文档库 最新最全的文档下载
当前位置:文档库 › 反激变换器辅助电源的设计..

反激变换器辅助电源的设计..

反激变换器辅助电源的设计..
反激变换器辅助电源的设计..

辅助电源部分 辅助电源设计采用UC3842A 芯片,具体设计过程如下。 1、功能指标参数

交流输入电压范围:90~265in V V = 电网电压频率:40~60r f Hz =

最大输出功率:30out P W = 输出电压:015V V =± 效率:η=85% 开关频率:60s f kHz = 2、电路原理图

图1 反激变换器电路原理图 3、主电路参数设计 3.1 变压器设计 (1)根据AP 值选择磁芯 面积乘积AP 为绕组窗口面积(Aw )和磁芯横截面积的乘积(Ae )。同时,将AP 值与输入功率联系在一起,可以得到以下公式: 1.14311.1****in s

p u t P AP f B K K K ???= ? ????cm 4 其中,P in 是额定输入功率;

ΔB 为磁通密度变化量,一般为0.2T ;

K p 为磁芯窗口有效使用系数,一般取0.2~0.4;

K u 为绕组填充系数,一般取0.4~0.5;

K t 为均方电流系数,等于直流输入电流与最大原边电流的比值,一般取0.7~1.4; **p u t K K K K '=为铜有效利用系数,一般取0.1~0.2。

1.143 1.1434311.1*11.1*36=0.318cm ****60*10*0.2*0.32*0.4*0.71in s

p u t P AP f B K K K ????== ? ? ?????? 经过计算,AP 约为0.318cm 4。为了保证足够的功率裕量,选择TDK 系列EI33/29/13磁芯,41.5854cm AP =,2118.5mm e A =,2133.79mm w A =。

(2)原副边匝数计算 输入平均电流:30=0.27()*(min)0.85*127

out av in P I A V η=≈ 其中:(min)in V

为最小直流输入电压,(min) 1.0127in V V =≈; 输入电流峰值大小:

Ip2

输入电流波形示意图

max

2(1)*av pk I I k D =+ 其中:1

2p p I k I = ,根据经验,当P>40W 时,K=0.5~0.6;当P<40W 时,K=0.35~0.45。

本设计中,P<40W ,k 取0.4;为了保证工作于DCM 模式,占空比最大值取D max =0.4,所以有:max 22*0.270.96()(1)*(10.4)*0.4

av pk I I A k D ==≈++ 初级电感量: 3max 3(min)*127*0.40.882*10()*0.96*60*10

in p pk V D L H I f -==≈ 最小原边匝数:

8*(min)*()(min)*10**p pk

in on p e e L I V T max N A B A B

==?? (min)in V :最小直流输入电压(V );

()on T max :最大导通时间,

(S ); B ?:磁心磁通密度变化量,单位:高斯,一般取值范围为:1000~2500高斯; A e :磁心有效截面积,选用EI33/29/13磁芯,其Ae=118mm 2=1.18cm 2

688(min)*()127*0.4*16.7*10(min)*10*1045* 1.18*1600

in on p e V T max N A B -==≈?匝副边匝数:

max max ()**(1)

(151)*45*0.69(min)*127*0.4

o d p s in V V N D N V D +-+==≈匝 N s :副边匝数;N p :原边匝数;D max :最大占空比;V d :输出整流二极管压降; 取Ns=9匝

辅助供电绕组匝数:

19169116

f S o V N N V +?=?==+辅助匝; (3)绕组线径选择

电流密度取J=500圆密尔/A;由于趋肤效应,绕线表面电流大而内部电流小,开关电源设计时,单根线径不得超过趋肤深度的2-3倍;

趋肤深度计算公式:

d K ?==(温度T=20℃) 带入参数:f=60kHz ,温度T=20℃

趋肤深度:0.267()d K mm ?≈== 选用线径d=0.38mm 的铜线作为绕组导线。

单根导线的圆密尔数:

2

21() 3.14*0.192*1000*1000224()0.50660.5066d

S π==≈圆密尔 原边电流峰值为I pk =0.96A ,平均电流为

0.35()rms I A ==

原边绕组绕线根数:

11

*n 1()rms I J S =≈根 副边绕组绕线根数:

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

反激变换器课程设计报告

电力电子课程实习报告 班级:电气10-3班 学号: 10053303 姓名:李乐

目录 一、课程设计的目的 二、课程设计的要求 三、课程设计的原理 四、课程设计的思路及参数计算 五、电路的布局与布线 六、调试过程遇到的问题与解决办法 七、课程设计总结

一、课程设计的目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的应用; (3)增强设计、制作和调试电力电子电路的能力。 二、课程设计的要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的反击式开关电源。 电源输入电压:220V 电源输出电压电流:12V/1.5A 电路板:万用板手焊。 三、课程设计原理 1、引言 电力电子技术有三大应用领域:电力传动、电力系统和电源。在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。电源可以分为线性电源和开关电源两大类。 线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其“阻值”的大小,实现稳定的输出,电路简单,但效率低。通常用于低于10W的电路中。通常使用的7805、7815等就属于线性电源。 开关电源是让功率晶体管工作在导通和关断状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。反激式功率变换器是开关电源中的一种,是一种应用非常广泛的开关电源。 2、基本反激变换器工作原理 基本反激变换器如图1所示。假设变压器和其他元件均为理想元器件,稳态工作下。

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

5V,2A 反激式电源变压器设计(EFD20)过程整理_20110310

5V,2A 反激式電源變壓器設計過程整理 已知: VinAC = 85V ~ 265V 50/60Hz Vout = 5V + 5% Iout = 2A Vbias = 22V, 0.1A (偏置線圈電壓取 22V, 100mV) η = 0.8 fs = 132KHz 計算過程: 1.設工作模式為 DCM 臨界狀態. Pout = 5*2 = 10W Pin = Pout/η= 10/0.8 = 12.5W V inDCmin = 85* 2-30(直流紋波電壓)= 90V V inDCmax = 265* 2=375V 2.匝數比計算 , 設最大占空比Dmax = 0.45 : 13918.12) 45.01(*)2.05.05(45.0*90)1(*)d out (*n max max min in ≈=-++=-++=D V V V D V L DC 式中: Vd 為輸出整流二極管導通壓降,取0.5V; VL 為輸出濾波電感壓降, 取0.2V. 3.初級峰值電流計算: A D V P I DC 494.045 .0*9010*2*out 2p max min in === 4.初級電感量計算: H H I V D L DC u 62110*621494 .0*10*13290*45.0p *fs *p 63min in max ==== 5.變壓器磁芯選擇EFD20, 參數如下: Ae = 28.5mm 2 AL = 1200+30%-20%nH/N 2 Le = 45.49mm Cl = 1.59mm -1 Aw = 50.05mm 2 Ap = 1426.425mm 4

反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法 1引言 在开关电源各类拓扑结构中,反激式开关电源以其小体积、低成本的优势,广泛应用在高电压、小功率的场合。反激式开关电源设计的关键在于其变压器的设计。由于反激变压器可以工作在断续电流(DCM )和连续电流(CCM )两种模式,因此增加了设计的复杂性。本文考虑到了两种工作模式下的差异,详细介绍了反激变压器的设计方法和步骤。 2基本原理 R 1 V o 图1 反激变换器原理图 反激变压器实际上是一个耦合电感,首先要存储能量,然后再将磁能转化为电能传输出去[1]。如图1所示,当开关管r T 导通时,输入电压i V 加在变压器初级线圈上。由于初级与次级同名端相反,次级二极管1D 截止,能量储存在初级线圈中,初级电流线性上升,变压器作为电感运行。当r T 关断时,励磁电感的电流使初级和次级绕组电压反向,1D 导通,储存在线圈中的能量传递给负载。按照电感线圈中电流的特点,可分为断续电流模式(DCM )和连续电流模式(CCM )。电流波形如图2所示。

初级 次级 初级 次级 I p2I p1I s2 I s1 I p2 I p1 I s2 I s1 DCM CCM 图2 DCM 和CCM 电流波形 DCM 为完全能量转换,在开关管开通时,初级电流从零开始逐渐增加,开关管关断期间,次级电流逐渐下降到零。 CCM 为不完全能量转换,开关管开通时,初级电流有前沿阶梯,开关管关断期间,次级电流为阶梯上叠加的衰减三角波。 3设计步骤 (1)各项参数的确定 反激式开关电源变压器的设计中涉及到很多参数,因此在计算之前必须要明确已知量和未知量。 已知参数一般由电源的设计要求和特点来确定,包括:直流输入电压i V (i min i i max V V V ≤≤),输出电压o V ,输出功率o P ,效率o i P = P η,工作频率1 f=T 。 未知量即所要求的参数包括:磁芯型号,初级线圈匝数p N ,次级线圈匝数s N ,初级导线直径p d ,次级导线直径s d ,气隙长度g l 。 另外,为了能够对未知参数进行求解,我们还必须要指定开关管的耐压值或开关的最大占空比。本文中,以规定满载和最小输入电压条件下最大占空比为 max D 来进行后续的计算。 为简化计算公式,本文中忽略开关管及二极管导通压降。

(完整版)50W反激变换器的设计

50W反激变换器的设计(CCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.45 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则主功率管开通时间为: Ton=T*D=10uS*0.45=4.5uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Toff ( 设定整流管压降为1V ) 变压器的匝比n: n = 13.67 设定电源工作在连续模式Ip2 = 0.4 * Ip1 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η ( 设定电源的效率η为0.8 ) Ip1 = 1.98 A Ip2 = 0.79 A 变压器的感量 L = ( Vin * Ton ) / ( Ip1 – Ip2 ) = 379 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 27 T 变压器的次级匝数Ns = Np / n = 2 T 变压器的实际初次级匝数可以取 Np = 27 T Ns = 2 T 重新核算变压器的设计 最大占空比:Vin * D = n * ( V o + Vf ) * ( 1 – D ) D = 0.447 最大磁通密度:Bmax = ( Vin * Ton ) / ( Np * Ae ) Bmax = 0.195 T 初级电流Ip1 和Ip2: 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η Ip2 + ( Vin * Ton ) / L = Ip1 Ip1 = 1.99 A Ip2 = 0.8 A Ip_rms = 0.93A 次级电流Is1和Is2 Is1 =Ip1*n=26.87A Is2=Ip2*n =10.8A Is_rms = 12.56A 次级电压折射到初级的电压 V or = n * ( V o + Vf ) = 81V 初级功率管Mosfet 的选择 Vmin = (√2 * 264 + V or +50 ) / 0.8 = 630 V Ip_rms = Ip_rms / 0.8 = 1.16 A ( 设定应力降额系数为0.8 ) 可以选择Infineon 的IPP60R450E6 次级整流管Diode 的选择 Vmin = (√2 * 264 / n + 5 +15 ) / 0.8 = 60 V Is_rms = Is_rms / 0.8 = 15.7 A ( 设定应力降额系数为0.8,噪音为15V ) 可以选择IR 的30CTQ060PBF 输出电容的选择 设定输出电压的纹波为50mv 输出电流的交流电流: Isac_rms = 0.5 * ( Is1 + Is2 ) * √D * ( 1- D ) Isac_rms = 9.36A Resr = Vripple / Isac_rms = 5.34 mohm 选择Nichicon 电容HD 系列6.3V/3900uF 四个并联使用50W反激变换器的设计(DCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.3 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则功率管开通时间:Ton=T*D=10uS*0.3=3uS 假设关断时间:Toff=7uS,Tr=4uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Tr ( 设定整流管压降为1V ) 变压器的匝比n: n = 12.53 设定电源工3作在续模式Io = Tr/T * Ip2 Ip2=Io*T/Tr=25A Ip1 = Ip2/n=1.99 A 变压器的感量 L = ( Vin * Ton ) / Ip1 = 151 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 18 T 变压器的次级匝数 Ns = Np / n = 1.4 T=2T 变压器的实际初次级匝数可以取 Ns = 2 T Np=Ns * n=25.1T=26T 开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=V o*Io=1 2.0V*2A=24W。 2.设定变压器的转换效率约为80%,则输出功率为24W的 电源其输入功率:Pin=Pout/效率=W W 30 % 80 24 =. 3.因输入最小交流电压为90V AC,则其直流输出电压为:Vin=90*1.2=108Vdc 故负载直流电流为:I= Vin Pin =A Vac W 28 .0 108 30 = 4.设计允许的直流纹波电压V ?/V o=20%,并且电容要维持电压的时间为1/4周期t(即半周期的工频率交流电压在约 是4ms,T= f 1 = 60 1 =0.0167S=16.7 ms)则: C=uF V t I 9. 51 6. 21 10 * 4 * 28 .0 *3 = = ? - 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

反激变换器拓扑的电路设计

反激变换器拓扑的电路设计 1.介绍反激变换器拓扑在5W到150W的小功率场合中得到广泛的应用。这个拓扑的重要优点是在变换器的输出端不需要滤波电感,从而节约了成本,减小了体积。在以往一些中文参考资料的叙述中,由于同时涉及电路和磁路的设计,容易造成设计过程中的混乱,反激变换器电路本身的一些特性却没有得到应有的体现。在文中,介绍了反激变换器的基本工作原理,对不连续模式反激变换器的设计过程,各参数之间的决定关系作了简练而准确的描述。由于电路设计和磁路设计分别介绍,对读者掌握反激变换器的设计有很好的帮助。 2.不连续模式反激变换器的基本原理反激变换器在开关管导通期间,变压器储能,负载电流由输出滤波电容提供。在开关管关断期间,储存在变压器中的能量转换到负载,提供负载电流,同时给输出滤波电容充电,并补偿开关管导通期间损失的能量。 图1a是反激变换器的基本拓扑。图中有两个输出电路,一个主输出和一个从输出。负反馈闭合环路采样主输出电压V om。V om的采样值与参考值比较,输出的误差信号放大信号控制Q1的导通时间脉冲,使得V om的采样值在电网和负载变化时等于参考电压,从而稳定输出电压。从输出跟随主输出得到相应的调节。 电路的工作过程如下:当Q1导通,所有线圈的同名端(带)相对于非同名端(不带)是负极性。输出整流二极管D1和D2反向偏置,输出负载电流由输出滤波电容C1和C2提供。 在Q1导通期间,Np上施加了一个固定的电压(Vdc-1)(这里假设开关管的导通压降是1V),并且流过以斜率dI/dt=(Vdc-1)Lp线性上升的电流,这里Lp是原边的磁化电感。在导通时间的最后,原边电流上升到Ip=(Vdc-1)Ton/Lp。这个电流代表电感上储存的能量为 (1) 这里E单位焦耳,Lp单位亨,Ip单位安培 当Q1关断,磁性电感上的电流强制使所有线圈上的极性反向。假设这时没有从次级绕组,

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

反激式电源设计及应用

反激式电源设计及应用 变压器有两种绕法:顺序绕法和夹层绕法.这两种绕法对EMI和漏感有不同的影响. 顺序绕法一般漏感为电感量的5%左右,但由于初,次级只有一个接触面,耦合电容较小,所以EMI 比较好. 夹层绕法一般漏感为电感量的1-3%左右,但由于初,次级只有两个接触面,耦合电容较大,所以EMI 比较难过.一般30-40W以下,功率不大,漏感能量还可以接受,所以用顺序绕法比较多,40W以上,漏感的能量较大,一般只能用夹层绕法. 变压器的漏感主要与哪些因素有关 绕组顺序:夹层绕法一般是先初级,后次级的1/2-1/3. 变压器形状:长宽比越大的变压器漏感越小. 先初級1/2-次級-初級1/2,大家叫這為三明治繞法 夹层?好象是先原边的二分之一,再逼边,再原边的二分之一吧! (1)变压器由于绕制造成的耦合电容偏差对变压器有那些指标有影响? (2)如你所说,顺序绕法露感较大,耦合电容较小,EMI较好,怎样从理论上解释耦合电容小EMI小这一问题?当然我想你这是从变压器本身来说的,从整个电源来说,漏感较大的话,整个产品的EMI 是不好的.所以我到认为,漏感的因素比耦合电容更能引起EMI难过,我这样说有道理吗? (3)在提到屏蔽层时,我有点不明白屏蔽绕组在变压器中是怎样设计的? 耦合电容是最大的共模干扰传导途径.
漏感产生的干扰频率比较低,也容易处理 这个电容到底起到什么作用?
通常的隔离变换器中,在原边和副边需接一个或两个耐高压隔离电容,通常也很小,这个电容到底是起到什么作用呢?事实也是,如果这个电容取得不当,会影响到输出噪声指标?不知cmg老哥对这个电容怎么看?还有就是这个电容连接到原副边,是接两个地呢,还是接输入地端和输出正端...? 并不是说不能用三名治饶,功率稍微大一点也只能用这个方法.否则漏感太大.
只是干扰大小的问题,当然在小功率的时候有更多的考虑,比如取消共摸电感,来降低成本. 我发现个有趣的问题,以前我也一直是认为更小的耦合电容对EMI有更多的好处.但我在最近的实验中发现当我把漏感控制在0.5%-0.8%时,整机电源的效率显著上升,再测传导和辐射发现原本辐射超过标准2个DB变成留有6.4DB余量. (说明:电源输出电压19V,功率75w.采用四段式绕法) 漏感小后,MOS关断时D-S端的震荡波形的幅度会减小,而这是最重要的干扰源,小了干扰能量会降低. 在反激式开关电源中,变压器相当于电感的作用.在开关管导通时,变压器储能,开关管关断时,变压器向次级释放能量.那么功率由开关管导通电流确定还是电感量确定? 在反激开关电源变压器设计时,如何计算变压器的气隙? 能否详细介绍开关电源的斜率补偿的作用,原理? 功率既不是由电感量确定,也不是由开关管确定,是由你的需要确定. 一般程序是这样,由功率和经验效率确定变压器的型号,也可以由“AP”等书上介绍的方法确定变

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

反激设计最牛笔记

【最牛笔记】大牛开关电源设计全过程笔记! 反激变换器设计笔记 1、概述 开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。 基本的反激变换器原理图如图1 所示,在需要对输入输出进行电气隔离的低功率(1W~60W)开关电源应用场合,反激变换器(Flyback Converter)是最常用的一种拓扑结构(Topology)。简单、可靠、低成本、易于实现是反激变换器突出的优点。 2、设计步骤

接下来,参考图2 所示的设计步骤,一步一步设计反激变换器 1.Step1:初始化系统参数 ------输入电压范围:Vinmin_AC 及Vinmax_AC ------电网频率:fline(国内为50Hz) ------输出功率:(等于各路输出功率之和) ------初步估计变换器效率:η(低压输出时,η取0.7~0.75,高压输出时,η取0.8~0.85)根据预估效率,估算输入功率: 对多路输出,定义KL(n)为第n 路输出功率与输出总功率的比值:

单路输出时,KL(n)=1. 2. Step2:确定输入电容Cbulk Cbulk 的取值与输入功率有关,通常,对于宽输入电压(85~265VAC),取2~3μF/W;对窄范围输入电压(176~265VAC),取1μF/W 即可,电容充电占空比Dch 一般取0.2 即可。

一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC: 3. Step3:确定最大占空比Dmax 反激变换器有两种运行模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。两种模式各有优缺点,相对而言,DCM 模式具有更好的开关特性,次级整流二极管零电流关断,因此不存在CCM 模式的二极管反向恢复的问题。此外,同功率等级下,由于DCM模式的变压器比CCM 模式存储的能量少,故DCM 模式的变压器尺寸更小。但是,相比较CCM 模式而言,DCM 模式使得初级电流的RMS 增大,这将会增大MOS 管的导通损耗,同时会增加次级输出电容的电流应力。因此,CCM 模式常被推荐使用在低压大电流输出的场合,DCM 模式常被推荐使用在高压小电流输出的场合。

FAN6754A在PWM反激式开关电源的应用设计

FAN6754A在PWM反激式开关电源的应用设计 本文介绍了新款峰值电流型PWM控制芯片FAN6754A的工作特性和原理,分析了反激式开关电源的设计原理以及工作过程。针对次级电路结构,设计了一种新型反激式开关稳压电源。着重介绍了反激式开关电源的变压器设计过程,包括电感值的计算、磁芯的选择、绕组匝数的确定以及气隙等。利用三端稳压器TL431配合FAN6754A实现了对电源电压的控制和稳压输出,采用光耦器件实现了输入/输出的隔离和反馈。并在电源电路中加入了热敏电阻以及过压、过流保护等保护措施。实验测试结果表明:所设计的电源效率接近89%、稳压性能优良、纹波小、电压调整率、负载调整率高等优点。 不论在成本还是在技术方面,反激式拓扑都已被证明是一种有效的解决方案,在笔记本电脑的AC-DC适配器和充电器中用PWM功率转换来实现。这里本文设计了一种采用FAN6754A控制芯片应用于65W/19V笔记本电源适配器的新型反激式开关电源。 1 FAN6754A概述 FAN6754A是飞兆半导体(Fairchild)公司一款高度集成的用于通用开关电源和包括电源适配器在内的反激式绿色PWM控制器,可满足目前严苛的国际节能规范要求,FAN6754A 可提供高启动电压,将轻负载下的能效?提高25%.内置8ms软启动电路可大大减少MOSFET 启动时的电流尖峰和输出电压过冲现象。FAN6754A能降低EMI多达5-10dB的抖频功能,此外,FAN6754A加入了数项设计功能,能够降低总体功耗,例如专有绿色模式功能,提供关断时间调制以连续减低轻负载条件下的开关频率。 FAN6754A内置了多种稳健、精确的保护功能,以保护电源避免故障,完全无需增添外部组件或电路,如过低电压保护、欠压锁定(UVLO)、过压保护(OVP)、过载保护(OLP)和过温保护(OTP)、过流保护(OCP) 和过流限制(OCL)。VDD过压保护(OVP)功能可防止反馈环路开环等异常状况造成的损害。当VDD因异常状况超过24V时,PWM输出将会关断。欠压锁定(UVLO)电路有两个阈值,即导通和关断阈值,分别内固定为17V和10V.这里的UVLO 具有两段式的关断阈值,控制器的保护动作时,VDD电压下降到UVLO的关断阈值10V之下,PWM输出将被停止。但VDD此时不会马上重新上升,会继续下降到完全关断电压点6.5V之后,VDD才会重新上升到启动电压点,PWM控制器便会重新输出脉冲,这种机制使电源在输出短路或开环等异常情况下,平均输入功率可以被大大降低,不会发生电源过热的现象。不同于以往的PWM控制器,FAN6754A的HV4引脚还能执行AC欠压保护功能。采用一个快速二极管和启动电阻来对AC线电压进行采样(每180μS一次采样,脉宽20μS),每一个采样周期峰值都被更新并存储在寄存器中,这个峰值可用于欠压和电流级限制调节。当HV引脚上的电压低于欠压电压时,PWM 输出关断。此外,HV 引脚能够进行限流值调整,缩小整个AC 电压范围上的过流保护容限。 2 反激式开关电源的设计 电源主电路采用单端反激式拓扑结构,开机后,220V市电经过EMI滤波器、整流桥BD和滤波电容后,转化为约310V的直流电;220V市电的通过启动电阻R7触发芯片内部的恒流源对VDD电容充电,当VDD达到导通门槛电压后,FAN6754A输出脉冲,电源开始工作,此后芯片由辅助绕组供电,电压维持在17V左右。主开关管开通后,次级Q3 处于断态,原边N1绕组的电流线性增长,电感储能增加;开关管关断后,N1绕组的电流被切断,变压器中的磁场能量通过副边绕组和Q3向输出端释放。FAN6754A 8脚产生的PWM脉冲

反激电源设计分析和经验总结

由反激电源引起的一点儿分析 开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正激。半桥、桥式电路都属于正激电路。 正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。 反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI 公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。 反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。 变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。 关于反激电源的占空比,原则上反激电源的最大占空比应该小于0.5,否则环路不容易补偿,有可能不稳定,但有一些例外,如美国PI公司推出的TOP系列芯片是可以工作在占空比大于0.5的条件下。 占空比由变压器原副边匝数比确定,本人对做反激的看法是,先确定反射电压(输出电压通过变压器耦合反映到原边的电压值),在一定电压范围内反射电压提高则工作占空比增大,开关管损耗降低。反射电压降低则工作占空比减小,开关管损耗增大。当然这也是有前提条件,当占空比增大,则意味着输出二极管导通时间缩短,为保持输出稳定,更多的时候将由输出电容放电电流来保证,输出电容将承受更大的高频纹波电流冲刷,而使其发热加剧,这在许多条件下是不允许的。 占空比增大,改变变压器匝数比,会使变压器漏感加大,使其整体性能变,当漏感能量大到一定程度,可充分抵消掉开关管大占空带来的低损耗,时就没有再增大占空比的意义了,

反激式开关电源原理与工程设计

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

反激电源变压器设计解析

反激电源变压器设计解析 3,反激电源变压器参数设计 从今天开始,我们一起来讨论一下反激电源变压器的设计。其实,反激电源的变压器设计方法有很多种。条条大路通罗马,我们究竟要选择哪条路呢?我的想法是,选择自己熟悉的路,选择自己能理解的设计方法。有的设计方法号称是最简单的,有的设计方法号称是最明了的。但我认为,适合你自己的才是最好的。更何况,有些设计方法,直接给个公式出来,没有头没有尾的,莫名其妙,就算按照那种方法计算出来你要的变压器,但你理解了吗?你从中学习到了什么?我想,授人以鱼,不如授人以渔,希望我们能够通过讨论反激变压器的设计过程,让大家不仅学会怎么计算反激变压器,更要能通过设计,配合上面的电路原理,把反激的原理搞透。岳飞不就曾说过:“阵而后战,兵法之常,运用之妙,存乎一心。” 一旦把原理搞清楚了,那么就不存在什么具体算法了。将来的运用之妙,就存乎一心了。可以根据具体的参数细化优化! 其实,要设计一个变压器,就是求一个多元方程组的解。只不过呢,由于未知数的数量比方程数量多,那么只好人为的指定某些参数的数值。对于一个反激电源而言,需要有输入指标,输出指标。这些参数,有的是客户的要求,也是我们需要达到的设计目标,还有些参数是我们人为选择的。一般来说,我们需要这些参数: 输入交流电压范围、输出电压、输出电流、效率、开关频率等参数。 对于反激电源来说,其工作模式有很多种,什么DCM,CCM,CRM,BCM,QR等。这里要作一个说明:CRM和BCM是一种模式,就是磁芯中的能量刚好完全释放,次级整流二极管电流刚好过零的时候,初级侧MOS管开通,开始进行下一个周期。 QR模式,则是磁芯能量释放完毕后,变压器初级电感和MOS结电容进行谐振,MOS结电容放电到最低值时,MOS开通,这样可以实现较低的开通损耗。也就是说,QR模式是的mos开通时间比CRM模式还要晚一点。 CRM/BCM、QR模式都是变频控制,同时,他们都是属于DCM模式范畴内的。 而CCM模式呢,CCM模式的电源其实也包含着DCM模式,当按照CCM模式设计的反激电源工作在轻载或者高输入电压的时候,就会进入DCM模式。 那么就是说,CRM/BCM,QR模式的反激变压器的设计,可以按照某个特定工作点的时候的DCM 模式来计算。那么我们下面的计算就只要考虑DCM与CCM两种情况了。 那么我们究竟是选择DCM还是CCM模式呢?这个其实没有定论,DCM的优点是,反馈容易调,次级整流二极管没有反向恢复问题。缺点是,电流峰值大,RMS值高,线路的铜损和MOS的导通损耗比较大。而CCM的优缺点和DCM刚好反过来。特别是CCM的反馈,因为存在从DCM 进入CCM过程,传递函数会发生突变,容易振荡。另外,CCM模式,如果电感电流斜率不够大,或者占空比太大,容易产生次谐波振荡,这时候需要加斜坡补偿。所以呢,究竟什么时候选择用什么模式,是没有结论的。只能是“运用之妙,存乎一心”了。随着项目经验的增加,对电路理解的深入,慢慢的,你就能有所认识。

反激电源变压器的参数设计

开关电源学习 漏感:变压器初次级耦合过程中漏掉的那一部分磁通! 变压器的漏感应该是线圈所产生的磁力线不能都通过次级线圈,因此产生漏磁的电感称为漏感。 RCD钳位电路的作用:反激式开关电源在开关管断开的瞬间由于漏感不能通过变压器耦合到次级绕组,导致漏感的反激电动势很大,高压很容易导致开关管的损坏,所以用RCD钳位电压到安全的范围,将漏感的能量存储在电容C中,再由电阻R消耗掉。 反激式开关电源:反激电路是由buck-boost拓扑电路演变过来的。 演变的过程 把MOS和二极管D1放到下面,与上图等效。 在A B之间增加一个变压器,由于初级和次级的电感上承受的伏秒积是相等的,所以用这个变压器来等效。

由于电感和变压器的初级电感并联,为了直观把电感合二为一,并且调整变压器的同名端得到下图; 上面的电路图便是最基本的反激式开关电路图了,由于变压器在开关管导通时储存能量,断开时通过次级绕组释放能量,变压器的实质是耦合电感,耦合电感不仅承担输入与输出的电气隔离,而且实现了电压的变换,而不仅仅是通过改变占空比来实现。由于此耦合电感并非理想器件,所以存在漏感,而实际线路中也会存在杂散电感。当MOS关断时,漏感和杂散电感中的能量会在MOS的漏极产生很高的电压尖峰,从而会导致器件的损坏。故而,我们必须对漏感能量进行处理,最常见的就是增加一个RCD吸收电路。用C来暂存漏感能量,用R来耗散之。

二极管的反向恢复电流理想的二极管在承受反向电压时截止,不会有反向电流通过。而实际二极管正向导通时,PN结内的电荷被积累,当二极管承受反向电压时,PN结内积累的电荷将释放并形成一个反向恢复电流,它恢复到零点的时间与结电容等因素有关。反向恢复电流在变压器漏感和其他分布参数的影响下将产生较强烈的高频衰减振荡。因此,输出整流二极管的反向恢复噪声也成为开关电源中一个主要的干扰源。可以通过在二极管两端并联RC缓冲器,以抑制其反向恢复噪声.。碳化硅材料的肖特基二极管,恢复电流极小。 形成原因 二极管在接反向电压的时候,在两边的空穴和电子是不接触的,没有电流流过,但是同时形成了一个等效电容(因为两边带电么,而且这个值又不为零),如果这个时候改变两边的电压方向,自然有一个充电的过程,这个时间就是了。 由输出整流二极管产生的干扰在输出整流二极管截止时,有一个反向电流,它恢复到零点的时间与结电容等因素有关。其中能将反向电流迅速恢复到零点的二级管称为硬恢复特性二极管,这种二极管在变压器漏感和其它分布参数的影响下,将产生较强的高频干扰,其频率可达几十MHz。 反向恢复过程短的二极管称为快恢复二极管(Fast Recovery Diode)。高频化的电力电子电路要求快恢复二极管的反向恢复时间短,反向恢复电荷少,并具有软恢复特性。 所有的PN结二极管,在传导正向电流时,都将以少子的形式储存电荷。少子注入是电导调制的机理,它导致正向压降(VF)的降低,从这个意义上讲,它是有利的。但是当在导通的二极管上加反向电压后,由于导通时在基区存贮有大量少数载流子,故到截止时要把这些少数载流子完全抽出或是中和掉是需要一定时间的,即反向阻断能力的恢复需要 经过一段时间,这个过程就是反向恢复过程,发生这一过程所用的时间定义为反向恢复时间trr 反激电源变压器的参数设计 对于反激电源而言,需要输入指标,输出指标,有些是客户直接给的,有的则要我们认为的选择。参数主要包括:输入交流电压范围,输出电压,输出电流,效率,开关频率等;

相关文档
相关文档 最新文档