文档库 最新最全的文档下载
当前位置:文档库 › 土壤碳含量

土壤碳含量

土壤碳含量
土壤碳含量

试剂:0.4N重铬酸钾—硫酸溶液(称取化学纯重铬酸钾20.00克,溶于500毫升蒸馏水中(必要时可加热溶解),冷却后,缓缓加入化学纯浓硫酸500毫升于重铬酸钾溶液中,并不断搅动,冷却后定容至1000毫升,贮于棕色试剂瓶中备用。)、0.2N硫酸亚铁溶液(称取硫酸亚铁(FeSO4·7H2O)56克,溶于500毫升蒸馏水中,加浓硫酸5ml,然后再加蒸馏水稀释至1升,贮于棕色瓶中,用时需标定)、邻菲啰啉指示剂(称取此指示剂1.49g与FeSO4·7H2O 0.695g溶于含100ml水溶液中。此指示剂易变质,应密闭保存于棕色瓶中。)、0.1N重铬酸钾标准溶液(称取经130℃烘1.5h的优级纯重铬酸钾(4.1)9.807g,先用少量水溶解,然后移入1L容量瓶内,加水定容。)

操作步骤:准确称取通过0.25毫米筛孔的土样0.1000~0.5000克,土样数量视有机质含量多少而定。有机质含量大于5%的称土样0.2克以下,4~5%的称0.3~0.2克,3~4%的称0.4~0.3克,2~3%的称0.5~0.4克,小于2%则称0.5以上。由于土样数量少,为了减少称样误差,好最用减量法。将土样放入干燥的硬性试管中,用移液管准确加入0.4N的重铬酸钾—硫酸溶液10毫升(先加入3毫升,摇动试管,使溶液与土混匀,然后再加其余的7毫升),在试管上套一小漏斗,以冷凝蒸出的水汽,把试管放入铁丝笼中。将装有试管的铁丝笼(每笼应有1~2个试管做空白试验,用灼烧过的土壤代替土样,其他手续均相同)放入温度为185~190℃的油浴锅中,要求放入后油浴锅温度下降至170~180℃左右,以后必须控制温度在170~180℃,当试管内液体开始沸腾(溶液表面开始翻动,有较大的气泡发生)时记时,缓缓煮沸5分钟,取出铁丝笼,稍冷,用纸擦净试管外部的油液。等试管冷却后,将试管内溶液倒入250毫升三角瓶中,用蒸馏水冼净试管内部及小漏斗的内部,洗涤液均冲洗至三角瓶中,最后总的体积约60~70毫升。滴加3~4滴邻啡啰啉指示剂,此时溶液为橙**,用已标定过的硫酸亚铁溶液滴定,溶液由橙**经过绿色突变到砖红色即为终点。

结果计算:根据前面所述的反应式,1毫克当量的重铬酸钾相当于3毫克碳(1毫克当量的碳),按有机质平均含碳58%作为计算标准,在求得碳的含量乘以系数1.724和校正系数1.1,

即得有机质含量。

(V1-V2)×N×0.003×1.714×1.1

烘干干重

土壤有机质(%)= ×100

式中:V1—滴定空白时用去的还原剂毫升数

V2—滴定土壤样品时用去的还原剂毫升数

0.003—1毫克当量碳所相当的克数

N—还原剂的当量浓度

1.1—是因为有机碳只能被氧化90%而需乘的校正系数

1.724—从碳含量换算成有机质含量的系数

注意事项:(1)称样量多少取决于土壤有机质的含量,每份分析样品中的有机碳的含量应控制在8mg以内,有机质含量小于2%,称样量为0.4~0.5g,含量达8%时,称样量不应超过0.1g。(2)消煮温度必须严格控制在170~180℃的范围内,沸腾时间力求准确计算(5分钟)。(3)消煮好的样品试液应为**或黄绿色。若以绿色为主。说明K2Cr2O7用量不足;如果试液呈黄绿色但滴定时消耗的FeSO4量小于空白试验用量的1/3时,有氧化不完全的危险。如有上述情况发生,应弃去重做,重做时应适当减少称样量。

仪器、设备及试剂

1.仪器与设备

硬质试管,油浴消化装置(包括油浴锅和铁丝笼),可调温电炉,秒表,自动控温调节器。2.试剂

(1)0.800 0mol·L-1重铬酸钾标准溶液:称取经130℃烘干的重铬酸钾(K2Cr207,分析

纯)39.2245g溶于水中,定容至1000mL。

(2)0.2mol·L-1FeS04溶液:称取硫酸亚铁(FeS04·7H20,化学纯)56.0g溶于水中,加浓硫酸5mL,稀释至1 L。

(3)指示剂

①邻啡罗啉指示剂:称取邻啡罗啉(分析纯)1.485 g与FeS04·7H200.695g,溶于100mL水中。

②2—羧基代二苯胺(o-phenylanthranilicacid,又名邻苯氨基苯甲酸,C13H11O12N)指示剂:称取0.25

g试剂于小研钵中研细,然后倒人100mL小烧杯中,加入0.1mol·L-1NaOH溶液12mL,

并用少量水将研钵中残留的试剂冲洗人100mL烧杯中,将烧杯放在水浴上加热使其溶解,冷却后稀释定容到250mL,放置澄清或过滤,用其清液。

方法和步骤

1.样品制备

称取通过0.149mm(100目)筛孔的风干土样0.1~1g(精确到0.0001g),分别放人6—8支干燥的硬质试管中,用移液管准确加入0.8000mol·L-1重铬酸钾标准溶液5mL(如果土壤中含有氯化物需先加(Ag2S040.1g),用注射器加入浓H2S04

5mL充分摇匀,管口盖上弯颈小漏斗。

2.测定

①将置于铁丝笼中的8~10支试管(每笼有1—2个空白试管),放人温度为185~190℃的石蜡油浴锅中,并控制电炉,使油浴锅内温度始终维持在170~180℃,待试管内液体沸腾发生气泡时开始计时,煮沸5

min,取出试管,稍冷后擦净试管外部油液。

②冷却后,将试管内物质倾人250mL三角瓶中,用水洗净试管内部及小漏斗,使三角瓶内溶液总体积达到60~70

mL,保持混合液中硫酸浓度为2~3mol·L-1,然后加入2—羧基代二苯胺指示剂12~15滴,

此时溶液呈棕红色。用标准的0.2mol·L-1硫酸亚铁滴定,滴定过程中不断摇动三角瓶,直至溶液的颜色由棕红经紫色变为暗绿(灰蓝绿色),即为滴定终点。如用邻啡罗啉指示剂,加指示剂2~3滴,溶液的变色过程中由橙黄一蓝绿一砖红色即为终点。记取Pem4滴定毫升数(y)。

每一批样品测定的同时,进行2~3个空白试验,即取0.5g粉状二氧化硅代替土样,其他步骤与试样测定相同。记取FeS04滴定毫升数(Vo),取其平均值。

3.计算

式中:c——重铬酸钾标准溶液的浓度,mol·L-1

Vo——空白滴定用去FeS04体积,mL;

3.0——1/4碳原子的摩尔质量,g·mol-1

1.1——氧化校正系数;

m——风干土样质量,g;

k——将风干土换算成烘干土的系数。

土壤有机质(g·kg-1)=土壤有机碳(kg-1)Х1.742

式中:1.724为土壤有机碳换成土壤有机质的平均换算系数。

注意事项

①含有机质高于50g·kg-1者,称取土样0.1 g,含有机质为20~30g·kg-1者,称土样0.3g,少于20g·kg-1者称取0.5g以上。

②土壤中氯化物的存在可使结果偏高。因为氯化物也能被重铬酸钾所氧化,因此,盐土中有机质的测定必须防止氯化物的干扰,少量氯可加入少量Ag2SO4,使氯根沉淀下来。Ag2SO4的加入,不仅能沉淀氯化物,而且有促进有机质分解的作用。Ag2SO4的用量不能太

多,约加0.1g,否则生成Ag2Cr2O7沉淀,影响滴定。

③必须在试管内溶液表面开始沸腾才开始计算时间。掌握沸腾的标准尽量一致,然后

继续消煮5min,消煮时间对分析结果有较大的影响,故应尽量记时准确。

④消煮好的溶液颜色,一般应是黄色或黄中稍带绿色,如果以绿色为主,则说明重铬酸钾用量不足。在滴定时若消耗硫酸亚铁量小于空白用量的1/3,有氧化不完全的可能,应弃去重做。

土壤溶解性有机碳

约旦水资源部秘书长:海水淡化是一个解决方案 2012-03-18 约旦水资源部秘书长认为,海水淡化是约旦必须采取的解决方案,采用这一方案可以补充水资源缺口,解决复杂的跨界水资源、缺少资金、政策的和能力建设等问题。 约旦是全球第四个最为缺水的国家,人均占有水资源量最低。 来源:中国水利网站 2012年3月18日 】

1.1真空冷冻原理 海水三相点是使海水汽、液、固三相共存并达到平衡的一个特殊点。若压力或温度偏离该三相点,平衡被破坏,三相会自动趋于一相或两相。真空冷冻法海水淡化正是利用海水的三相点原理,以水自身为制冷剂,使海水同时蒸发与结冰,冰晶再经分离、洗涤而得到淡化水的一种低成本的淡化方法。与蒸馏法、膜法相比,能耗低,腐蚀、结垢轻,预处理简单,设备投资小,并可处理高含盐量的海水,是一种较理想的海水淡化法[!]。国外早在20世纪60年代就已开始研究,但目前为止尚没有商业化,主要原因在于过程中产生的三相点蒸汽难以去除和冰晶的输送、洗涤较难。华东理工大学研究开发的真空冻-汽相冷凝海水淡化技术采用低温金属表面,使三相点蒸汽直接冷凝成冰的方法,成功的解决了蒸汽的去除问题,并在实验室完成了小型试验装置。真空冷冻-汽相冷凝海水淡化技术工艺包括脱气、预冷、蒸发结晶、冰晶洗涤、蒸汽冷凝等步骤,淡化水产品可达到国家饮用水标准。 1.2工艺研究 1.2.1脱气 由于海水中溶有的不凝性气体在低压条件下将几乎全部释放,且又不会在冷凝器内冷凝。这将升高系统的压力,使蒸发结晶器内压力高于二相点压力,破坏操作的进行。显然减压脱气法适合本系统。 1.2.2预冷 海水脱气后可与蒸发结晶器内排出的浓盐水和淡化水产生热交换,预冷至海水的冰点附近。 1.2.3温度和压力 它们是影响海水蒸发与结冰速率的主要因素。 1.2.4冰-盐水是一固液系统 普通的分离方法均可使冰-盐水得到分离,但分离方法不同,得到的冰晶含盐量也不同。实验结果表明减压过滤方法得到的冰晶含盐量比常压过滤方法得到的冰晶含盐量低得多。 1.2.5蒸汽冷凝 在蒸发结晶器内,除海水析出冰晶以外,还将产生大量的蒸汽,这些蒸汽必须及时移走,才能使海水不断蒸发与结冰。 2蒸馏法海水淡化及其特点 2.1蒸馏法原理 把海水加热使之沸腾蒸发,再把蒸汽冷凝成淡水的过程即为蒸馏法。蒸馏法是最早采用的淡化法,其优点是结构简单、操作容易,所得淡水水质好等。蒸馏法有很多种,如多效蒸发、多级闪蒸、压气蒸馏、膜蒸馏等。 2.2蒸馏法特点

土壤总碳和有机碳分析测试技术

土壤有机碳分析测试技术 1、所需仪器:multi-C/N310主机和HT1300固体模块;载气:高纯氧气,纯度≥99.995%,最好使用99.999%; 2、瓷舟:用于盛放土壤样品,加盐酸反应去除无机碳,然后把待测样品送进炉膛测试用。注意事项:新的瓷舟和用过后长时间存放的瓷舟在使用之前先在马弗炉内1000 ℃烧1小时去除杂质; 3、HT1300测试条件炉温:1050±10 ℃,流速100±10 mL; 4、土壤样品预处理:风干土或者50 ℃烘干土,过100目筛; 5、土壤进样量要求:样品中碳的总含量≥1 mg,最好能达到3 mg; 6、样品进样处理:测量总碳(TC),称取一定量的干土直接进样,所需样品的量需根据毛估的土壤总碳含量决定,一般瓷舟盛放样品不宜超过500 mg,最好不超过800 mg,样品过多容易洒出,低估土壤碳含量;测量土壤有机碳(TOC),称取一定量的土壤样品,所需样品的量需根据毛估的土壤有机碳含量决定,一般瓷舟盛放样品最好不超过500 mg,样品过多在加盐酸反应会有气泡,容易洒出样品,低估土壤有机碳含量,然后加入过量的0.1 mol/L的HCl(盐酸浓度也可根据土壤无机碳含量调整)去除土壤无机碳,然后100 ℃烘3-12小时,之后继续在烘箱中以50 ℃保存,然后一边测量,一边从烘箱中拿出,即拿即测,一般四个一组为佳,因为加盐酸处理后的土壤很容易吸水,这样进样后水分生成的水汽加灰尘很容易堵塞气路的灰尘过滤器; 7、所需要的耗材:高纯铜丝,去除卤素(测量土壤有机碳是过量盐酸在高温下产生的),建议测量样品个数为100个,决不能超过130个,具体还要视样品而定,主要判断依据为铜丝变色;气体灰尘过滤器,建议测量样品个数300-500个,主要判断依据为流量波动(100+10 mL);高氯酸镁,去除测量气路中的水分,如果在烘箱中即拿即测则用量较小,每更换一次可以测量500-1000个样品,视具体情况而定;以上三种耗材高纯铜丝、气体灰尘过滤器、高氯酸镁多备用一些,尤其高纯铜丝,最好备足2-3年的耗材。

土壤碳含量

试剂:0.4N重铬酸钾—硫酸溶液(称取化学纯重铬酸钾20.00克,溶于500毫升蒸馏水中(必要时可加热溶解),冷却后,缓缓加入化学纯浓硫酸500毫升于重铬酸钾溶液中,并不断搅动,冷却后定容至1000毫升,贮于棕色试剂瓶中备用。)、0.2N硫酸亚铁溶液(称取硫酸亚铁(FeSO4·7H2O)56克,溶于500毫升蒸馏水中,加浓硫酸5ml,然后再加蒸馏水稀释至1升,贮于棕色瓶中,用时需标定)、邻菲啰啉指示剂(称取此指示剂1.49g与FeSO4·7H2O 0.695g溶于含100ml水溶液中。此指示剂易变质,应密闭保存于棕色瓶中。)、0.1N重铬酸钾标准溶液(称取经130℃烘1.5h的优级纯重铬酸钾(4.1)9.807g,先用少量水溶解,然后移入1L容量瓶内,加水定容。) 操作步骤:准确称取通过0.25毫米筛孔的土样0.1000~0.5000克,土样数量视有机质含量多少而定。有机质含量大于5%的称土样0.2克以下,4~5%的称0.3~0.2克,3~4%的称0.4~0.3克,2~3%的称0.5~0.4克,小于2%则称0.5以上。由于土样数量少,为了减少称样误差,好最用减量法。将土样放入干燥的硬性试管中,用移液管准确加入0.4N的重铬酸钾—硫酸溶液10毫升(先加入3毫升,摇动试管,使溶液与土混匀,然后再加其余的7毫升),在试管上套一小漏斗,以冷凝蒸出的水汽,把试管放入铁丝笼中。将装有试管的铁丝笼(每笼应有1~2个试管做空白试验,用灼烧过的土壤代替土样,其他手续均相同)放入温度为185~190℃的油浴锅中,要求放入后油浴锅温度下降至170~180℃左右,以后必须控制温度在170~180℃,当试管内液体开始沸腾(溶液表面开始翻动,有较大的气泡发生)时记时,缓缓煮沸5分钟,取出铁丝笼,稍冷,用纸擦净试管外部的油液。等试管冷却后,将试管内溶液倒入250毫升三角瓶中,用蒸馏水冼净试管内部及小漏斗的内部,洗涤液均冲洗至三角瓶中,最后总的体积约60~70毫升。滴加3~4滴邻啡啰啉指示剂,此时溶液为橙**,用已标定过的硫酸亚铁溶液滴定,溶液由橙**经过绿色突变到砖红色即为终点。 结果计算:根据前面所述的反应式,1毫克当量的重铬酸钾相当于3毫克碳(1毫克当量的碳),按有机质平均含碳58%作为计算标准,在求得碳的含量乘以系数1.724和校正系数1.1,

可溶性有机碳的测定

可溶性有机碳测定: 1. 取10 g 新鲜土样,按照土:水为1∶5的比例混匀,在25℃条件下,以250 r/min 的速度振荡1 h,接着在转速为15 000 r/min 离心10min,上部悬浮液过0·45μm 薄滤膜[1],以后的步骤采取测有机碳的方。 2. 取过0·45μm 薄滤膜的溶液放入消煮管中,加5ml 0.8000mol/L 的1/6K 2Cr 2O 7标准溶液, 然后用注射器注人5ml 浓硫酸,旋转摇匀,在消煮管上加一小漏斗。 3. 将盛土样的消煮放人铁丝笼架中,放入已预热至185 -190oC 的油浴锅中(豆油)加热。 此时应控制锅内温度在170-180oC ,沸腾开始,准确加热5min ,取出冷却,如溶液呈绿色,表示重铬酸钾用量不足,应再取较少的样品(或适当增加重铬酸钾的量)重做。 4. 冷却后的溶液呈橙黄色或黄绿色,用洗瓶将消煮管中的溶液洗人250ml 三角瓶中,使三 角瓶内溶液体积在60-80ml 左右,加邻啡啰啉指示剂3—4滴,用0.2mol /L FeSO 4滴定,溶液的颜色变化为:橙黄—→蓝绿—→棕红色,记录硫酸亚铁用量(V )。 每批分析样,应做2—3个空白;空白标定用0.1-0.5g 石英砂代替土样,其它步骤与测定土样时完全相同,记录硫酸亚铁用量(V 0)。 5. 计算方法 有机碳(g/kg )=10001.1003.0)(0.58000.02100????-??K m V V V 有机质(g/kg )=有机碳(g/kg )×1.724 式中:0.8000——1/6 K 2Cr 2O 7标准溶液的浓度(mol/L ); 5.0——1/6 K 2Cr 2O 7标准溶液的体积(ml ); V 0——空白标定用去硫酸亚铁溶液体积(ml ); V ——滴定土样用去硫酸亚铁溶液体积(ml ); 0.003——1/4碳原子的摩尔质量(g/m mol); 1.1——氧化校正系数; 1.724——将有机碳换算成有机质的系数; m 1——风干土样质量(g ); K 2——将风干土换算成烘干土系数。土壤碳氮比的计算: )/() /(kg g kg g 全氮有机碳碳氮比= 1.耕作措施对土壤有机碳和活性有机碳的影响.严昌荣,刘恩科,何文清,刘爽,刘勤.

地统计分析土壤有机碳含量分布

地统计分析土壤有机碳含量分布 土壤特性的空间变异研究一直是个被关注的热点,但对土壤物理性质、土壤盐分变化问题的研究较多1,2,对土壤养分空间变异性的研究则相对较少。90年代,随着发达国家精确农业技术的发展和GIS的广泛应 用3,4,土壤特性的空间变异研究得到了众多学者的关注。邛海盆地是凉山彝族自治州所在地,农业人口约占总人口的66.4%,土地肥沃,自流灌溉便利,是国家和四川省农业综合开发重点区。因此,如何合理 利用土地和如何进行生态环境保护是该区经济发展面临的重大课题。 本研究通过分析该区土壤有机碳含量的影响因子,旨在为优化土地资 源管理措施和保护生态环境提供参考。 1材料与方法 1.1研究区基本概况 邛海盆地地处川西高原,属亚热带高原季风气候,年平均气温17.2℃,日照充足,雨量充沛;该区以红壤、黄红壤为主,局部地区的红壤达 海拔2100m以上。 1.2数据来源与预处理 数据源于西昌2006年测土配方施肥国家补贴项目土样化验分析汇总表,共提取392个采样点。基于Arc-GIS9.3生成样点分布图如图1所示。 1.3常规统计分析 利用ArcGIS9.3中地统计模块,统计出土壤有机碳含量的基本特征性 数据。 1.4地统计学基本理论 传统统计学理论是纯随机变量,但很多土壤性质在空间上并不完全独立,而在一定范围内存有着空间相关性。地统计学方法以半方差函数

和Kriging插值为基本工具,能对既具有随机性又具有结构性的各种 变量在空间上的分布进行研究5。半方差函数能较好地描述区域化变量的空间分布结构性和随机性,其中一些重要参数,可反映区域化变量 在一定尺度上的空间变异和相关水准,是研究土壤特性空间变异性的 关键,同时也是进行精确Krigking插值的基础6,式中,r(h)为半方差函数;h为样点空间间隔间距,即步长;N(h)为间隔距离为h时的所有观察样点的成对数;Z(xi)和Z(xi+h)分别是区域化变量Z(x)在空间位 置xi和xi+h的实测值。若h为横坐标,r(h)为纵坐标绘制函数曲线图,称为半方差函数曲线图,它可直接展示Z(x)的空间变异特点。克 里格插值,是地统计学的主要内容,它是通过对已知样本点赋权重来 求得未知点的值。式中,Z(x0)为未知采样点的值;Z(xi)为未知样点 周围的已知样本点的值;i为第i个已知样本点对位置样点的权重;n 为已知样本点的个数。 1.5空间分布特征分析 缓冲区分析是通过生成相关空间实体的缓冲区,以判断空间实体影响 范围的过程8。本研究以土壤质地、城镇、邛海和河流为影响源,建立不同距离的缓冲区,以分析有机碳含量的变化情况。 2结果与分析 2.1常规统计分析 基于ArcGIS9.3的地统计模块,对采样数据进行常规描述性统计(见 表1)。从偏度上看,呈右偏态分布。变异系数反映空间变异性水准, 通常认为变异系数CV≤10%为弱变异性,10%

中国土壤有机碳库及空间分布特征分析

收稿日期:2000205215;修订日期:2000207210 基金项目:中国科学院“九五”重大A 类项目(KZ 95T 203202204)及国家重点科技攻关专题项目(962911201201) [Foundation Ite m :T he Key P ro ject of Ch inese A cadem y of Science ,N o .KZ 95T 203202204;and the Key P ro ject of State Science T echnique ,N o .962911201201] 作者简介:王绍强(19722),男,博士,湖北襄樊市人。1997年在北京师范大学资源与环境科学系获得硕士学位, 2000年在中国科学院地理科学与资源研究所获得博士学位。主要从事全球变化、地理信息系统和遥感的 应用研究,在Int .J .of R emo te Sensing 等刊物发表论文8篇。E 2m ail :w sqlxf @2631net 文章编号:037525444(2000)0520533212 中国土壤有机碳库及空间分布特征分析 王绍强1,周成虎1,李克让1,朱松丽2,黄方红1 (11中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101; 21北京师范大学环境科学研究所,北京 100875) 摘要:土壤有机碳库是陆地碳库的主要组成部分,在陆地碳循环研究中有着重要的作用。根据 中国第二次土壤普查实测2473个典型土壤剖面的理化性质,以及土壤各类型分布面积,估算 中国土壤有机碳库的储量约为924118×108t ,平均碳密度为10153kg m 2,表明中国土壤是一 个巨大的碳库。其空间分布总体规律上表现为:东部地区大致是随纬度的增加而递增,北部地 区呈现随经度减小而递减的趋势,西部地区则呈现随纬度减小而增加的趋势。 关 键 词:碳循环;全球变化;土壤有机碳库 中图分类号:S 15912 文献标识码:A 1 前言 全球变化研究引起了许多科学家对陆地生态系统中碳平衡以及碳存储和分布的关注,由于土壤中所存储的碳大约是植被的115~3倍[1,2],而且是全球生物地球化学循环中极其重要的生态因子,因而土壤有机碳的分布及其转化日益成为全球有机碳循环研究的热点[3,4]。 土壤是陆地生态系统中最大且周转时间最慢的碳库。它由有机碳库和无机碳库两大部分组成,且土壤无机碳库占的比例较小[5]。国际上很早就开展了土壤碳研究,其中Po st 根据全球2696个土壤剖面估计全球土壤有机碳为13953×108t [6],而与大气交换的土壤有机碳大约占陆地表层生态系统碳储量的2 3[6]。目前对于全球陆地碳循环认识的不确定性,大部分是关于土壤有机碳库的分布和动力学[7],全球变暖将会加速土壤向大气的碳排放,加剧大气CO 2浓度的上升,这将进一步加强全球变暖的趋势[8]。 土地利用 土地覆盖变化既可改变土壤有机物的输入,又可通过对小气候和土壤条件的改变来影响土壤有机碳的分解速率,从而改变土壤有机碳储量。土地利用的变化,特别是森林砍伐所引起的变化,减少土壤上层的有机碳达20%~50%[9]。不合理的土地利用,会导致土壤储存的碳和植被生物量减少,使更多的碳素释放到大气中,从而导致大气CO 2浓第55卷第5期 2000年9月地 理 学 报A CTA GEO GRA PH I CA S I N I CA V o l .55,N o .5Sep.,2000

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

土壤活性有机碳的测定

土壤活性有机碳的测定 (高锰酸钾氧化法) 土壤样品经粘磨过0.5mm筛,根据土壤全有机碳含量,计算含有15mg碳的土壤样品量作为待测样品的称样重,然后将样品转移至50ml带盖的塑料离心管中,以不加土样作为空白。 向离心管中加入25ml浓度为333mmol/L的高锰酸钾溶液,在25℃左右,将离心管振荡(常规震荡即可)1小时,然后在转速2000rpm 下离心5分钟,将上清液用去离子水以1:250倍稀释,吸取1ml上清液转移至250ml容量瓶中,加去离子水至250ml即可。稀释样品用分光光度计在565纳米处测定吸光值。 配制不同浓度梯度的高锰酸钾的标准溶液,同样于分光光度计上测定吸光值,建立高锰酸钾的浓度和吸光值的线性直线方程,将稀释好的待测样品的吸光值代入方程得到氧化有机碳后剩余高锰酸钾的浓度,同样得到空白的高锰酸钾浓度,前后二者之差即为氧化活性有机碳后高锰酸钾溶液的浓度变化值,根据假设,氧化过程中高锰酸钾浓度变化1mmol/L消耗0.75mM或9mg碳。其中能被333mmol/L高锰酸钾氧化的碳是活性有机碳,不能被氧化的碳上非活性有机碳。 高锰酸钾标准曲线配制:首先配制0(去离子水)、15、30、60、100、150、300mmol/L的高锰酸钾标准梯度溶液,从每个浓度的标准溶液中吸取1ml标准溶液转移至250ml容量瓶中定容(既稀释250倍),这样能够就得到浓度梯度为0、0.06、0.12、0.24、0.4、0.6、1.0、1.2mmol/L的标准高锰酸钾梯度溶液,然后同样用分光光度计在565纳米处测定吸光值,绘制高锰酸钾的浓度与吸光值间的标准曲线。注意标准曲线配制过程中尽量避光,以防高锰酸钾氧化消耗,可以将容量瓶套上信封袋以避光,还有容量瓶等一定要清洗干净,以防高锰酸钾氧化杂质而消耗,影响测定结果。 活性有机碳(mg/g) =高锰酸钾浓度变化值×25×250×9 称样重×1000

不同林地土壤有机碳储量及垂直分布特征

0引言 全球气候的变化,引起了许多科学家对陆地生态系统中碳平衡、碳存储及分布的关注。据Post [1]和 Houghton [2]等研究表明,土壤中所存储的碳是植被中的2.5~3倍,而森林土壤约占全球土壤有机碳库的73%,是陆地生态系统最大的有机碳库[3-4],因而其储 基金项目:国家重点基础研究发展计划“973”项目(2007CB106803);国家自然科学基金重点项目(40730631);中国科学院重要方向项目(KZCX2-YW-441)、(KZCX2-YW-149)。 第一作者简介:杨晓梅,女,1983年出生,陕西宝鸡人,硕士,研究方向:恢复生态。通信地址:712100陕西杨凌西农路26号中国科学院水土保持与生态环境研究中心。E-mail:yangxiaomei.003@https://www.wendangku.net/doc/0d2250159.html, 。 通讯作者:程积民,男,1955年出生,陕西渭南人,研究员,研究方向:黄土高原植被恢复与生态环境建设。通信地址:712100陕西杨凌西农路26号中国科学院水土保持与生态环境研究中心。Tel :029-********,E-mail :gyzcjm@https://www.wendangku.net/doc/0d2250159.html, 。收稿日期:2009-12-28,修回日期:2010-01-14 不同林地土壤有机碳储量及垂直分布特征 杨晓梅1,程积民1,孟蕾2,韩娟娟2 (1中国科学院水利部水土保持研究所,陕西杨凌712100;2 西北农林科技大学动物科技学院,陕西杨凌712100) 摘要:基于样地调查与室内分析,研究了黄土高原子午岭林区天然柴松林、辽东栎林及人工油松林3种林地土壤有机碳储量及其垂直分布特征。结果表明:(1)3种林地土壤有机碳含量柴松林为13.67g/kg ,辽东栎林为13.95g/kg ,油松林为11.43g/kg ,并随着土壤深度的增加呈现递减的趋势,不同林分变化幅度差异不同,且各土层间的差异达到了显著性水平。(2)3种林地土壤有机碳密度差异显著,土层间碳密度变化范围为1.06~3.67kg/m 2,并随土壤深度增加而减少;在整个土壤垂直剖面上,有机碳碳密度在9.38~11.43kg/m 2之间,其中0~50cm 深度碳密度的贡献率达80%以上。(3)3种林地土壤碳储量偏低,平均为105.2t/hm 2,不同林分间的差异较大。关键词:土壤有机碳;碳储量;垂直分布;森林类型中图分类号:S714.5 文献标志码:A 论文编号:2009-2786 Features of Soil Organic Carbon Storage and Vertical Distribution in different Forests Yang Xiaomei 1,Cheng Jimin 1,Meng Lei 2,Han Juanjuan 2 (1Institute of Soil and Water Conservation ,Chinese Academy of Sciences and Ministry of Soil Resources ,Yangling Shaanxi 712100; 2 College of Animal Sciences ,Northwest A &F University ,Yangling Shaanxi 712100) Abstract:Based on the field data and laboratory analysis,we studied the soil organic carbon storage and vertical distribution features about natural Pinus tabulaeformis f.shekannesis ,Quercus liaotungensis and artificial P.tabulaeformis forest in Ziwuling forest area of Loess Plateau.The results were showed as followings:1)Content of soil organic carbon was:13.67g/kg,13.95g/kg,and 11.43g/kg,respectively for Pinus tabulaeformis f.shekannesis,Quercus liaotungensis and artificial P.tabulaeformis .With depth of soil,organic carbon contents generally decreased,but the range was different in these three forest types.Meanwhile,great significance differences have appeared among different soil layers.2)Soil carbon density in the three forest types changed greatly,with a range of 1.06~3.67kg/m 2for five soil layers.Furthermore,soil carbon density decreased generally with the depth,as well as carbon content.In the whole soil profile,the range of carbon density in these three forests was from 9.38kg/m 2to 11.43kg/m 2.However,80%carbon concentrated in 50cm depth of soil.3)Soil carbon storage is low in these three forests.The average of storage was 105.2t/hm 2,and great differences appeared between forest types. Key words:soil organic carbon;carbon storage;vertical distribution;forest types 中国农学通报2010,26(9):132-135 Chinese Agricultural Science Bulletin

中国土壤有机碳研究综述.kdh

中国土壤有机碳研究综述 刘敏 (中国林业科学研究院热带林业研究所,广东省,广州市,510520) 摘要 本文介绍了目前为止中国土壤有机碳的研究现状和进展,主要从有机碳库的计算和研究方法、有机碳库的影响因子和有机碳运动及转化等方面的研究进行了述论,为土壤有机碳,特别是森林土壤的固碳研究提供了科学的依据,为对照国外土壤有机碳的研究水平提供了参考依据,也为全球碳库的统计研究提供了数据理论基础。 关键词:土壤有机碳 影响因子 动态 方法 引言 碳是生命物质中的主要元素之一,是有机质的重要组成部分。总的来说,地球上主要有四大碳库,即大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库,碳元素在大气、陆地和海洋等各大碳库之间不断地循环变化。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成和各种反馈机制最为复杂,是受人类活动影响最大的碳库。土壤在全球的碳排放和隔离潜能中被认为是一个活跃和重要的角色。研究土壤可持续利用的核心问题是土壤有机质,有机质数量的耗竭和质量的恶化可直接导致土壤生态功能的衰退。土壤有机质在微生物分解过程中,大部分的碳以CO2形式释放到空气中,迅速与大气进行交换,对大气碳库有重要的调节作用,其他部分以土壤有机碳或碳酸盐的形式储藏在土壤碳库中。于东升[1]等计算出中国的土壤面积共有928.10×104 km2,有机碳储量(SOC)为89.14Pg(1 Pg = 1015g),土壤平均碳密度为9.60 kg·m-2。植物有机质进入土壤后经过腐解,生成成复杂的土壤有机碳。李晓阳[2]等认为土壤有机碳的变化与土壤特性、土壤管理方式及土壤有机碳检测方法有关。周莉[3]等认为理解土壤有机碳蓄积过程对生物、物理和人为因素的响应和把握关键的控制因子是准确预测土壤有机碳在全球变化情景下对大气 CO2的源、汇方向及准确评估碳收支的关键。 1 土壤有机碳库的计算方法 土壤有机碳库计算方法主要有5种:土壤类型法、生命带研究方法、GIS估算土壤有机碳储量、相关关系估算法、统计估算法等。根据研究对象的不同主要有4种类型:根据植被类型推算、根据土壤类型推算、根据生命气候带推算、利用模型计算。于东升[1],王义祥[4]用土壤类型推算法进行了研究,数据结果的准确性与数据基础有很大的关系。甘海华[5],邱建军[6]运用模型也作了这方面的研究;童成立[7]等比较了有机碳计算机模拟模型(SCNC)模型和英国洛桑模型(ROTHC-26.3),结果显示了SCNC的接近真值的效果,他们认为输入量的要求成为了取得研究的成功的关键。赵永存[8]等认为回归克里格预测土壤有机碳的空间分布效果最好,能更好地反映碳密度与地形的关系以及局部变异。 2 土壤有机碳库的影响因子 2.1土壤化学性质对土壤有机碳影响 土壤的化学性质是影响土壤有机碳库的关键因子。李明锋[9]等研究表明SOC和TN的含量直接或间接地决定生态系统CO2排放通量,并且姜勇[10]认为自然生态系统的SOC与TN的相关性略高与农田生态系统。郭胜利[11]认为Q m(P素的最大吸附量),DPS(土壤磷素吸附饱和度)和EPC o(零净吸附磷浓度)变化与SOC存在显著或极显著的线性相关关系(P<0.001)。根据不同林分有机碳、氮组分的不同,徐秋芳[12]认为灌木林和阔叶林土壤表层的微生物生物碳(C MB)、易氧化态碳(C R)与土壤总有机碳(C T)含量间相关性均达显著水平,而灌木林水溶性有机碳(C WS)与C T的相关性达到极显著水平;阔叶林土壤蔗糖酶、脲酶、蛋白酶及磷酸酶活性与C T、C MB及C R含量间均存在显著相关性,而灌木林只有蔗糖酶活性与各类碳有机碳有显著相关性。姜培坤[13]认为雷竹土壤的C T与活性碳含量(C A)、C WS之间,C A与C WS之间以及C T、C A、C WS与土壤(TN)、水解氮、有效磷(AvP)、速效钾(AvK)之间相关性均达极显著水平(P<0.01),而雷竹C MB与C T、C A、C WS、TN、水解氮、AvP、AvK之间相关性均不显著。彭佩钦[14]认为湿地土壤C MB 作者简介 刘敏,女,1974年出生,硕士,工程师。主要从事森林生态(群落基本特征分析);植物水分生理(耐旱、耐水研究);土壤(基本理化性状及有机碳研究);3S技术的应用。 Email:liumin27@https://www.wendangku.net/doc/0d2250159.html,。

土壤中总碳的测定

土壤中总碳的测定 土壤中总碳的测定 一、方法提要 本法测定的结果是试样的总碳含量,包括碳酸盐的碳和有机碳的含量,试样用管式高温炉灼烧产生全碳量的二氧化碳,产生的二氧化碳被乙醇—乙醇胺吸取液吸取,以百里酚酞为指示剂,用乙醇钾标准溶液滴定,测得全碳量。 二、试剂 1、乙醇—乙醇胺吸取液:100mL 无水乙醇中加入100ml 乙醇胺和0.3g 百里酚酞,摇匀备用。 2、乙醇钾标准溶液:取一定量的氢氧化钾溶解在乙醇中,配制成乙醇钾标准溶液(依碳的含量)。 3、乙醇钾标准溶液的标定:称取0.0400g 预先在105—110℃烘干过的基准碳酸钙于瓷舟中,按分析手续进行标定,按下式计算滴定度: T=V m 1200 .0 式中:T ——乙醇钾标准溶液对碳的滴定度。(g/mL ) V ——滴定时所用乙醇钾标准溶液的体积。(mL )

m ——所用碳酸钙的重量。(g ) 4、碳酸钙:基准试剂。 5、二氧化锰:活性。 三、仪器: 1、管式炉:瓷管:φ121×φ225×600(mm ) 瓷舟:88mm 2、滴定—吸收装臵。 四、分析手续 1、连接好滴定—吸收装臵,逐渐将炉温升至1200℃(指放瓷舟处温度),通氧气检查,确信装臵不漏气后,加吸收液于吸收杯中,使液面高出杯内筛板2~4cm 。 2、将盛有0.0400g 碳酸钙的瓷舟用不锈钢钩将其送入管式炉高温区,迅速塞紧胶塞,通入氧气(约0.3升/分),待吸收液蓝色褪去后,滴加滴定液至出现稳定的淡蓝色,取出瓷舟。 3、称取0.2000g 试样于瓷舟中,按步骤操作滴定。 五、分析结果计算 按下式计算碳的百分含量: C(%)=m V T ×100 式中:T ——滴定液对碳的滴定度。(g/mL ) V ——分析试样所用滴定液的体积。(mL ) m ——称样量。(g ) 六、注意事项: 1、每个试样滴定到终点后,要稳定30秒以上再取出瓷舟。

土壤有机碳及碳组份测定

①土壤有机碳测定 风干土过0.25 mm土壤筛,用重铬酸钾-外加热法测定有机碳含量。 ②土壤重组和轻组分离 取100 g(干土重)土,分成3等分,分别放入密度为1.70g cm-3的重液中(ZnI 2和KI 混合溶液,用KOH 溶液调至中性),用手摇动震荡5min,再用超声波400Jml-1震荡3 min,离心机离心,虹吸法取上清液,过滤,重复操作3 次。所得样品用 100 mL 0.01 mol L-1CaCl 2 溶液洗涤,再用200 mL 蒸馏水反复冲洗,得到轻组。 剩余部分为重组,用100ml 0.01mol L-1 CaCl 2 溶液洗涤,再用200 mL 蒸馏水反复冲洗。样品回收率均在95%以上。将得到的组分分出一份,过0.25 mm 土壤筛,用重铬酸钾-外加热法测定有机碳含量。 ③土壤水溶性有机碳测定 20g(干土重)新鲜土放入盛有60 mL 蒸馏水的三角瓶中,常温下震荡浸提30 min,用高速离心机离心,上清液过0.45μm 滤膜,用岛津TOC-V CPH仪测定浸提液有机碳浓度,得到水溶性有机碳。为了避免浓度的差异对特定波长吸收值的影响,先把所有样品的水溶性有机碳的浓度稀释到10 mg/L,再用岛津UV-2550 测 定250 (A 250)、280 (A 280 )、和365 nm (A 365 )处吸收值,并计算A 250 /A 365 比值。 ④热水浸提碳的测定 10 g(干土重)新鲜土放入盛有100 mL 蒸馏水的三角瓶中,先震荡10 min,80℃浸提16 h,再震荡10 min,离心后,上清液用0.45 μm 滤膜过滤,用TOC-V CPH 仪测定浸提液碳浓度,得到热水浸提碳。 ⑤土壤微生物量碳测定 土壤微生物量碳(MBC)采用氯仿熏蒸-K 2SO 4 浸提法,熏蒸和未熏蒸的样品分 别用0.5 M K 2SO 4 浸提30 min,用岛津TOC-V CPH仪测定浸提液碳浓度。然后,用 以下公式计算获得微生物量碳: MBC =Ec/0.38 (1-1) 式中MBC 为微生物量碳,Ec 为熏蒸和未熏蒸样品浸提液测定的有机碳差值。用以下公式计算微生物商: MQ=MBC/TOC (1-2) 式中MBC 为微生物量碳,MQ 为微生物商,TOC 为土壤总有机碳

土壤有机碳储量的影响因素研究

龙源期刊网 https://www.wendangku.net/doc/0d2250159.html, 土壤有机碳储量的影响因素研究 作者:杨慧敏 来源:《种子科技》2019年第08期 摘 ; 要:通过对土壤有机碳储量及影响因素进行研究,以期找到维持和提高土壤有机碳库的有效措施,为我国土壤资源的可持续开发利用提供参考,最终达到土壤固碳和农业增产的目的。 关键词:土壤;有机碳;储量;影响因素 1 ; 土壤有机碳储量 土壤有机碳(Soil Organic Carbon,SOC)作为土壤有机质的一种化学量度,在提高土壤 肥力、改善土壤结构、促进植物生长等方面发挥着重要作用。SOC在全球碳总量(2 344 Pg)中占有巨大比重。据估算,土壤有机碳库储量为1 550 Pg,大于植被和大气碳的总和[1]。其中,农田生态系统的碳储量占陆地土壤碳储量的8%~10%(120~150 Pg)[2],但是全球农业土壤的固碳潜力仅为20 Pg。以往研究有机碳时,注重其对农业生产的作用,而如今的研究更注重其对于生态环境的意义[3]。 2 ; 影响因素 2.1 ; 自然因素 2.1.1 ; 环境因素 土壤有机碳是指土壤有机质(SOM)中的碳含量,是陆地生态系统碳氮循环的重要组成 部分。有机碳释放和降解的速率主要取决于SOC本身的分子结构、化学性质和地表枯落物与死亡根系的数量与质量,其中土壤有机碳分子结构又是影响有机碳质量和功能的重要内在因素。研究发现,一些结构比较稳定的有机碳(如木质素)在土壤中分解转化的速率竟然比其他有机碳短[4-6],而一些性质比较活跃的有机碳(如糖类)却可以稳定在土壤中长达10年之久[7]。这也许是因为不同种类细菌代谢方式不同,所以分解的机制也有一定区别[8]。SOC虽然是由微小的化学分子组成的,但是其持久性却不是由分子性质所决定的,而是取决于生态系统的属性,如生物群的空间异质性、环境条件等。所以,分子结构的抗性并非完全地控制有机碳在土壤中的长期持久性[9]。而有机碳在与环境的相互作用下却可以显著降低土壤有机碳被降 解的可能性。 2.1.2 ; 微生物因素 土壤中产生大量的CO2,是微生物对有机物进行分解所产生的结果。而微生物的生长活动又受土壤养分含量的高低、C和N的有效性以及土壤pH值的影响。当微生物所需的营养元

土壤水溶性有机质测定方法参考

土壤有机质测定 常用重铬酸钾一硫酸溶液氧化----- 分光光度法 用水浴加热试管时,(设定最高温度为95), —个小时后取出。(标准溶液的制备:与土壤样品溶液制备的同时作一组(7个)空白处理,用石英砂代替样品,其他过程同上。即取7支试 管各加入0.4 mol/L的重铬酸钾硫酸溶液2mL,和土壤样品一起硝化后分别加入0.12 mol/L 硫酸亚铁标准溶液0、1、2、3、4、5、6 mL,再分别加入0.1 mol/L H2SO4溶液10、9、8、 7、6、5、4 mL,摇匀澄清或离心待用。) 一、土壤有机质测定一一分光光度法 光度法测定土壤中的有机质具有设备简单、操作简便、测定结果准确等特点,适合大批样品 的快速测定。 1测定原理 在加热的条件下,用过量的重铬酸钾一硫酸(K2Cr2O7—H2SO4溶液,来氧化土壤有机质中的 碳,Cr2O72-等被还原成Cr+3。以硫酸亚铁为标准溶液,取不同量的硫酸亚铁分别与重铬酸 钾一硫酸(K2Cr2O7 —H2SO4溶液进行反应,由于在585nm波长处对Cr3+有最大吸收而Cr6+ 却无吸收,且对一定浓度的H2S04溶液均无吸收。通过分光光度测定,根据标准样制作的标准曲线,找到样品所对应消耗的硫酸亚铁的量,再通过转换得到有机碳量,再乘以常数 1.724,即为土壤有机质量。其中的反应式为: 重铬酸钾一硫酸溶液与有机质作用: 2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2n8H2O 硫酸亚铁与重铬酸钾一硫酸溶液的反应: K2Cr2O7+6FeSO牛7H2SO4=K2SO4 Cr2(SO4)3+3Fe2(SO4)3+7H2O 2仪器、试剂 分析天平(0.0001g)、硬质试管、长条腊光纸、温度计(0-360 C )、滴定管(25ml)、吸管(10ml)、三角瓶(250ml)、小漏斗、烧杯、量筒(100ml)、角匙、滴定台、吸水纸、滴瓶(50ml)、试管夹、吸耳球、试剂瓶(500ml)、恒温箱 7230型分光光度计、5B-1型加热器、离心沉淀机。 (1/6 K2Cr2O7)=0.4 mol /L 的H2SO4溶液:称取分析纯重铬酸钾40.00 g溶于600 mL水中(必要时可加热溶解),加水稀释至1L,置3 L烧杯中。另取分析纯浓H2SO41L慢慢加入 到重铬酸钾水溶液中,并不断搅拌,每加入200ml时,应放置10-20分钟使溶液冷却后,再 加入第二份浓硫酸(H2SO4)。加酸完毕,待冷后存于棕色试剂瓶中备用(用时需标定)。(FeSO4)=0.12 mol /L 标准溶液:称取分析纯硫酸亚铁(FeSO4?7H2O) 3.6 g 溶于800 mL水中,加入20mL浓H2SO4搅拌均匀,冷至室温,稀释至1L。 0.1 mol/L H2SO4 溶液。 3测定方法 样品的制备:将土壤放在蒸发皿中风干10 d后,在分析天平上准确称取通过60目筛子(v 0.25mm)的土壤样品0.1-0.2g(精确到0.0001g)。用长条腊光纸把称取的样品全部倒入干的 硬质试管中,用移液管缓缓准确加入0.4mol/L的重铬酸钾-硫酸(K2Cr2O7-H2SO4)溶液2mL (摇动试管,以使土壤分散),然后在试管口盖消化玻泡或小漏斗,于100 C水浴消化,60 min 后取出样品。冷却后加入10mL0.1mol/L H2SO4溶液,摇匀后澄清或离心待测。 标准溶液的制备:与土壤样品溶液制备的同时作一组(7个)空白处理,用石英砂代替样品, 其他过程同上。即取7支试管各加入0.4 mol/L的重铬酸钾硫酸溶液2mL,和土壤样品一起消化后分别加入0.12 mol/L硫酸亚铁标准溶液0、1、2、3、4、5、6 mL,再分别加入0.1 mol/L

土壤有机碳库分类及其研究进展

土壤有机碳库的分类及其研究进展 土壤有机碳库(SOC)是地球表层系统中最大的碳库之一(霍连杰2012),全球土壤有机碳库储量约为1500Pg(Batjes 1996)。由于土壤有机碳库的巨大储量及其较活跃的化学属性,其微小变化就会影响大气CO2浓度的波动,另外,土壤有机碳的含量被认为是评估土壤质量的重要指标之一,其动态平衡直接影响到土壤肥力和作物的产量。因此,研究土壤有机碳库对全球气候变化的研究有重要意义。本文将根据不同的分类依据对土壤有机碳库的分类进行阐述并简要分析其研究进展。 1 土壤有机碳的化学分类 1.1根据化学组成分类 腐殖质类物质是土壤有机碳库重要的组成部分,根据化学成分组成对土壤有机碳库分类主要是对土壤腐殖质进行分类。根据腐殖质类物质在酸和碱溶液中的溶解性将其分为富啡酸、胡敏酸和胡敏素(唐世明1994)。 由于各类提取剂对土壤腐殖质的提取能力的变化很大,几乎很难将土壤腐殖质全部提取出来,而且土壤腐殖质的性质并不能完全代表土壤有机碳的性质。有研究证明,腐殖质类物质与生态学过程之间没有十分紧密的联系(R.R. 1999)。因此,对土壤腐殖质类物质的研究从20世纪80年的逐渐淡出土壤碳库的研究领域。 1.2根据化学性质分类 随着土壤有机碳库分类研究的不断深入,很多学者开始从化学性质的角度上研究土壤有机碳库的分类。 第一,根据被KMnO4氧化的程度对土壤有机碳的易氧化程度进行分类。根据不同浓度的KMnO4(33mmol\L、167mmol\L、333mmol\L)氧化的土壤有机碳的数量,把易氧化的有机碳分成3个级别(Loginow et al. 1987)。 第二,根据被H2SO4氧化的程度对土壤有机碳的易氧化程度进行分类。根据不同浓度的H2SO4(6.0mol\L、9.0mol\L、12.0mol\L)和K2Cr2O7氧化的土壤有机碳的数量,把易氧化的有机碳分成4个级别(Chan et al. 2001)。

相关文档
相关文档 最新文档