文档库 最新最全的文档下载
当前位置:文档库 › 标签纸的材质及应用

标签纸的材质及应用

标签纸的材质及应用
标签纸的材质及应用

标签纸的材质及应用

一张标准的标签打印出来是要经过多道工序的,先是由专业的条码软件制作出来,再由条码打印机打印出来。首先条码软件的选择很重要,像现在常用的领跑条码标签设计系统都是不错的选择。条码打印机像斑马、立象等都可以选择,大牌子的不管在质量还是售后服务上都是有保证的。碳带的选择也非常重要,其次就是标签纸的材质,标签材质的选择关系到标签的质量问题,那么标签的材质跟标签的应用到底有什么联系呢?

条码机常用的不干胶标签由底纸、面纸及作为两者粘合的粘胶剂三部分组成。底纸表面呈油性,对粘胶剂具有隔离作用,所以用作面纸的附着体,以便面纸能够很容易地从底纸上剥离下来。

底纸分普通底纸和哥拉辛(GLASSINE)底纸。普通底纸质地粗糙,厚度较大,颜色有黄色、白色等,一般印刷行业常用的不干胶底纸为经济的黄底纸;哥拉辛(GLASSINE)底纸质地致密、均匀,有很好的内部强度和透光度,是制作条码的常用材料。其常用白色、蓝色。

面纸是标签打印内容的承载体,按材质分为铜版纸、热敏纸、PET、PVC等几类。面纸背部涂的就是粘胶剂,它一方面保证底纸与面纸的适度粘连,另一方面保证面纸剥离后,又能与粘贴物具有结实的粘贴性。

PET高级标签纸

PET是聚脂薄膜的英文缩写,实际它是一种高分子材料。PET具有较好硬脆性,常见颜色有亚银、亚白、亮白几种。由于PET优良的介质性能,具有良好的防污、防刮、耐高温等性能,它被广泛应用于多种特殊场合。如电子零件、手机电池、电器产品、汽车零件、化学药品、户外广告、纺织品印刷等领域;

铜版纸(雪铜)标签

为条码打印常用材质,其厚度一般在80g左右。广泛应用于超市、零售、服装吊牌、物流标签、库存管理、铁路车票、药品标签、产品印刷等条码打印用途;

PVC高级标签纸

PVC是乙烯基的英文缩写,它也是一种高分子材料,常见的颜色有亚白、珍珠白。PVC 与PET性能接近,它比PET具备良好的柔韧性,手感绵软,常被应用于珠宝、首饰、钟表、电子业、金属业等一些高档场合。但是PVC的降解性较差,对环境保护有负面的影响,国

外一些发达国家已开始着手研制这方面的替代产品。

热敏纸

热敏纸是经高热敏涂层处理的纸材,高敏感度的面材可适用低电压打印头,因而对打印头的磨损极小。热敏纸是专门用于电子称、收银机内的一种热打纸,测试热敏纸最简单的方法:用指甲用力在纸上划过,会留下一道黑色的划痕。热敏纸适用于冷库、冷柜等货架签上。

洗水唛

主要应用于服装行业。

以上就是标签纸的材质及应用,碳带的选择也跟标签纸的材质有一定的关系。要打印质量好的标签从条码软件开始都要好好的选择。

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

材料表征方法思考题答案

第一章XRD 1.X射线的定义、性质、连续X射线和特征X射线的产生、特点。 答:X射线定义:高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。性质:看不见;能使气体电离,使照相底片感光,具有很强的穿透能力,还能使物质发出荧光;在磁场和电场中都不发生偏转;当穿过物体时只有部分被散射;能杀伤生物细胞。 连续X射线产生:经典物理学解释——由于极大数量的电子射到阳极上的时间和条件不相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。量子力学解释——大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。特点:强度随波长连续变化 特征X射线产生:当管电压达到或高于某一临界值时,阴极发出的电子在电场的加速下,可以将物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。此时的原子处于激发态。处于激发态的原子有自发回到激发态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量降低。原子从高能态变为低能态时,多出的能量以X射线的形式释放出来。因物质一定,原子结构一定,两特定能级间的能级差一定,故辐射出波长一定的特征X射线。特点:仅在特定的波长处有特别强的强度峰。 2.X射线与物质的相互作用 答:X射线与物质的相互作用,如图所示 一束X射线通过物体后,其强度因散射和吸收而被衰减,并且吸收是造成强度衰减的主要原因。 散射分为两部分,即相干散射和不相干散射。当X射线照射到物质的某个晶面时可以产生反射线,当反射线与X射线的频率、位相一致时,在相同反射方向上的各个反射波相互干涉,产生相干散射;当X射线经束缚力不大的电子或自由电子散射后,产生波长比入射X射线波长长的X射线,且波长随着散射方向的不同而改变,这种现象称为不相干散射。其中相干散射是X射线在晶体中产生衍射现象的基础。 物质对X射线的吸收是指X射线通过物质时,光子的能量变成了其它形式的能量,即产生了光电子、俄歇电子和荧光X射线。当X射线入射到物质的内层时,使内层的电子受激发而离开物质的壳层,则该电子就是光电子,与此同时产生内层空位。此时,外层电子将填充到内层空位,相应伴随着原子能量降低,放出的能量就是荧光X射线。当放出的荧光X射线回到外层时,将使外层电子受激发,从而产生俄歇电子而出去。产生光电子和荧光X射线的过程称为光电子效应,产生俄歇电子的过程称为俄歇效应。示意图见下:

材料结构表征及应用课程教学大纲

《材料结构表征及应用》课程教学大纲 一、《材料结构表征及应用》课程说明 (一)课程代码:08131016 (二)课程英文名称:Characterization and Application of Material structure (三)开课对象:物理系材料物理专业 (四)课程性质: 本课程是材料物理专业的一门专业必修课。 (五)教学目的 全面理解材料的结构与性能之间的关系,掌握材料结构表征的基本方法,从材料的成分分析、结构测定和形貌观察等方面出发探寻结构与性能之间的内在关系,从而实现材料设计的功能。 (六)教学内容: 介绍一些目前比较流行的基本的材料研究方法,从材料的成分分析、结构测定和形貌观察等方面出发探寻结构与性能之间的内在关系。 (七)学时数、学分数及学时数具体分配 学时数:72 学分数:4 (八)教学方式: 课堂教学 (九)考核方式和成绩记载说明: 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格,综合成绩根据出勤情况、平时成绩和期末成绩评定,出勤情况占20%,平时成绩占20%,期末成绩占60%。 二、讲授大纲与各章的基本要求 第一章绪论 教学要点: 通过本章的教学使学生初步了解表征材料结构的几种方法及其基本特点,概略的介绍本书将要介绍的内容。

1.了解材料的内在结构决定了材料的外在性能。 2.了解材料表征的基本方法 教学时数:2 教学内容: 第一节材料结构与材料性能的关系 第二节材料结构表征的基本方法 一、化学成分分析 二、结构测定 三、形貌观察 考核要求: 1.材料的结构决定材料的性能(领会) 2.材料结构表征的基本方法(识记) 第二章红外光谱及激光拉曼光谱 教学要点: 了解红外光谱的基本原理,掌握红外光谱实验的制样技术和结果分析方法,了解红外光谱实验的应用范围和前景,了解激光拉曼光谱的基本概念、实验原理和应用范围。 教学时数:16 教学内容: 第一节:红外光谱的基本原理 一、双原子分子的振动——谐报子和非谐振 二、多原子分子的简正振动 三、红外光谱的吸收和强度 第二节:红外光谱与分子结构 一、基团振动与红外光谱区域的关系 二、影响基团频率的因素 第三节:红外光谱图的解析方法 一、谱带的三个重要特征 二、解析技术 三、影响谱图质量的因素 第四节:红外光谱仪及制样技术 一、红外光谱仪的进展 二、傅里叶变换红外光谱仪原理 三、傅里叶变换红外光谱法的主要优点 四、红外光谱的表示方法 五、样品的制备技术 第五节:红外光谱在材料研究领域中的应用 一、高分子材料的研究 二、材料表面的研究 三、无机材料的研究 四、有机金属化合物的研究 第六节:红外光谱新技术及其应用 一、时间分辨光谱 二、红外光热光声光谱技术

塑料牌号大全

塑料牌号大全 1. 聚苯乙烯 聚苯乙烯树脂(Polystyrene,简称PS)是一种比较古老的树脂品种,由于它具有良好的性能,已经成为世界上应用最广的热塑性树脂,是通用塑料的五大品种之一. 聚苯乙烯为无色透明颗粒,无延展性,类似玻璃状材料,制品掉在地面或者敲打时具有清脆的声音,又俗称“响胶” 聚苯乙烯易燃,离开火源后继续燃烧,火焰呈橙黄色并有浓烟.燃烧时起泡,软化,并发出特殊的苯乙烯单体味道. 聚苯乙烯的密度为1.04到1.09之间.尺寸稳定性好,收缩率在0.4%.吸湿性低,约为0.02%.光学性能相当好,透明度达到88-92%,折光率为1.59-1.60.具有良好的光泽.对其施加压力就产生双折射类应力.聚苯乙烯无色无臭无毒,能自由着色,可以和任何颜料混合.热变形温度为70至98度.导热系数不随温度发生改变.可以作为良好的冷冻绝缘体.在高真空或者330-380度剧烈降解.介电性能良好,耐水性能也极高,是一种优良的绝缘材料.聚苯乙烯在高频下也有很低的功率因数,耐紫外光性差. 项目GPPS HIPS 密度(g/cm3)1.04-1.09 1.04-1.10 硬度(洛氏)65-80 20-90 拉伸强度(Mpa)34-82 8.5-10.3 伸长率(%)1.0-2.5 2.0-8.0 IZOD冲击强度(Kj/m2)0.5-0.8 0.8-23 压缩强度(Mpa)82-110 27.5-110 弯曲强度(Mpa)46-96.5 34.5-117 介电强度(Kv/mm)短暂500-700 300-600 按步400-600 300-600 电阻率(欧*cm)1017--1019 1016 介电常数(F/m)60HZ 2.45-2.65 2.45-4.75 1000HZ 2.4-2.65 2.4-4.5 1000000HZ 2.4-2.65 2.4-3.8 耗散因数60HZ 0.0001-0.0003 0.0004-0.002 功率因数1000HZ 0.0001-0.0003 0.0004-0.002 1000000HZ 0.0001-0.0004 0.004-0.002 耐电弧(s)60-135 20-100 主要出产公司及牌号(GPPS&HIPS) 石油化学(HONGKONG PETROL CHEMICAL.CO.LTD) 商品名称:Edistir-PS 氏化学太平洋(DOW CHEMICAL PACIFIC.LTD) 商品名称:Styron

最新材料结构表征重点知识总结

第一章,绪论 材料研究的四大要素:材料的固有性质,材料的结构,材料的使用使用性能。 材料的固有性质大都取决于物质的电子结构,原子结构和化学键结构。 材料表征的三大任务及主要测试技术:1、化学成分分析:质谱,色谱,红外光谱,核磁共振;2、材料结构的测定,X射线衍射,电子衍射,中子衍射;3、形貌观察:光学显微镜,电子显微镜,投射显微镜。 第二章,红外光谱及激光拉曼光谱 2.1红外光谱的基本原理 红外光谱的定义:当一束具有连续性波长的红外光照射物质时,该物质的分子就有吸收一定的波长红外光的光能,并将其转变为分子的振动能和装动能,从而引起分子振动—转动能级的跃迁,通过仪器记录下来不同波长的透射率的变化曲线,就是该物质的红外吸收光谱。中红外去波数范围(4000—400cm-1) 简正振动自由度(3n-6或3n-5)及其特点:3n-6是分子振动自由度3n-5是直线分子的振 动自由度 特点:分子质点在振动过程中保持不变,所有的原子都在同一瞬间通过各自的平衡位置。每 个简谐振动代表一种振动方式,有它自己的特 征频率 简正振动的类型:1、伸缩振动2、弯曲振动 分子吸收红外辐射必须满足的条件:主要振动过程中偶极矩的变化、振动能级跃迁几率 2.2红外光谱与分子结构 红外光谱分区:官能团去(4000-1330cm-1)指纹区(1330-400cm-1) 基团特征频率定义:具有相同化学键或官能团的一系列化合物有共同的吸收频率,这种频率就叫基团特征频率 影响因素,内部因素:诱导效应,共振效应,键应力的影响,氢键的影响,偶合效应,费米共振;外部因素:物态的变化的影响,折射率和粒度的影响,溶剂的影响 诱导效应:在具有一定极性的共价键中,随着取代基的电负性不同而产生不同程度的静电诱导作用,引起分子中电荷分布的变化,从而改变了键的常熟,使振动的频率发生改变,这就是诱导效应。 2.3红外光谱图的解析方法 普带的三个特征:1位置:基因存在的最有用的特征;2形状:有关基因存在的一些信息;3相对强度:把红外光谱中一条普带的强度和另一条谱带相比,可以得出一个定量的概念 影响谱图质量的因素:1仪器参数的影响;2环境的影响:空气湿度,样品污染等;3厚度的影响(要求10——50um) 2.7激光拉曼光谱 基本概念: 拉曼散射:人射光照射在样品上,人射光子与样品之间发生碰撞有能量交换称为拉曼散射斯托克斯线:拉曼散射中,散射光能量减少,在垂直方向测量到散射光中,可以检测到频率为()的线,称为斯托克斯线。 反斯托克斯线:相反,若样子分子获得能量,在大于人射光频率出收到散射光线 拉曼位移:斯托克斯线或反斯托克斯线与人射光频率之差称了拉曼位移

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

材料结构与表征复习整理(周玉第三版)

材料结构与表征 2017-2018复习整理 2018-1-4 暨南大学 ——D.S

2017-2018材料结构与表征重点整理 目录 绪论 (1) 第一章 X射线物理学基础 (2) 第二章 X射线衍射方向 (3) 第三章 X射线衍射强度 (3) 第四章多晶体分析方法 (4) 第五章物相分析及点阵参数精确测定 (5) 第六章(不考) (5) 第七章(不考) (5) 第八章电子光学基础 (5) 第九章透射电子显微镜 (6) 第十章电子衍射 (7) 第十一章晶体薄膜衍衬成像分析 (7) 第十二章(不考) (8) 第十三章扫描电子显微镜 (8) 第十四章(不考) (8) 第十五章电子探针显微镜分析 (8) 第十六章 (9) 参考文献 (10)

2017-2018材料结构与表征重点整理 绪论 1.组织结构与性能 本书主要介绍X射线衍射和电子显微镜分析材料的微观结构。 材料的组织结构与性能:a.结构决定性能;b.通过一定方法控制其显微组织形成条件。 加工齿轮实例: a.预先将钢材进行退火处理,使其硬度降低,以满足容易铣等加工工艺性能要求; b.加工好后再进行渗碳处理,使其强度、硬度提高,以满足耐磨损等使用性能的要求。 2. 显微组织结构分析表征: a.表面形貌观察(形态、大小、分布和界面状态等——光学显微镜、电子显微镜、原子力显微镜等; b.晶体结构分析(物相,晶体缺陷,组织结构等)——X射线衍射、电子衍射、热谱分析; c.化学成分分析(元素与含量、化学价态、分子量、分子式等)——光谱分析,能谱分析等。 3.传统测试方式 a.光学显微镜——分辨率200nm——只能观察表面形态而不能观察材料内部的组织结构,更不能进行对所观察的显微组织进行同位微区分析; b.化学分析——能给出试样的平均成分,不能给出元素分布,和光谱分析相同。 4.X射线衍射与电子显微镜 1.XRD——分辨率mm级——是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法,可以计算样品晶体晶体结构与晶格参数。 2.电子显微镜 透射电子显微镜——分辨率0.1nm——通过透过样品的电子束成像,可以观察微观组织形态并对观察区域进行晶体结构鉴定; 扫描电子显微镜——分辨率1nm——利用电子束在样品表面扫描激发出的代表样品表面特征的信号成像,观察表面形貌(断口)和成分分布; 电子探针显微分析——利用聚焦很细的电子束打在样品微观区域,激发出特征X射线,可以确定样品微观区域的化学成分,可与扫描电镜同时使用进行化学成分同位分析。

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

材料结构表征及应用知识点总结

第一章绪论 材料研究的四大要素:材料的固有性质、材料的结构、材料的使用性能、材料的合成与加工。 材料的固有性质大都取决于物质的电子结构、原子结构和化学键结构。 材料结构表征的三大任务及主要测试技术: 1、化学成分分析:除了传统的化学分析技术外,还包括质谱(MC)、紫外(UV)、可见光、红外(IR)光谱分析、气、液相色谱、核磁共振、电子自旋共振、二次离子色谱、X射线荧光光谱、俄歇与X射线光电子谱、电子探针等。如质谱已经是鉴定未知有机化合物的基本手段;IR在高分子材料的表征上有着特殊重要地位;X射线光电子能谱(XPS)是用单色的X射线轰击样品导致电子的逸出,通过测定逸出的光电子可以无标样直接确定元素及元素含量。 2、结构测定:主要以衍射方法为主。衍射方法主要有X射线衍射、电子衍射、中子衍射、穆斯堡谱等,应用最多最普遍的是X射线衍射。在材料结构测定方法中,值得一提的是热分析技术。 3、形貌观察:光学显微镜、扫描电子显微镜、透射电子显微镜、扫描隧道显微镜、原子力显微镜。 第二章X射线衍射分析 1、X射线的本质是电磁辐射,具有波粒二像性。 X射线的波长范围:0.01~100 ? 或者10-8-10-12 m 1 ?=10-10m (1)波动性(在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性); (2)粒子性(特征表现为以光子(光量子)形式辐射和吸收时具有的一定的质量、能量和动量)。 2、X射线的特征: ①X射线对物质有很强的穿透能力,可用于无损检测等。 ②X射线的波长正好与物质微观结构中的原子、离子间的距离相当,使它能被晶体衍射。晶体衍射波的方向与强度与晶体结构有关,这是X射线衍射分析的基础。 ③X射线光子的能量与原子内层电子的激发能量相当,这使物质的X射线发射谱与吸收谱在物质的成分分析中有重要的应用。 一、X射线的产生 1.产生原理 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。 2.产生条件 (1)产生自由电子;(2)使电子作定向的高速运动;(3)在其运动的路径上设置一个障碍物使电子突然减速或停止。 3.X射线管的结构 封闭式X射线管实质上就是一个大的真空二极管。基本组成包括: ①阴极:阴极是发射电子的地方。 ②阳极:亦称靶,是使电子突然减速和发射X射线的地方。 ③窗口:窗口是X射线从阳极靶向外射出的地方。 ④焦点:焦点是指阳极靶面被电子束轰击的地方,正是从这块面积上发射出X射线。 二、X射线谱 由X射线管发射出来的X射线可以分为两种类型:(1)连续X射线;(2)标识X射线。 1、连续X射线 具有连续波长的X射线,构成连续X射线谱,它和可见光相似,亦称多色X射线。 (1)产生机理

东华大学材料结构表征及其应用作业答案

“材料研究方法与测试技术”课程练习题 第二章红外光谱法 1.为什么说红外光谱是分子振动光谱?分子吸收红外光的条件是什 么?双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与哪些因素有关? 答案:这是由于红外光谱是由样品分子振动吸收特定频率红外光发生能级跃迁而形成的。分子吸收红外光的条件是:(1)分子或分子中基团振动引起分子偶极矩发生变化;(2)红外光的频率与分子或分子中基团的振动频率相等或成整数倍关系。双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与双原子的折合质量(或质量)和双原子之间化学键的力常数(或键的强度;或键的离解能)有关。 2.用诱导效应、共轭效应和键应力解释以下酯类有机化合物的酯羰 基吸收峰所处位置的范围与饱和脂肪酸酯的酯羰基吸收峰所处位置范围(1735~1750cm-1)之间存在的差异。 芳香酸酯:1715~1730cm-1 α酮酯:1740~1755cm-1 丁内酯:~1820cm-1 答案:芳香酸酯:苯环与酯羰基的共轭效应使其吸收峰波数降低;α酮酯:酯羰基与其相连的酮羰基之间既存在共轭效应,也存在吸电子的诱导效应,由于诱导效应更强一些,导致酯羰基吸收峰的波数上升;丁内酯:四元环的环张力使酯羰基吸收峰的波数增大。

3.从以下FTIR谱图中的主要吸收峰分析被测样品的化学结构中可能 存在哪些基团?分别对应哪些吸收峰? 答案:3486cm-1吸收峰:羟基(-OH);3335cm-1吸收峰:胺基(-NH2或-NH-);2971cm-1吸收峰和2870cm-1吸收峰:甲基(-C H3)或亚甲基(-CH2-);2115cm-1吸收峰:炔基或累积双键基团(-N=C=N-);1728cm-1吸收峰:羰基;1604cm-1吸收峰、1526cm-1吸收峰和1458cm-1吸收峰:苯环;1108cm-1吸收峰和1148cm-1吸收峰:醚基(C-O-C)。1232cm-1吸收峰和1247cm-1吸收峰:C-N。 第三章拉曼光谱法 1. 影响拉曼谱峰位置(拉曼位移)和强度的因素有哪些?如果分子的同一种振动既有红外活性又有拉曼活性,为什么该振动产生的红外光谱吸收峰的波数和它产生的拉曼光谱峰的拉曼位移相等?

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

陶瓷材料的分类及发展前景

陶瓷材料的分类及发展前景 学校: 太原理工大学 学院: 材料科学与工程 专业:无机0801 姓名:孙佩

摘要: 根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。通过对各类陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 引言 陶瓷材料在人类生活和现代化建设中是不可缺少的一种材料。它是继金属材料,非金属材料之后人们所关注的无机非金属材料中最重要的材料之一。它兼有金属材料和高分子材料的共同优点,在不断改性的过程中,已经使它的易碎性有了很大的改善。陶瓷材料以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会发展中将发挥非常重要的作用。陶瓷材料按其性能及用途可分为两大类:结构陶瓷和功能陶瓷。现代先进陶瓷的性能稳定、高强度、高硬度、耐高温、耐腐蚀、耐酸耐碱、耐磨损、抗氧化以及良好的光学性能、声学性能、电磁性能、敏感性等性能远优于金属材料和高分子材料;而且,先进陶瓷是根据所要求的产品性能,经过严格的成分和生产工艺制造出来的高性能材料,因此可用于高温和腐蚀介质的环境当中,是现代材料科学发展最活跃的领域之一。在此,笔者将对先进陶瓷的种类及应用领域做详细的介绍。 1.结构陶瓷 陶瓷材料优异的特性在于高强度、高硬度、高的弹性模量、耐高温、耐磨损、耐腐蚀、抗氧化、抗震性、高导热性能、低膨胀系数、

质轻等特点,因而在很多场合逐渐取代昂贵的超高合金钢或被应用到金属材料所不可胜任的的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷、陶瓷基复合材料。 1.1氧化物陶瓷 氧化物陶瓷主要包括氧化镁陶瓷、氧化铝陶瓷、氧化铍陶瓷、、氧化锆陶瓷、氧化锡陶瓷、二氧化硅陶瓷、莫来石陶瓷,氧化物陶瓷最突出的优点是不存在氧化问题。 氧化铝陶瓷,利用其机械强度较高,绝缘电阻较大的性能,可用作真空器件、装置瓷、厚膜和薄膜电路基板、可控硅和固体电路外壳、火花塞绝缘体等。利用其强度和硬度较大的性能,可用作磨料磨具、纺织瓷件、刀具等。 氧化镁陶瓷具有良好的电绝缘性,属于弱碱性物质,几乎不被碱性物质侵蚀,对碱性金属熔渣有较强的抗侵蚀能力。不少金属如铁、镍、铀、釷、钼、镁、铜、铂等都不与氧化镁作用。因此,氧化镁陶瓷可用作熔炼金属的坩埚,浇注金属的模子,高温热电偶的保护管,以及高温炉的炉衬材料等。氧化镁在空气中易吸潮水化生成Mg(OH)2,在制造过程中必须注意。为了减少吸潮,应适当提高煅烧温度,增大粒度,也可增加一些添加剂,如TiO2、Al2O3等。 氧化铍陶瓷具有与金属相似的良好的导热系数,约为209.34W/(m.k),可用来做散热器件;氧化铍陶瓷还具有良好的核性能,对中子减速能力强,可用作原子反应堆的减速剂和防辐射材料;另外,

《材料结构表征及应用》思考题

第二章 1、什么是贝克线?其移动规律如何?有什么作用?在两个折射率不同的物质接触处,可以看到比较黑暗的边缘,在这轮廓附近可以看到一条比较明亮的线细线,当升降镜筒时,亮线发生移动,这条明亮的细线称为贝克线。 贝克线的移动规律:提升镜筒,贝克线向折射率大的介质移动。根据贝克线的移动,可以比较相邻两晶体折射率的相对大小。 2、单偏光镜和正交偏光镜有什么区别?单偏光下和正交偏光下分别可以观察哪些现象?单偏光(仅使用下偏光)下可以观察晶体的形态、结晶习性、解理、颜色以及突起、糙面、多色性和吸收性,比较晶体的折光率(贝克线移动),用油浸法测定折光率等,对矿物鉴定十分重要。 正交偏光镜:联合使用上、下偏光镜,且两偏光镜的振动面处于互相垂直位置。可看到消光现象、球晶。 第三章 1.电子透镜的分辨率受哪些条件的限制? 透镜的分辨率主要取决于照明束波长儿其次还有透镜孔径半角和物 方介质折射率。 2.透射电镜主要分为哪几部分? 电子光线系统(镜筒)、电源系统、真空系统和操作控制系统。 3.透射电镜的成像原理是什么?透射电镜,通常采用热阴极电子枪来获得电子束作为 照明源。热阴极发射的电子,在阳极加速电压的作用下,高速穿过阳极孔,然后被聚光镜会聚成具有一定直径的束斑照到样品上。具有一定能量的电子束与样品发生作用,产生反映样品微区厚度、平均原子序数、晶体结构或位向差别的多

种信息。透过样品的电子束强度,其取决于这些信息,经过物镜聚焦放大在其平面上形成一幅反映这些信息的透射电子像,经过中间镜和投影镜进一步放大,在荧光屏上得到三级放大的最终电子图像,还可将其记录在电子感光板或胶卷上。 4.请概述透射电镜的制样方法。 支持膜法,复型法、晶体薄膜法和超薄切片法。高分子材料必要时还需染色、刻蚀。 5.扫描电镜的工作原理是什么? 由三极电子枪发射出来的电子束,在加速电压作用下,经过2?3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。这些物理信号分别被相应的收集器接受,经放大器放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。由于供给电子光学系统使电子束偏向的扫描线圈的电源也就是供给阴极射线显像管的扫描线圈的电源,此电源发出的锯齿波信号同时控制两束电子束作同步扫描。因此,样品上电子束的位置与显像管荧光屏上电子束的位置是一一对应的。这样,在长余辉荧光屏上就形成一幅与样品表面特征相对应的画面——某种信息图,如二次电子像、背散射电子像等。画面上亮度的疏密程度表示该信息的强弱分布。 6.扫描电镜成像的物理信号包括哪几种? 二次电子、背散射电子、吸收电子、X 射线、俄歇电子等 7.相对于光学显微镜和透射电镜,扫描电镜各有哪些优点? SEM 的景深大、放大倍数连续调节范围大,分辨本领比较高、能配置各种附件,做表面成分分析及表层晶体学位向分析等

功能陶瓷材料总复习题

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 频率围: 铁电体, 晶体在某温度围具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。 材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居 里点附近的临界特性。 电滞回线:铁电体的P滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相T铁电相的转变温度 T>Tc 顺电相TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据 /辭眩,才才(附必… 〃'一Mg2打Z0, M笔屁强… B”一Nb=TF 严… Pb(Mg l/3Nb2J3)O3尸风2也N% M 介电陶瓷的改性机理。 1、居里区与相变扩:热起伏相变扩、应力起伏相变扩、成分起伏相变扩散、结构起伏相

生活中的陶瓷材料及其应用

生活中的陶瓷材料及其应用 【摘要】陶瓷材料在我们的生活中早已应用到了各个方面,比如塑料、木材、水泥三大传统基本材料,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。随着社会的进步,人们对材料的要求也越来越高,这种表现不仅表现在对科学研究领域,也表现在人们的日常生活当中。材料的进步很大程度上推动了社会的进步,而社会的需求反过来也有力的推进了材料科学的发展。拿陶瓷材料来说,陶瓷材料已经贯穿了人类的历史,并且随着历史不停的发展,在材料科学领域崭露头角。 【关键字】陶瓷材料应用发展 陶瓷材料分为普通陶瓷材料和特种陶瓷材料,普通陶瓷材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。特种陶瓷材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。其特点有力学性能、热性能、电性能、化学性能、光学性能,根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。 而我们专业是地理信息系统与其陶瓷材料的联系真的不多,所以在这里就不详细的指出了。陶瓷材料在工程上的应用要数工程塑料了目前,主要的工程塑料制品已有10多种,其中聚酸胺、聚甲醛、聚磷酸酯、改性聚苯酸和热塑性聚酯被称为五大工程塑料.它们的产量较大.价格一般为传统通用塑料的2—6倍.而聚摧硫酸等特种工程塑料的价格为通用塑料的5一10倍。以塑料代替钢铁、木材、水泥三大传统基本材料,可以节省大量能源、人力和物力。陶瓷材料也可合成橡胶的开发利用,由于生产合成橡胶的原料丰富,其良好的性能又可以满足当代科技发展对材料提出的某些特殊要求,所以合成橡胶出现几十年来,品种已很丰富,一般可将其分为通用合成橡胶和特种合成橡胶两类。通用合成橡胶性能与天然橡胶相似,用于制造一般的橡胶制品,如各种轮胎、传动带、胶管等工业用品和雨衣、胶鞋等生活用品。特种合成橡胶具有耐高温、耐低温耐酸碱等优点,多用于特殊环境和高科技领域,如航空、航天、军事等方面。陶瓷材料在合成纤维的开发利用方面合成纤维的品种有几十种,但最常见的是六大种:聚酸胺纤维、涤纶、腈纶、丙纶、维纶、氨纶。高分子合成材料具有质量小、绝缘性能好等特点,所以发展很快,但又都有先天不足,即它们都在不同程度上对氧、热和光有敏感性。但是,随着高技术的迅速发展,高分子合成材料的大军必将在经济生活中扮演举足轻重的角色。陶瓷材料中已崛

材料结构表征重点 (2)

1紫外光谱 1紫外吸收光谱:电子跃迁光谱,吸收光波长范围200-400nm(近紫外区),可用于结构鉴定和定量分析。产生:外层电子从基态跃迁到激发态。 2四种电子能级跃迁所需能量ΔΕ大小顺序:n→π*< π→π*< n→σ*< σ→σ*3生色基:可以产生π→π* 和n→π*跃迁的基团。如—C=C—,—N=N—,C=O,C=S,芳环,共轭双键 4助色基;本身不具有生色基作用,但与生色基相连时,通过非键电子的分配,扩展了生色基的共轭效应,影响生色基的吸收波长,增大吸收系数,因常使化合物的颜色加深,故称助色基。 5红移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向长波方向的移动,叫红移(长移)。 6蓝移:由于化合物结构变化(共轭、引入助色团取代基)或采用不同溶剂后,吸收峰位置向短波方向的移动,叫蓝移(紫移,短移) 7吸收谱带的类型:R吸收带,K吸收带,B吸收带,E吸收带 8.高强度的吸收为共轭重键,270nm以上左右的低强度吸收可能为醛酮的羰基吸收,210nm 左右的低强度吸收可能为羧基及其衍生物,250~300nm左右的中等强度吸收表明有芳环存在 2红外光谱 1红外光谱定义:当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动运动或转动运动引起偶极矩的净变化,产生的分子振动和转动能级从基态到激发态的跃迁,从而形成的分子吸收光谱称为红外光谱。又称为分子振动转动光谱。 2红外光谱图:纵坐标为吸收强度,横坐标为波长λ(微米)和波数1/λ单位:cm-1。可分为两个区,即官能团区和指纹区。 https://www.wendangku.net/doc/062466670.html,mbert-Beer 定律: A=log(I0/I)=klc A: 吸光度I0,I: 入射光和透射光的强度k: 吸光系数l: 样品厚度c: 样品浓度 4.IR产生的条件:(1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 5.分子中基团的基本振动形式:伸缩振动(包括对称伸缩振动,反对称伸缩振动)弯曲振动(包括面内弯曲与面外弯曲) 6.影响基团频率发生位移的因素:A诱导效应。吸电子基团使吸收峰向高频位移 B共轭效应。共轭效应使碳碳双键的伸缩振动频率向低频位移 C空间效应;场效应,空间位阻,环张力 D氢键效应:伸缩振动向低频位移,弯曲振动向高频位移7常见的基团频率:羰基伸缩振动在1600~1900cm-1之间,往往是谱图的第一强峰,特征非常明显;C=C伸缩振动出现在1600~1660cm-1之间,一般强度较弱;单核芳烃的C=C伸缩振动出现在1500~1480cm-1和1600~1590cm-1两个区域。是鉴定芳核的重要标志。2000~2500cm-1是叁键和累积双键区。1370~1380cm-1为甲基的弯曲振动区 8.多原子的简振振动数目为3n-6,如水分子共有三个简振振动,直线型分子有3n-5个简振振动。简振振动包括伸缩振动(键长发生变化)与弯曲振动(键角发生变化)

相关文档
相关文档 最新文档