文档库 最新最全的文档下载
当前位置:文档库 › 晴天太阳辐射模型的优化计算

晴天太阳辐射模型的优化计算

晴天太阳辐射模型的优化计算
晴天太阳辐射模型的优化计算

太阳直接辐射计算

太阳直接辐射计算导则 1 范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163—2014,定义] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射 direct normal radiation 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。

[GB/T 31163—2014,定义] 3.3 水平面直接辐射 direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义] 3.4 散射辐射 diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义] 3.5 [水平面]总辐射 global [horizontal] radiation 水平面从上方2π立体角(半球)范围内接收到的直接辐射和散射辐射之和。 注:改写GB/T 31163—2014,定义。 3.6 地外太阳辐射 extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163—2014,定义] 3.7 辐照度 irradiance 物体在单位时间、单位面积上接收到的辐射能。 注:单位为瓦每平方米(W/m2)。 [GB/T 31163—2014,定义] 3.8 辐照量 irradiation 曝辐量 radiance exposure 在给定时间段内辐照度的积分总量。 注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2:1 kWh/m2= MJ/m2;1MJ/m2≈ kWh/m2。

浅谈粒度计算

浅谈粒度计算 摘要:粒度计算是新近兴起的人工智能研究领域的一个方向,本文简单介绍粒度计算的主要三个方法,以及之间的关系。关键词:粒度计算、模糊逻辑、商空间理论、粗糙集理论。;一.引言人们在思考问题时,或者是先从总体进行观察,然后再逐步深入地研究各个部分的情况;或先从各个方面对同一问题进行不同侧面的了解,然后对它们进行综合;或是上面两种方法的组合,即时而从各侧面对事物进行了解,然后进行综合观察,时而综合观察后,对不甚了解的部分再进行观察……总之,根据需要从不同侧面、不同角度反复对事物进行了解、分析、综合、推理.最后得出事物本质的性质和结论. ; 人工智能研究者对人类这种能力进行了深入地研究,并建立了各种形式化的模型.本文要介绍的粒度计算,就是对上述问题的研究的一个方面. ; 人工智能最主要的目的是,为人类的某些智能行为建立适当的形式化模型,以便利用计算机能再显人的智能的部分功能。什么是人类的最主要的智能,或者说智能的最重要表现形式是什么。各家有不同的看法,如Simon等认为人的智能表现为,对问题求解目标的搜索(Search)能力。比如学生在证明一道平面几何题目时,进行思考,“聪明的小孩”能很快地找到证明该结论的有关的定理性质,并很快地应用上去,从而就得到证明。“数学能力差的学笨赡芏椅餮埃 也坏胶鲜实亩ɡ砗托灾剩评慈迫ィ艿貌坏街っ鞯囊欤籔awlak[P1]则认为人的智能表现为对事物(事件、行为、感知等)的分类(Classification)能力。如平时我们说某医生本事大,就是这位医

生能从病人的症状中,正确地诊断出病人是患什么病(分类能力!分出患什么病来)等等。我们认为“人类智能的公认特点,就是人们能从极不相同的粒度(Granularity)上观察和分析同一问题。人们不仅能在不同粒度的世界上进行问题求解,而且能够很快地从一个粒度世界跳到另一个粒度的世界,往返自如,毫无困难。这种处理不同世界的能力,正是人类问题求解的强有力的表现”[ZH1]。还有很多不同的理解,人们正是从这些不同的理解分别建立各自的模型和相关的理论和方法。粒度计算目前国际上有三个主要的模型和方法,下面简单进行介绍。;二. 三种不同的模型; 下面简单介绍有关“粒度计算”的三个不同的模型和方法。什么是粒度,顾名思义,就是取不同大小的对象。也就是说,将原来“粗粒度”的大对象分割为若干“细粒度”的小对象,或者把若干小对象合并成一个大的粗粒度对象,进行研究。; 最近Zadeh在[ZA1]-[ZA3]中,讨论模糊信息粒度理论时,提出人类认知的三个主要概念,即粒度(granulation)、组织(organization)、因果(causation)(粒度包括将全体分解为部分,组织包括从部分集成为全体,因果包括因果的关联)。并进一步提出粒度计算。他认为,粒度计算是一把大伞它覆盖了所有有关粒度的理论、方法论、技术和工具的研究。指出:“粗略地说,粒度计算是模糊信息粒度理论的超集,而粗糙集理论和区间计算是粒度数学的子集”。Zadeh 的工作激起了学术界对粒度计算研究的兴趣,Y.Y.Yao和他的合作者对粒度计算进行了一系列的研究[Y1]-[Y3]并将它应用于数据挖掘等领域,其工作的要点是用决策逻辑语言(DL-语言)来描述集合的粒度(用满足公式f元素

最优化理论与算法(第八章)

第八章 约束优化最优性条件 §8.1 约束优化问题 一、 问题基本形式 min ()f x 1()0 1,,.. ()0 ,,i e i e c x i m s t c x i m m +==?? ≥=?L L (8.1) 特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。 记 {} 1()0 (1,,);()0 ,,i e i e X x c x i m c x i m m +===≥=L L ,称之为可行域(约束域)。 {}1,,e E m =L ,{}1,,e I m m +=L ,{}()()0 i I x i c x i I ==∈ 称()E I x U 是在x X ∈处的积极约束的指标集。积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。 应该指出的是,如果x * 是(1)的局部最优解,且有某个0i I ∈,使得 0()0i c x *> 则将此约束去掉,x * 仍是余下问题的局部最优解。 事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ?>,存在x δ,使得 x x δδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。注意到当δ充分小时,由0() i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x * 是局部极小 点矛盾。 因此如果有某种方式,可以知道在最优解x * 处的积极约束指标集()()A x E I x * *=U ,则问题 可转化为等式的约束问题: min ()f x .. ()0i s t c x = ()i A x *∈ (8.2) 一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x * 。

基于云模型的粒计算方法研究

第6章从云模型理解模糊集合的争论与发展

第1章基于云模型的粒计算方法应用 云模型是一个定性定量转换的双向认知模型,正向高斯云和逆向高斯云算法实现了一个基本概念与数据集合之间的转换关系;本文基于云模型和高斯变换提出的高斯云变换方法给出了一个通用的认知工具,不仅将数据集合转换为不同粒度的概念,而且可以实现不同粒度概念之间的柔性切换,构建泛概念树,解决了粒计算中的变粒度问题,有着广阔的应用前景。 视觉是人类最重要的感觉,人类所感知的外界信息至少有80%以上都来自于视觉[130]。图像分割[131]是一种最基本的计算机视觉技术,是图像分析与理解的基础,一直以来都受到人们的广泛关注。目前图像的分割算法有很多,包括大大小小的改进算法在内不下千种,但大致可以归纳为两类[132]。第一类是采用自顶向下的方式,从数学模型的选择入手,依靠先验知识假定图像中的部分属性特征符合某一模型,例如马尔科夫随机场、引力场等,利用模型描述图像的邻域相关关系,将图像低层的原始属性转换到高层的模型特征空间,进而建模优化求解所采用模型的参数,通常是一个复杂度非常高的非线性能量优化问题。在特征空间对图像建模,其描述具有结构性、分割结果也一般具有语义特征,但是由于对数据的未知性、缺乏足够先验知识的指导,导致模型的参数选择存在一定的困难。第二类是采用自底向上的方式,从底层原始数据入手,针对图像灰度、颜色等属性采用数据聚类的方法进行图像分割,聚类所采用的理论方法通常包括高斯变换、模糊集、粗糙集等;或者预先假设图像的统计特性符合一定的分类准则,通过优化准则产生分割结果,例如Otsu方法的最大方差准则[133][134]、Kapur方法的最大熵准则[135][136]等。这类方法虽然缺乏语义信息表达,但是直接在数据空间建模,方法更具普适性和鲁棒性。 随着计算机视觉研究的深入,简单的图像分割已经不能满足个性化的需求,有时候人们恰恰兴趣的是图像中亦此亦彼的那些不确定性区域,基于云模型的粒计算方法是一种不确定性计算方法,发现图像中存在的不确定性区域是它的一个重要能力。如何模拟人类自然视觉中的认知能力进行图像分割一直以来都是一个难点问题,而基于高斯云变换的可变粒计算正是用来模拟人类认知中的可变粒计算过程,因此可以利用高斯云变换对自然视觉认知能力中选择性注意能力进行形式化。武汉大学秦昆教授等曾基于云综合、云分解等云运算实现图像分割,正如第5章中的分析结果,基于内涵的概念计算方法随着层次的提升,概念脱离原始数据会增加误分率,甚至失效,而且无法实现自适应地概念数量和粒度优化。

第1章粒计算的艺术-theDepartmentofComputerScience-University

第1章粒计算的艺术 姚一豫 (Yiyu Yao) Department of Computer Science, University of Regina Regina, Saskatchewan, Canada, S4S 0A2 E-mail: yyao@cs.uregina.ca http://www2.cs.uregina.ca/~yyao/ 1.1引言 粒计算(Granular Computing)是一门飞速发展的新学科。它融合了粗糙集、模糊集以及人工智能等多种理论的研究成果。在短短十年的发展中,我们已经见证了它对科学及计算机科学的作用和影响。诸多学者就粒计算的基本理论和方法做了大量工作(见本章参考文献),但为粒计算下一个正式的、精确的、并且能够广为接受的定义仍然是一件困难的事情。虽然如此,我们仍然可以从问题求解及实践中提取出一些通用的理论和基本要素[1]。我们对粒计算的描述是建立在对它的直觉认识上的:粒计算是研究基于多层次粒结构的思维方式、问题求解方法、信息处理模式,及其相关理论、技术和工具的学科。 在中国,粒计算的研究已引起众多学者的关注与兴趣。本书的附录比较全面地收录了近年在国内期刊发表的粒计算方面的文章。包括,基于商空间理论的粒计算模型[2],模糊商空间及粒计算的商闭包空间模型(张钹和张铃等) [3,4,5,6];粒计算的覆盖模型,粗糙集与粒计算的交叉问题的研究(张文修等)[7,8];粒、规则与例外的关系(王珏等) [9,10,11,12];粒计算的理论、模型与方法的探讨(苗夺谦等) [13,14,15,16,17,18];基于Dempster-Shafer理论和粗糙集的近似和知识约简(吴伟志等) [19, 20,21,22];几种基于覆盖粗糙集的粒计算模型(祝峰和王飞跃)[23,24,25];粒逻辑及其归结原理(刘清等) [26,27,28,29,30];基于关系的粒计算模型,粒化思想在图像的纹理识别上的应用(史忠植等) [31,32,33,34];基于相容关系的粒计算模型,粒计算在进化计算、机器学习中的应用(王国胤等) [35,36,37,38,39];使用粒计算进行知识获取的方法(梁吉业和李德玉) [40];基于泛系理论的粒计算模型(李永礼和林和等) [41,42,43];使用粒分析来描述、刻画粒计算的思考(李凡长);等等。 粒计算的基本思想、原理和策略出现在不同的学科和领域里[44,45,46]。本书的其他章节对粒计算的模型和方法有非常精彩和深刻的讨论。因此,我们在本章将不讨论具体某一个理论、方法、工具或应用,而更侧重于把粒计算作为一个独立的学科进行研究。这要求我们回答下面一些基本问题: 1.为什么要研究粒计算? 2.粒计算的独特性在哪里?

太阳直接辐射计算

太阳直接辐射计算导则 1范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698 —2017 太阳能资源测量直接辐射 GB/T 34325 —2017 太阳能资源数据准确性评判方法 3术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射direct radiati on 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163 —2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5。的仪器测定的,而日面本身的视场角仅约为0.5 °,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct no rmal radiati on 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳岀射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163 —2014,定义5.12] 3.3 水平面直接辐射direct horizo ntal radiation 水平面上接收到的直接辐射。 [GB/T 31163 —2014,定义5.13] 3.4 散射辐射diffuse radiati on ;scatteri ng radiati on

太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163 —2014,定义5.14] 3.5 [ 水平面] 总辐射global [horizontal] radiation 水平面从上方2 n立体角(半球)范围内接收到的直接辐射和散射辐射之和。注:改写GB/T 31163 —2014,定义 5.15 。 3.6 地外太阳辐射extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163 —2014,定义5.3] 3.7 辐照度irradiance 物体在单位时间、单位面积上接收到的辐射能。注:单位为瓦每平方米(W/m2)。 [GB/T 31163 —2014,定义6.3] 3.8 辐照量irradiation 曝辐量radiance exposure 在给定时间段内辐照度的积分总量。注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2: 1 kWh/m2=3.6 MJ/m 2; 1MJ/ni ?0.28 kWh/m2。注3:改写GB/T 31163—2014,定义 6.5 。 3.9 法向直接辐照度direct normal irradiance 与太阳光线垂直的平面上单位时间、单位面积上接收到的直接辐射能。注:单位为瓦每平方米(W/m2)。 3.10 法向直接辐照量direct normal irradiation 在给定时间段内法向直接辐照度的积分总量。 注:单位为兆焦每平方米(Mj/m)或千瓦时每平方米(kwh/m)。 3.11 水平面直接辐照度direct horizontal irradiance 水平面上单位时间、单位面积上接收到的直接辐射能。 注:单位为瓦每平方米(W/m2)。 3.12 水平面直接辐照量direct horizontal irradiation 在给定时间段内水平面直接辐照度的积分总量。

粒计算研究现状及展望

龙源期刊网 https://www.wendangku.net/doc/002181770.html, 粒计算研究现状及展望 作者:谢刚刘静 来源:《软件》2011年第03期 摘要:在信息处理中,粒计算是一种新的概念和计算范式,其本质是透过合适粒度的层次 来对问题进行求解,并且在此过程中去除繁冗,降低实现的复杂度。本文主要对粒计算提出的 背景、概念、研究现状及发展趋势进行论述,同时也给出了作者自己的评论,最后探讨了粒计算的进一步发展方向。 关键词:粒计算; 粗糙集; 模糊集; 商空间 中图分类号:TP18, TP206文献标识码Adoi: 10.3969/j.issn.1003-6970.2011.03.002 A Review of the Present Studying State and Prospect of Granular Computing XIE Gang, LIU Jing (College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China) 【Abstract 】 Granular computing (GrC) is an emerging conceptual and computing paradigm of information processing, which it sought essentially problems of a better and approximate solution to reduce the complexity of problem solving by the right choice of granularity. In this paper, the proposed background, the present studying state and its developing direction of granular computing are summarized. 【Key words】granular computing; rough set;fuzzy set; quotient space 0引言 “概念必须有明确的边界。没有明确边界的概念,将对应于一个在周围没有明确界线的区域。”这是谓词逻辑的创始人Frege曾经说过的话,在此基础上他提出了概念的“含糊性”和“边界”问题[1]。由此1965年L.A.Zadeh创立了模糊集理论,突破了经典集合简单的“是”与“否”的“明确边界”,为模拟人类思维、处理模糊信息提供了新的工具。20世纪70年代到80年代初, 人们将物理学中把大型物质划分为颗粒、分子、原子的思想引入到信息领域,用于处理现实世界中的不精确、不完整的海量信息以实现智能系统或智能控制。1979年Zadeh发表的论文“模糊集与信息粒度”,成为世界上第一篇专门论述“信息粒度”的论文[2]。粗糙集的创始人Zdzislaw Pawlak于1982年也提出了信息的“粒度性”概念[3]。在1985年的国际人工智能联合会上,Hobss直接用粒度(Granularity)这个词作为论文题目发表论文[4],并进一步探讨了不同层次的粒度和不同大小颗粒,粒度的分解与合并等问题。1988年T. Y .Lin教授提出邻域系统并研

粒计算研究综述

第2卷第6期 智 能 系 统 学 报 V ol.2 .62007年12月 CAAI T ransactions on Intelligent Systems D ec.2007 粒计算研究综述 王国胤1,2,张清华1,2,胡 军1,3 (1.重庆邮电大学计算机科学与技术研究所,重庆400065; 2.西南交通大学信息科学与技术学院,四川成都610031;3.西安电子科技大学电子工程学院,陕西西安710071) 摘 要:粒计算(gr anular computing)是当前计算智能研究领域中模拟人类思维和解决复杂问题的新方法.它覆盖了所有有关粒度的理论、方法和技术,是复杂问题求解、海量数据挖掘、模糊信息处理的有效工具.首先回顾了粒计算研究和发展状况,介绍了粒计算的基本组成和问题,综述了粒计算的基本模型和方法,并讨论了它们之间的相互关系,最后探讨了构建统一的粒计算模型、复杂问题空间的粒化、粒层之间的转换、高效的粒计算方法、新的粒计算模型、动态粒计算模型、自主粒计算模型、粒计算方法的模糊化以及粒计算模型的应用和推广等几个方面的关键问题.关键词:粒计算;数据挖掘;智能信息处理;粗糙集;模糊集;商空间 中图分类号:T P18 文献标识码:A 文章编号:1673 4785(2007)06 0008 19 An overview of granular computing WAN G Guo yin 1,2,ZHANG Qing hua 1,2,HU Jun 1,3 (1.Institute of Comput er Science &T echno lo gy ,Cho ng qing U niversit y of Po st s and T eleco mmunications,Chong qing 400065,China;2.Scho ol of Infor matio n Science &T echnolog y,Southwest Jiao tong U niv ersit y,Chengdu 610031,China; 3.School of Electro nic Engineer ing,Xidian U niver sity,Xi an 710071,China) Abstract:In the field of com putational intelligence,granular computing (GrC)is a new w ay to simulate hu m an thinking to help solve co mplicated problems.Gr C involv es all the theories,methodo logies and tech niques o f granularity,pr oviding a pow erful to ol for the so lution of complex problems,m assiv e data min ing,and fuzzy information pr ocessing.In this paper,first the current situation and the developm ent pros pects of GrC are introduced,then the fundamental and ex isting problem s r elated to GrC ar e presented and its basic models and metho ds summ arized.Finally,som e future research topics abo ut GrC are presented,such as,uniform granular co mputing mo del,granulation of complex pro blem space,transform ation be tw een granule spaces,efficient g ranular co mputing algor ithm,nov el g ranular co mputing model,dy namic granular co mputing m odel,data driven g ranular co mputing m odel,fuzzy gr anular co mputing method,and the applications of gr anular computing models,etc. Keywords:g ranular computing;data m ining;intelligent inform ation processing;roug h sets;fuzzy sets;quotient space 收稿日期:2007 04 02. 基金项目:国家自然科学基金资助项目(60573068);新世纪优秀人才 支持计划;重庆市教委科学技术研究资助项目(KJ060517). 自Zadeh 1979年发表论文!Fuzzy sets and in form ation granularity ?以来[1],研究人员对信息粒度化的思想产生了浓厚的兴趣.Zadeh 认为很多领域都存在信息粒的概念,只是在不同领域中的表现形式不同.自动机与系统论中的!分解与划分?、最优 控制中的!不确定性?、区间分析里的!区间数运算?、以及D S 证据理论中的!证据?都与信息粒密切相关.H obss 在1985年直接用!粒度(granularity)?作为论文题目发表论文[2],讨论了粒的分解和合并,以及如何得到不同大小的粒,并提出了产生不同大小粒的模型.Lin 在1988年提出邻域系统并研究了邻域系统与关系数据库之间的关系 [3] .1996年,他在 U C Berkeley 大学访问时,向Zadeh 提出作!granu

最优化理论与算法 fibonacci法

function [a,b,n,x]=fibonacci(fname,a,b,d,L) % fname函数句柄,d辨别常数,L最终区间长度a(1)=a; b(1)=b; F=zeros(1,10); %选择fibonacci数列k值为10,可任意更改 F(1)=1; F(2)=2; for k=2:10 %k取到10,生成fibonacci数列 F(k+1)=F(k)+F(k-1); F(k); end Fn=(b(1)-a(1))/L; Fk=[F Fn]; N=sort(Fk); n=find(Fn==N); %查找计算函数值的次数n t(1)=a(1)+F(n-2)*(b(1)-a(1))/F(n); %计算试探点t(1),u(1) u(1)=a(1)+F(n-1)*(b(1)-a(1))/F(n); for k=1:n-2 ft=feval(fname,t(k)); fu=feval(fname,u(k)); if ft>fu a(k+1)=t(k); b(k+1)=b(k); t(k+1)=u(k); u(k+1)=a(k+1)+F(n-k-1)*(b(k+1)-a(k+1))/F(n-k); while k==n-2 t(n)=t(n-1); u(n)=t(n-1)+d; ft=feval(fname,t(n)); fu=feval(fname,u(n)); if ft>fu a(n)=t(n); b(n)=b(n-1); else a(n)=a(n-1); b(n)=t(n); end end else a(k+1)=a(k); b(k+1)=u(k); u(k+1)=t(k); if k~=n-2 t(k+1)=a(k+1)+F(n-k-2)*(b(k+1)-a(k+1))/F(n-k); ft=feval(fname,t(k));

太阳辐射的特性

太阳辐射的特性 昼夜是由于地球自转而产生的,而季节是由于地球的自转轴与地球围绕太阳公转的轨道的转轴呈23°27′的夹角而产生的。地球每天绕着通过它本身南极和北极的“地轴” 自西向东自转一周。每转一周为一昼夜,所以地球每小时自转15°。地球除自转外还循偏心率很小的椭圆轨道每年绕太阳运行一周。地球自转轴与公转轨道面的法线始终成23.5°。地球公转时自转轴的方向不变,总是指向地球的北极。因此地球处于运行轨道的不同位置时,太阳光投射到地球上的方向也就不同,于是形成了地球上的四季变化(见下图)。每天中午时分,太阳的高度总是最高。在热带低纬度地区(即在赤道南北纬度23°27′之间的地区),一年中太阳有两次垂直入射,在较高纬度地区,太阳总是靠近赤道方向。在北极和南极地区(在南北半球大于90°~23°27′),冬季太阳低于地平线的时间长,而夏季则高于地平线的时间 长。 由于地球以椭圆形轨道绕太阳运行,因此太阳与地球之间的距离不是一个常数,而且一年里每天的日地距离也不一样。众所周知,某一点的辐射强度与距辐射源的距离的平方成反比,这意味着地球大气上方的太阳辐射强度会随日地间距离不同而异。然而,由于日地间距离太大(平均距离为1.5 x 108km),所以地球大气层外的太阳辐射强度几乎是一个常数。因此人们就采用所谓“太阳常数”来描述地球大气层上方的太阳辐射强度。它是指平均日地距离时,在地球大气层上界垂直于太阳辐射的单位表面积上所接受的太阳辐射能。近年来通过各种先进手段测得的太阳常数的标准值为1353w/m2。一年中由于日地距离的变化所引起太阳辐射强度的变化不超过上3.4%。 2.2 到达地面的太阳辐射 太阳照射到地平面上的辐射或称“日射”由两部分组成——直达日射和漫射日射。太阳辐射穿过大气层而到达地面时,由于大气中空气分子、水蒸气和尘埃等对太阳辐射的吸收、反射和散射,不仅使辐射强度减弱,还会改变辐射的方向和辐射的光谱分布。因此实际到达地面的太阳辐射通常是由直射和漫射两部分组成。直射是指直接来自太阳其辐射方向不发生改变的辐射;漫射则是被大气反射和散射后方向发生了改变的太阳辐射,它由三部分组成:太阳周围的散射(太阳表面周围的天空亮光),地平圈散射(地平圈周围的天空亮光或暗光),及其他的天空散射辐射。另外,非水平面也接收来自地面的反射辐射。直达日射、漫射日射和反射日射的总和即为总日射或环球日射。可以依靠透镜或反射器来聚焦直达日射。如果聚光率很高,就可获得高能量密度,但却损耗了漫射日射。如果聚光率较低,也可以对部分太阳周围的漫射日射进行聚光。漫射日射的变化范围很大,当天空晴朗无云时,漫射日射为总日射的10%。但当天空乌云密布见不到太阳时,总日射则等于漫射日射。因此聚式收集器采集的能量通常要比非聚式收集器采集的能量少得多。反射日射一般都很弱,但当地面有冰雪覆盖时,垂直面上的反射日射可达总日射的40%。 到达地面的太阳辐射主要受大气层厚度的影响。大气层越厚,对太阳辐射的吸收、反射和散射就越严重,到达地面的太阳辐射就越少。此外大气的状况和大气的质量对到达地面的太阳辐射也有影响。显然太阳辐射穿过大气层的路径长短与太阳辐射的方向有关。参看下图,A为地球海平面上的一点,当太阳在天顶位置S时,太阳辐射穿过大气层到达A点的路径为OA。城阳位于S点时,其穿过大气层到达A 点的路径则为0A。 O,A与 OA之比就称之为“大气质量”。它表示太阳辐射穿过地球大气的路径与太阳在天顶方向垂直入射时的路径之比,通常以符号m表示,并设定标准大气压和O℃时海平面上太阳垂

徐州地区太阳辐射强度的计算..

徐州地区太阳辐射强度的计算 1.1 太阳辐射强度的计算基础知识 1.1.1 日地相对运动与赤纬角 贯穿地球中心与南北两极相连的线称为地轴。地球除了绕地轴自转以每天(24h)为一个周期外;同时又沿椭圆形轨道围绕太阳进行公转,运行周期约为一年。太阳位于椭圆形的一个焦点上。该椭圆形轨道称为黄道,在黄道平面内长半袖约为152 。 短半轴约为 ;椭圆偏心率不大,1月l 日为近日点,日地距离约 ;7月1日为远日点时 ,相差约3%。 一年中任一天的日地距离可以表示为: 81.510[10.017sin(2(93)/365)]R n km π=?+- 式中 R --- 日地距离 ; n --- 为1月1日算起,一年中的第几天 ; 地球的赤道平面与黄道平面的夹角称为赤黄角,它就是地轴与黄道平面法线间的夹角,在一年中的任一时刻皆保持为23.45°。太阳、地球的相对运动如图所示 以太为中心的日-地俯视图

以地球为中心的俯视图 在地球上任一位置观察太阳在天空中每天的视运动是以年为周期性变化的,并取决于太阳赤纬角的大小。赤纬角δ即正午时的太阳光与地球赤道平面间的夹角。取赤道向北为正方向,而向南为负方向,用δ表示。赤纬角δ从+23.45°到-23.45°变化,它导致地球表面上太阳辐射入射角的变化,使白天的长短随季节性有所不同。在赤道地区,从太阳升起到日落的持续时间为12h。但在较高纬度地区,不同季节其昼长就有相当大变化。赤纬角δ是地球围绕太阳运行规律造成的,它使地球上不同的地理位置所接受到的太阳入射光线方向不同,从而形成地球上一年有四季的变化。一年中有四个特殊日期,即:夏至、冬至、春分、秋分。北半球夏至(6月21日或22日)阳光正射北回归线赤纬角δ=23.45°;北半球冬至(12月22日或21日),太阳光线正射南回归线,δ=-23.45°;春分(3月20日或21日)和秋分(9月22日或23日)太阳正射赤道,赤纬角都为零,地球南北半球昼夜长度相等。 赤纬角的日变化可用如下近似表达式计算: δ=+ n 23.45sin[360(284)/365] 式中 n---从1月1日算起一年中的第几天的天数 ; 一年中赤纬角(δ)的变化范围23.45 ±°之间 ; 1.1.2 太阳时和时差

基于非标准分析的粒计算研究

第38卷 第8期 2015年8月计 算 机 学 报CHINESEJOURNALOFCOMPUTERSVol.38No.8Aug.2015 收稿日期:2013-07-28;最终修改稿收到日期:2015-01-12.本课题得到国家自然科学基金(61070139)、江西省自然科学基金(20114BAB201039)和江西省教育厅科技计划项目(GJJ14134)资助.刘 清,男,1938年生, 教授,主要研究领域为人工智能、数据挖掘、粗糙集、粒计算、逻辑及其推理.E-mail:qliu ncu@sina.com.邱桃荣,男,1964年生,博士,教授,中国计算机学会(CCF) 高级会员,主要研究领域为粗糙集、粒计算、智能信息处理.刘斓,女,1973年生,硕士,实验师,主要研究方向为信息管理、软件开发、算法语言程序设计.基于非标准分析的粒计算研究 刘清 邱桃荣 刘斓 (南昌大学计算机科学与技术系 南昌 330031) 摘 要 该文着力于研究粒计算的基本理论.粒计算作为一种粒数数系被研究,在这种数系中研究粒运算的基本定律、粒与粒之间的不可区分关系;研究这种粒数系中描述型的形式语言等.采用的方法是基于非标准分析中的超实数理论研究实值粒运算应遵循的规则,也研究了伴随二元关系的信息粒的合成、加粗、加细、并和交运算等;在分析前人工作的基础上、基于超实数理论进一步为粒计算研究定义了一种新的不可区分关系,得到了几个相关性质,并且证明了相关结果.随后定义了描述这种粒数数系的描述型形式语言———一种带不可区分关系词的二阶粒逻辑;粒常量、粒变量、粒函数项的相关运算定律也被定义了.最后,以示例演示了这种粒逻辑适应于描述粒数学定理、粒公式化简等. 关键词 粗糙集;模糊集;粒计算;二阶粒逻辑;粒数学;超实数;非标准分析 中图法分类号TP301 DOI 号10.11897/SP.J.1016.2015.01618 The Research of Granular Com p utin g Based on Nonstandard Anal y sis LIUQing QIUTao-Rong LIULan (De p artment o f Com p uter Science and Technolo gy ,Nanchan g Universit y ,Nanchan g 330031) Abstract Inthearticle,wefocusonstudyingfundamentaltheoryofgranularcomputing.Granular computingisstudiedasagranularnumbersystems.Operationlawsofgranulations,theindis -cernibilityrelationofgranulationsinthegranularnumbersystemsarealsostudied.Theformallanguagefordescribingthegranularnumbersystemsneedsalsotobestudied.Westudytheoperationrulesofrealgranulationstoadoptthetheoryofhyperrealnumbersinnonstandardanalysis.Theoperationsofcompound,coarseningandrefining,unionandintersectionofinformationgranularitywithbinaryrelationsarealsostudiedinthearticle.Wedefinefurtheranewindiscernibilityrelationbyhyperrealtheoryandgetseveralrelatedpropertiesbasedoncurrentrelativeresearches.Andrelatedresultsareproved.Subsequently,theformallanguagefordescribinggranularcomputing—agranularlanguagewithindiscernibilityrelationisdefined.Itiscalledasecondordergranularlogicinthearticle.Therelatedoperationsofgranularconstants,granularvariablesandgranularfunctionitemsusedinthesecond-ordergranularlogicarehandlednecessarilyinthearticle.Finally,thesignificanceofdescribinggranularmathematicaltheoremsdefinedinthegranularnumbersystemsisillustratedwithrealexamples. Ke y words Roughsets;fuzzysets;granularcomputing;second-ordergranularlogic;granularmathematics;hyperrealnumber;nonstandardanalysis

最优化理论与算法

最优化理论与算法笔记 在老师的指导下,我学习了最优化理论与算法这门课程。最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多方案中什么样的方案最优以及怎样找出最优方案。 由于生产和科学研究突飞猛进的发展,特别是计算机的广泛应用,使最优化问题的研究不仅成为了一种迫切的需要,而且有了求解的有力工具,因此迅速发展起来形成一个新的学科。至今已出现了线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。 整个学习安排如下,首先介绍线性与非线性规划问题,凸集和凸函数等基本知识及线性规划的基本性质;然后再这个基础上学习各种算法,包括单纯形法、两阶段法、大M 法、最速下降法、牛顿法、共轭梯度法等,以及各种算法相关的定理和结论;最后了解各种算法的实际应用。 主要学习的基础知识: 1、一般线性规划问题的标准形式 1min n j j j c x =∑ 1 .., 1,...,, 0, 1,...,. n ij j i j j s t a x b i m x j n ===≥=∑ 学会引入松弛变量将一般问题化为标准问题;同时掌握基本可行解的存在问题,通过学习容易发现线性规划问题的求解,可归结为求最优基本可行解的问题。 2、熟练掌握单纯形法、两阶段法和大M 法的概念及其计算步骤。 单纯形法是一种是用方便、行之有效的重要算法,它已成为线性规划的中心内容。其计算步骤如下: 1)解,B Bx b =求得1B x B b b -==,令0,N x =计算目标函数值B B f c x =;

2)求单纯形乘子ω,解B B c ω= ,得到1B c B ω-=; 3)解k k By p =,若0k y ≤,即k y 的每个分量均非正数,则停止计算,问 题不存在有限最优解,否则,进行步骤(4); 4)确定下标r ,使min{0}r r rk rk rk b b y y y =>,得到新的基矩阵B ,返回第一 步。 两阶段法:第一阶段是用单纯形法消去人工变量,即把人工变量都变换成非基变量,求出原来问题的一个基本可行解;第二阶段是从得到的基本可行解出发,用单纯形法求线性规划的最优解。 大M 法:在约束中增加人工变量a x ,同时修改目标函数,加上罚项T a Me x ,其中M 是很大的正数,这样,在极小化目标函数的过程中,由于M 的存在,将迫使人工变量离基。 3、掌握最速下降法的概念及其算法,并且能够讨论最速下降算法的收敛性。掌握牛顿法,能够熟练运用牛顿迭代公式:(1) ()2()()()()k k k k x x f x x x +=-?- ,掌 握共轭梯度法及其相关结论,以及其收敛性的讨论,掌握最小二乘法及其基本步骤。 最速下降法:迭代公式为(1) ()()k k k k x x d λ+=-。 计算步骤:1)给定点(1)n x R ∈,允许误差0,ε>臵1k =; 2)计算搜索方向() ()()k k d f x =-?; 3)若() k d ε≤,则停止计算,否则,从()k x 出发,沿()k d 进行一维搜索,求k λ,使()()()() ()min ()k k k k k f x d f x d λλλ≥+=+; 4)令(1) ()()k k k k x x d λ+=-,臵:1k k =+,转步骤(2)。

最优化理论与算法

最优化理论与算法(数学专业研究生) 第一章 引论 § 引言 一、历史与现状 最优化理论最早可追溯到古老的极值问题,但成为一门独立的学科则是在20世纪四十年代末至五十年代初。其奠基性工作包括Fritz John 最优性条件(1948),Kuhn-Tucker 最优性条件(1951),和Karush 最优性条件(1939)。近几十年来最优化理论与算法发展十分迅速,应用也越来越广泛。现在已形成一个相当庞大的研究领域。关于最优化理论与方法,狭义的主要指非线性规划的相关内容,而广义的则涵盖:线性规划、非线性规划、动态规划、整数规划、几何规划、多目标规划、随机规划甚至还包括变分、最优控制等动态优化内容。本课程所涉及的内容属于前者。 二、最优化问题的一般形式 1、无约束最优化问题 min ()n x R f x ∈ () 2、约束最优化问题 min () ()0, ..()0, i i f x c x i E s t c x i I =∈?? ≥∈? () 这里E 和I 均为指标集。 §数学基础 一、 范数 1. 向量范数 max i x x ∞= (l ∞范数) () 11n i i x x ==∑ (1l 范数) () 122 21 ()n i i x x ==∑ (2l 范数) ()

11 ()n p p i p i x x ==∑ (p l 范数) () 12 ()T A x x Ax = (A 正定) (椭球范数) () 事实上1-范数、2-范数与∞-范数分别是 p -范数当 p =1、2和p →∞时情形。 2.矩阵范数 定义 方阵A 的范数是指与A 相关联并记做A 的一个非负数,它具有下列性质: ① 对于0A ≠都有0A >,而0A =时0A =; ② 对于任意k R ∈,都有kA k A =; ③ A B A B +≤+; ④ AB A B ≤; 若还进一步满足: ⑤ p p Ax A x ≤ 则称之为与向量范数p g 相协调(相容)的方阵范数。若令 max x Ax A x ≠= (这里x 是某一向量范数) () 可证这样定义的范数是与向量范数g 相协调的,通常称之为由向量范数g 诱导的方阵范数。特别地,对方阵()ij n n A a ?=,有: 11max n ij j i A a ==∑(列和的最大者) () 1 max n ij i j A a ∞ ==∑(行和的最大者) () 1 22()T A A A λ=(T A A λ表示T A A 的特征值的最大者) 称为谱范数(注:方阵A 的特征值的模的最大者称为A 的谱半径,记为()A ρ)。 对于由向量诱导的方阵范数,总有:

相关文档
相关文档 最新文档