖率,具有重要意义。地铁无线覆盖主要分为地面与地下两部分,地面部分主要应用的是地面站的形式;地下部分由于无线通信的用户主要处于隧道或地下站厅,因此就需要考虑到隧道通信的特点,加强无线信号的覆盖,以确保地铁通信稳定、安全行车。 一、地铁无线覆盖的特点 地铁由于人流量大,不同时段对网络的需求有很大差别,而且地铁引入多家运营商,也形成了一种相互之间的干扰,加大了网络覆盖的难度。而且地下空间大小的不一致,也造成了其覆盖方案的较大差别。在地铁无线系统的建设过程中,如果各个运营商都要建设自己的信号系统,那么不仅建设成本过高,而且后期的维护上也会造成困难,且有着繁重的工作量。因此,目前选用的是一套互通的系统,然后不同的运营商如果需要接入业务则可进行租用。地铁无线网络的覆盖中,还要考虑到本身在空间构成上的特殊性。在设计阶段,应当尽量选用无源系统来确保系统的运行稳定,而且也方便后续的维护。同时为了确保车站无线信号的稳定,应当设置独立的微蜂窝系统,并且在机房的设置上,应当尽可能选择站台,并留下充足的扩容空间。 二、地铁无线通信系统的构成 TETRA 数字集群系统作为一种成熟、稳定的无线通信系统,在国内的地铁通信行业中得到了广泛的应用。TETRA 数字集群无线通信系统由网络基础设施和移动台组成,其中网络基础设施主要设备包括控制中心集群交换控制设备(MSO)、基站、调度台、二次开发平台和 网管系统,各部分设备通过标准通信接口接入传输系统,由传输系统提供的通道有机协调运行,实现各部分的功能,各网络设施在逻辑上呈现以控制中心集群交换控制设备(MSO)为 中心的星形拓扑结构;移动台包含便携台、固定台和车载台。网络设施和移动终端相互作用共

地铁通信系统简介

地铁通信系统简介 地铁通信系统简介 目前地铁专用通信系统主要包括以下几个子系统: 传输系统、公务电话系统、专用电话系统、无线通信系统、广播系统、闭路电视监控系统、乘客信息系统、视频会议系统、时钟系统、集中网络管理系统、地铁信息管理系统、电源及接地系统、通信光缆/电缆及其他等。 1、传输系统 地铁传输系统能迅速、准确、可靠地传送地铁运营管理所需要的各种信息。该系统采用技术先进、安全可靠、经济实用、便于维护的光纤数字传输设备组网,构成具有承载语音、数据及图像的多业务传输平台,并具有自愈环保护功能。 目前地铁传输系统普遍采用MSTP设备,随着信息化程度的不断提高,对数据传输要求高带宽、低时延,通道保护智能化高,会采用更先进的OTN传输设备。 目前传输系统所承载的语音、数据及图像信息的业务主要有: (1)公务电话系统 (2)专用电话系统 (3)无线通信系统 (4)广播系统 (5)闭路电视监控系统 (6)时钟系统 (7)UPS电源系统 (8)信号电源及微机监测 (9)自动售检票系统(AFC) (10)安防系统 (11)门禁系统 (12)屏蔽门系统(PSD) (13)其它运营管理信息 传输系统的光纤环路具有双环路功能。当主用环路出现故障时,能够自动切换到备用环路上,保证系统不中断,切换时不影响正常使用。当主、备用光纤环路的线路在某一点同时出现故障时,两端的网络设备自动形成一条链状的网络。当某个网络节点设备出现故障时,除受故障影响的节点设备外,其它网络节点设备能保持正常工作。

地铁通信系统简介 2 / 31

地铁通信系统简介 2、公务电话系统 公务电话主要为运营、管理和维护部门之间的公务通信以及与公用电话网用户的通信联络,向地铁用户提供话音、非话及各种新业务。 公务电话系统按车辆段、车站两级结构进行组网,由设置在车辆段和车站的数字程控交换机、电话机及各种终端、配线架等辅助设备构成。 两相邻车站交换机通过实回线模拟中继相连,一旦车辆段交换机、传输设备及光线路发生故障,车站内部通信仍能保证,站间行车电话、轨旁电话等仍能畅通,不影响列车运营。

相关文档
相关文档 最新文档