文档库 最新最全的文档下载
当前位置:文档库 › 氨基酸增强型发酵饮料的研制

氨基酸增强型发酵饮料的研制

氨基酸增强型发酵饮料的研制
氨基酸增强型发酵饮料的研制

氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 1味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 2淀粉生产的流程 原料→清理→浸泡→粗碎→胚的分离→磨碎→分离纤维→分离蛋白质→清洗→离心分离→干燥→淀粉3淀粉的液化及糖化定义。 在工业生产上,将淀粉水解为葡萄糖的过程称为淀粉的“糖化”所制的的糖液称为淀粉水解糖 液化是利用液化酶使淀粉糊化,黏度降低,并水解到糊精和低聚糖的程度 4淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 5液化结束后,为何要进行灭酶处理,如何操作? 液化结束后反应快速升温灭酶,高温处理时,通过喷射器快速升温至120~145°,快速升温比逐步升温产生的“不溶性淀粉颗粒”少,所得的液化液既透明又易过滤。淀粉出糖率高,同时由于采取快速升温法,缩短了生产周期 6葡萄糖的复合反应。 7淀粉的糊化、老化定义及影响老化的因素。 (1)糊化 若将淀粉乳加热到一定温度,淀粉颗粒开始膨胀,偏光十字消失。温度继续上升,淀粉颗粒继续膨胀,可达原体积几倍到几十倍。由于颗粒的膨胀,晶体结构消失,体积膨胀大,互相接触,变成糊状液体,虽然停止搅拌淀粉也不会再沉淀,这种现象称为糊化。 (2)老化 分子间氢键已断裂的糊化淀粉又重新排列成为新氢键的过程。 (3)影响老化的因素①淀粉的成分(直链易老化,支链淀粉难老化)②液化程度③酸碱度④温度⑤淀粉糊浓度 8 DE值与DX值的概念. DE值表示淀粉水解程度或糖化程度。也称葡萄糖值 DE=还原糖浓度/(干物质浓度*糖液相对密度)*100% DX值指糖液中葡萄糖含量占干物质的百分率。 DX=葡萄糖浓度/(干物质浓度*糖液相对密度)*100% 9淀粉水解糖的质量要求有哪些? 1糖液透光率>90%(420nm)。2不含糊精、蛋白质(起泡物质)。3转化率>90%。DE值(Dextrose equivalent,葡萄糖当量值)4还原糖浓度:18%左右。5糖液不能变质。6pH4.6-4.8 10 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 酸水解法是利用无机酸为催化剂,在高温高压下,将淀粉转化为葡萄糖的方法。该法具有工艺简单,水解时间短,生产效率高,设备周转快的优点。该水解法要求耐腐蚀,耐高温,耐压的设备。 酸酶法是先将淀粉用酸水解成糊精或低聚糖,然后再用糖化酶将其水解为葡糖糖的工艺。采用酸酶法水解淀粉制糖,酸用量少,产品颜色浅,糖液质量高 酶水解法主要是将淀粉乳先用α-淀粉酶液化,过滤除去杂质后,然后用酸水解成葡萄糖的工艺。该工艺适用于大米或粗淀粉原料 11 固定化酶的定义及制备方法有哪几种? 固定化酶(immobilized enzyme):由于水溶性酶的缺点,所以将它与固相载体相连,由固相状态催化反应,称酶的固定化. ①吸附法②偶联法③交联法④包埋法 12生物素对谷氨酸生物合成途径影响。 1.生物素对糖代谢的速率的影响(主要影响糖降解速率)

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法——从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 (2)连续等电工艺——将谷氨酸发酵液适当浓缩后控制40℃左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40℃进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3)发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20~3.25,然后进入常温的等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整pH值至4.5~7,蒸发、浓缩、再在第三调酸罐中调pH值至3.20~3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。(4)水解等电点法 发酵液-----浓缩(78.9kPa,0.15MPa蒸汽)----盐酸水解(130 ℃,4h )----过滤-----滤液脱色-----浓缩-----中和,调pH至3.0-3.2(NaOH或发酵液) -----低温放置,析晶-------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (5)低温等电点法 发酵液-----边冷却边加硫酸调节pH4.0-4.5-----加晶种,育晶2h-----边冷却边加硫酸调至pH3.0-3.2------冷却降温------搅拌16h------4 ℃静置4h------离心分离 --------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (6)直接常温等电点法 发酵液-----加硫酸调节pH4.0-4.5-----育晶2-4h-----加硫酸调至pH3.5-3.8------育晶2h------加硫酸调至pH3.0-3.2------育晶2h------冷却降温------搅拌16-20h------沉淀2-4h-------谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1)浓缩段 原料:蒸汽 将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa,浓缩时间6h,结晶。终点产物:结晶液(去一次中和段) (2)一次中和段 辅料:硫酸,纯水 结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤 终点产物:1,滤液(回收利用)2,滤渣(去氨解段)

氨基酸发酵

第一部分基础练习 一、名词解释 1.末端产物阻遏:是指由某代谢途径末端产物的过量累积时而引起的反馈阻遏,是一种较为重要的反馈阻遏。 2.分解代谢物阻遏:是指细胞内同时存在两种碳源(或两种氮源)时,利用快的那种碳源(或氮源)会阻遏利用慢的那种碳源(或氮源)的有关酶合成的现象。 3.代谢调控:在发酵工业中,为了大量积累人们所需要的某一代谢产物,常人为地打破微生物细胞内的自动代谢调节机制,使代谢朝人们所希望的方向进行,这就是所谓的代谢调控。 4.营养缺陷型菌株因基因突变致使某一合成途径中断,丧失合成其生长中必需的某种物质的能力,使末端产物减少,解除了末端产物参与的反馈抑制或调节,可使代谢途径中的某一中间产物过量积累,也可使分子代谢的中间产物和另一分支途径中的末端产物积累。 5.外源诱导物:抗生素生物合成过程中,参与次级代谢的酶,有些是诱导酶,诱导物有的是外界加入的,称外源诱导物。 二、问答题 1.答:氨基酸生产方法主要有合成法与发酵法两种。 2.答:野生型菌株,营养缺陷型突变株,或是氨基酸结构类似物抗性突变株. 3.答:氨基酸生物合成的基本调节机制有反馈控制和在合成途径分枝点处的优先合成,除此之外,还有一些特殊的调节机制,如协同反馈抑制、合作(或增效)反馈抑制、同功酶控制、顺序控制、平衡合成、代谢互锁等。 4.答:在乳糖发酵短杆菌中,赖氨酸合成分支上的第一个酶——二氢吡啶合成酶(DDP合成酶)受到与本途径无关的另一种氨基酸——亮氨酸的阻遏(即代谢互锁)。 5.答:具有分子代谢途径的分支点。即在分支合成途径中,分支点后的两种酶竞争同一种底物,由于两种酶对底物的Km值(即对底物的亲和力)不同,故 两条支路的一条优先合成。 第二部分技能训练 一、选择题 1.D 2.C 3.D 4.B 5.B 6.A 7.C 二、问答题

生物制药工艺学 氨基酸类药物-氨基酸的生产方法 讲义

第二章氨基酸类药物 第二节氨基酸的生产方法 掌握直接发酵生产氨基酸的操作要点;通过赖氨酸发酵生产的工艺过程,熟悉赖氨酸的发酵生产和产品的分离纯化工艺过程 教学基本内容: 2.2 直接发酵法 2.2.1 直接发酵法的原理 工业上,发酵实质上是利用微生物细胞中酶的作用,将培养基中有机物转化为细胞或其它有机物的过程。 初生氨基酸:微生物通过固氮作用、硝酸还原及自外界吸收氨使酮酸氨基化成相应的氨基酸,或微生物通过转氨酶作用,将一种氨基酸的氨基转移到另一种酮酸上,生成的新氨基酸也称为初生氨基酸。 次生氨基酸:在微生物作用下,以初生氨基酸为前体转化成的其它氨基酸。 大多数氨基酸均可通过以初生氨基酸为原料的微生物转化作用而产生。 有些氨基酸可以以有机化合物和氨盐为前体,在相应酶作用下而产生。 发酵法中氨基酸的碳链主要来自糖代谢中间产物,如草酰乙酸、α-酮戊二酸、赤藓糖-4-磷酸、磷酸烯醇丙酮酸、丙酮酸、3-磷酸甘油酸及分枝酸等。 2.2.2 直接发酵法分类 按照生产菌株的特性,直接发酵法可分为5类: 1. 使用野生型菌株直接由糖和铵盐发酵生产氨基酸,如谷氨酸、丙氨酸和缬氨酸的发酵生产; 2. 使用营养缺陷型突变株直接由糖和铵盐发酵生产氨基酸,如赖氨酸(高

丝氨酸缺陷)、亮氨酸(苯丙氨酸缺陷)等; 3. 由氨基酸结构类似物抗性突变株生产氨基酸,如赖氨酸(S-(2-氨基乙酸)-L-半胱氨酸(AEC)等; 4. 使用营养缺陷型兼抗性突变株生产氨基酸,如高丝氨酸(蛋氨酸、赖氨酸缺陷,α-氨基-β-羟基戊酸AHV抗性)等; 5. 以氨基酸的中间产物为原料,用微生物将其转化为相应的氨基酸,这一方法主要用于很难避开其反馈调节机制,而难以用直接发酵法生产的氨基酸。如现已成功地用邻氨基苯甲酸作为前体物生产L-色氨酸,用甘氨酸作为前体工业化生产L-丝氨酸。 发酵法生产氨基酸的基本过程包括培养基配制与灭菌处理,菌种诱变与选育,菌种培养、灭菌及接种发酵,产品提取及分离纯化等步骤。 (二)发酵法生产的氨基酸品种及工艺 构成动物、植物及微生物体所有蛋白质的氨基酸种类与构型均无任何差异,但植物体内所有氨基酸皆由CO2、氨和水合成,动物体除8种必需氨基酸需从外界摄取外,其余非必需氨基酸均可通过体内氨基酸之间的转化或碳水化合物中间代谢物而合成,而微生物利用碳源、氮源及盐类几乎可合成所有氨基酸。 目前绝大部分氨基酸皆可通过发酵法生产,其缺点是产物浓度低,设备投资大,工艺管理要求严格,生产周期长,成本高。本文仅以L-异亮氨酸及L-赖氨酸直接发酵法为例,说明发酵法的基本过程。 1、L-异亮氨酸(L-Isoleucine,L-Ile)的制备 (1)L-异亮氨酸的结构与性质:L-Ile存在子所有蛋白质中,为人体必需氨基酸之一,分子式为C6H13NO2,分子量为131.17,结构式为:

第三篇第五章芳香族氨基酸和其他氨基酸发酵机制

芳香族氨基酸和其他氨基酸发酵机制 一、芳香族氨基酸生物合成途径与发酵机制 芳香族氨基酸---------分子中都含有苯环 色氨酸Trp 苯丙氨酸Phe 酪氨酸Tyr 二、芳香族氨基酸的生物合成途径 合成途径特点: ?从4-磷酸赤藓糖与磷酸烯醇丙酮酸合成3-脱氧-D-阿拉伯糖型庚酮糖-7-磷酸(DAHP)到分支酸,是Phe、Tyr和Trp的共同途径; ?从分支酸到预苯酸(PPA),是Phe和Tyr的共同途径; ?在分枝酸处,倾向于优先合成氨茴酸;在预苯酸处,倾向于优先合成对羟苯丙酮酸。即优先合成顺序是:Trp- Tyr- Phe。 ?

三、芳香族氨基酸的代谢调控机制 ?大肠杆菌中有三种DAHP合成酶 ?谷氨酸棒杆菌中,在芳香族氨基酸生物合成途径中受调节控制的关 键酶:DAHP合成酶(DS)、分枝酸变位酶(CM)、预苯酸脱氢酶 (PD)、预苯酸脱水酶(PT)和氨茴酸合成酶(AS)?黄色短杆菌中有一种DAHP合成酶,代谢调节较易控制 1、大肠杆菌中芳香族氨基酸生物合成途径与代谢控制 ①DAHP合成酶 ②分支酸变位酶 ③PPA脱氢酶 ④PPA脱水酶

⑤氨茴酸合成酶 2、在黄色短杆菌中芳香族氨基酸生物合成的调节机制 DS-DAHP合成酶 CM-分支酸变位酶 PD-预苯酸脱氢酶 PT-预苯酸脱水酶 AS-氨茴酸合成酶 四、色氨酸发酵机制

色氨酸生产菌的遗传标记位置 色氨酸代谢调控机制(大量生成和积累色氨酸) 切断支路代谢,选育苯丙氨酸和酪氨酸双重缺陷型(phe-+tyr-)的突变株;然后遗传性的解除色氨酸自身的反馈抑制和阻遏及苯丙氨酸、酪氨酸和色氨酸对DAHP合成酶的反馈调节; 选育色氨酸多重结构类似物抗性突变株; 在发酵过程中限量添加苯丙氨酸和酪氨酸。 苯丙氨酸和酪氨酸发酵机制 苯丙氨酸代谢调控机制

发酵法生产透明质酸

发酵法生产透明质酸 透明质酸(Hyaluronic acid,HA)是一种大分子的粘多糖,是一种由-D-N -乙酰氨基葡萄糖和β-D-葡萄糖醛酸为结构单元,β-1,4-糖苷键连接成的一种链状高分子粘多糖。其分子量在几十万到几百万之间,又称糖醛酸,透明质酸具有特殊的保水作用,是目前发现的自然界中保湿性最好的物质,被称为理想的天然保湿因子,为目前所公认的最佳保湿成分,在化妆品工业、医学研究、临床治疗等领域有广泛的应用。 透明质酸的提炼的方法有三种:组织提取,微生物发酵和化学合成。组织提取法和化学合成法的成本高,产量低,受原料资源限制,不能满足市场需求。而微生物发酵法生产透明质酸具有不受原料资源限制、成本低、产量高、有较高的相对分子量、分离纯化工艺简便、易于大规模生产等特点成为透明质酸生产的发展方向,因此开发先进的微生物发酵法生产HA的技术十分必要。目前HA产业前景广阔,发酵法己成为HA生产的主流工艺,而发酵法生产HA的工艺仍需进一步完善。 微生物产HA的研究可以追溯到上个世纪30年代,1937年,Kendall发现链球菌可以产生HA,后来发现主要是一些A群和C群链球菌,它们具有合成与代谢以HA为主要成分的荚膜的能力。随后很多人进行了大量的研究。研究结果证明某些种属链球菌在一定的环境条件下,能同化吸收葡萄糖或其他碳源,以代谢物形式产生HA。随后经过不断地选育菌种和优化工艺,借助现代深层发酵技术与设备,HA的微生物发酵法被建立和应用起来。目前多选用链球菌、乳酸球菌类等(因此以下均以链球菌举例说明)。日本用发酵法生产了HA制剂.并对该产品做了大量的药效、毒理、药代动力学等非临床实验和临床实验。结果表明,发酵法生产的HA无局部及全身毒副作用、安全性高、疗效确切。 发酵法生产透明质酸主要包括两部分:发酵部分和下游提取工艺部分。发酵法生产HA的质量主要取决于菌种、培养基和分离提纯工艺的选择。 一.发酵部分: 经过阅读与分析文献,我个人将发酵部分划分为以下几个模块: 1.菌种的筛选 2.菌种的诱变 3.培养基配方的优化 4.菌株的最佳培养条件 首先以链球菌制备HA的过程为例简单介绍一下发酵法生产透明质酸的基本流程:链球菌复苏培养后,用诱变剂诱变,挑出不溶血、不含HA酶的高产率菌株。进行稳定传代后增菌培养,所得的菌种即可作为生产菌株。放入发酵培养液后,在通风搅拌的情况下发酵40小时,对粘稠的发酵醪进行提纯分离等处理后得到分子量高、粘度大的HA。

氨基酸发酵工艺学要点

氨基酸发酵工艺学要点 味精厂的主要生产车间:糖化车间、发酵车间、提取车间、精制车间 淀粉生产的流程。 淀粉的液化及糖化定义。 淀粉液化过程使用淀粉酶,水解位置1,4糖苷键,糖化过程使用糖化酶,水解位置1,4糖苷键和1,6糖苷键。 液化结束后,为何要进行灭酶处理,如何操作? 葡萄糖的复合反应。 淀粉的糊化、老化定义及影响老化的因素。 DE值与DX值的概念 淀粉水解糖的质量要求有哪些? 说说酸水解法、酸酶法和酶水解法三种不同水解工艺的优劣? 固定化酶的定义及制备方法有哪几种? 生物素对谷氨酸生物合成途径影响。 在谷氨酸发酵中如何控制细胞膜渗透性。 诱变育种概念。 谷氨酸生产菌的育种思路 现有谷氨酸生产菌主要有哪四个菌属。 谷氨酸发酵生产菌的主要生化特点。 日常菌种工作。 菌种扩大培养的概念和任务 谷氨酸发酵一级种子和二级种子的质量要求 影响种子质量的主要因素 氨基酸生产菌菌种的来源有哪些。 工业微生物菌种保藏技术是哪几种? 冷冻保藏的分类 菌种衰退和复壮的概念 代谢控制发酵的定义 谷氨酸发酵培养基包括哪些主要营养成分。 生长因子的概念 影响发酵产率的因素有哪些。 谷氨酸发酵过程调节pH值的方法 谷氨酸发酵不同阶段对PH的要求:前期pH7.3、中期pH7.2 、后期pH7.0 放罐pH6.8 谷氨酸发酵时,出现泡沫过多,一般是什么原因,该怎样处理? 谷氨酸发酵过程,菌体生长缓慢或不长的原因及解决方法? 谷氨酸发酵过程,耗糖快,pH偏低, 产酸低原因及解决方法 谷氨酸生产菌最适生长温度为?,发酵谷氨酸最适发酵温度?,最适合生长pH为?。 发酵过程中CO 2迅速下降,说明污染噬菌体, CO 2 连续上升,说明污染杂菌 消泡方法有哪几种?一次高糖发酵工艺 噬菌体侵染的异常现象染菌的分析

第三篇第四章天冬氨酸族氨基酸发酵机制

§第七章天冬氨酸族氨基酸发酵机制 第一节天冬氨酸族氨基酸生物合成途径 及代谢调节机制 一、天冬氨酸族氨基酸生物合成途径 Glucose EMP 丙酮酸 草酰乙酸 Asp 天冬氨酸激酶(AK) 天冬氨酰磷酸(asp-p) 天冬氨酸β-半醛 DDP合成酶(PS)高丝氨酸脱氢酶(HD) 二羟吡啶羧酸(DDP)高丝氨酸(Hos) 琥珀酰高丝氨酸合成酶高丝氨酸激酶 二氨基庚二酸(DAP) 琥珀酰高丝氨酸Thr Lys 苏氨基酸脱氨酶 Met Ile

二、天冬氨酸族氨基酸生物合成的代谢调节机制 1、大肠杆菌中天冬氨酸族氨基酸生物合成的调节机制 Glucose EMP 丙酮酸 草酰乙酸 Asp (天冬氨酸激酶AK,同功酶) 天冬氨酸磷酸(asp-p) 天冬氨酸β-半醛 (同功酶) 二羟吡啶羧酸 高丝氨酸(Hos) Lys 琥珀酰高丝氨酸 O-磷酸高丝氨酸 Met Thr

大肠杆菌天冬氨酸族氨基酸代谢特点:生物合成途径要比黄色短杆菌、谷氨酸棒杆菌、乳糖发酵短杆菌的代谢调控要复杂,其过程如下: 关键酶:天冬氨酸激酶是一个同功酶,分别受三个代谢产物的抑制,这三个终产物分别是:Lys、Met和Thr,只有当这三个代谢产物同时过量时,Asp激酶 的活性才能完全被抑制。 同功酶:几种在同一细胞中催化同一反应的酶,但其活性受不同代谢产物体调节。 2、谷氨酸棒杆菌,黄色短杆菌天冬氨酸族氨基酸生物合成的调控 Glucose EMP 丙酮酸 草酰乙酸 Asp (天冬氨酸激酶,AK) 天冬氨酸磷酸(asp-p) 天冬氨酸β-半醛 二羟吡啶羧酸高丝氨酸 Lys

O-琥珀酰高丝氨酸 O-磷酸高氨酸 Met Thr 黄色短杆菌与大肠杆菌(E.coli)的区别: (1)天冬氨酸激酶(AK),在黄色短杆菌中是一个变构酶,并有两个活性中心,分别受Lys、Thr的协同反馈抑制 (2)黄色短杆菌中,存在两个分支点的优先合成机制:P75 如图所示),即优先合成Hos,然后再优先合成Met,当Met过量时,阻遏:催化Hos 琥珀酰高丝氨酸所需要的酶的合成(即,琥珀酰高丝氨酸合成酶),使代谢流向合成Thr的方向进行,当Thr过量时,反馈抑制:Asp-β-半醛 Hos所需要的酶的的活性(即高丝氨酸脱氢酶),使代谢流向Lys的合成上。(Met>Thr>Lys)(3)代谢互锁:(metabolic interlock)P75 从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而且这种抑制(阻遏)作用是部分性的,不完全的。 在黄色短杆菌(乳糖发酵短杆菌)中,lys分支途径的初始酶二氢吡啶二羧酸合成酶(PS)受Leu的反馈阻遏。 (4)平衡合成:(balanced synthesis)

发酵法生产色氨酸

发酵法生产色氨酸的研究 刘辉 047111230 摘要:色氨酸是人和动物生命活动中8种必需氨基酸之一,对人和动物的生长发育、新陈代谢起着非常重要的作用。随着市场需求的不断增加,提高色氨酸生产能力成为全球热点。本文综述了色氨酸应用及生产技术包括发酵生产色氨酸的菌种选育、发酵培养基原料和发酵工艺等方面的研究进展。 关键词:发酵法色氨酸 1、发酵法生产色氨酸过程中的菌种选育 生产菌种选育是发酵工业中最为关键的工作,受到普遍的重视。过去发酵法生产色氨酸采用的是在培养基中添加吲哚或邻氨基苯甲酸的方法,此法因必须采用高价的吲哚或邻氨基苯甲酸做前体物质,使色氨酸的生产存在着成本高的缺点。而且由于这些前体物质对微生物的生长有毒害作用,故不能大量使用[1]。目前,利用糖质原料直接发酵生产色氨酸的国内外报道不多[2-3],主要是因为色氨酸在微生物体内代途径较长且存在着多种严格的调节机制,致-色氨酸的生产菌种产酸较低,达不到工业化生产的要求。色氨酸的生产菌种有谷氨酸棒杆菌(Corynebacterium glutanicum)、黄色短杆菌(Bre-vibacteriumflavum)、枯草芽孢杆菌(Bacillus sub-tilis)、大肠杆菌(Escherichia coli)、产朊假丝酵母(Candida utilis)等,其中绝大多数为细菌[1]。 2、发酵法生产色氨酸过程中的发酵条件的选择 色氨酸发酵过程中菌种的质粒稳定性对发酵水平高低有严重影响,维持发酵高产酸就要保证发酵过程菌种质粒稳定。在培养过程可以通过调节适当罐压、培养温度、溶氧控制水平、底料中酵母抽提物添加量等方面进行控制,保证发酵过程中不发生质粒丢失现象。 色氨酸发酵液中乙酸浓度高时对色氨酸生产菌的生长和产酸均有抑制作用,发酵过程中可以通过调节溶氧控制水平、初始葡萄糖浓度、发酵葡萄糖浓度及控制菌体比生长速率等方面进行控制,减少发酵液中乙酸的生成。 色氨酸发酵过程中产大量的热,为了维持发酵温度的稳定,必须采取适当的降温措施,在发酵罐外部加上冷却盘管,采用冰水降温,控制发酵温度33℃左右。 色氨酸发酵过程中由于无机盐的消耗及产酸引起PH 变化,所以发酵过程中适当流加氨水或液氨调节PH,控制最佳PH 值在 6.9 左右。 色氨酸发酵为耗氧发酵,并且产酸过程中用氧量比较大,溶氧的多少直接影响着代谢的方向,进而影响产酸和转化率,溶氧低于20%容易发生菌体自溶、乙酸产量增加,所以在主发酵过程中必须控制溶氧大于20%,这要求我们采用先进的通风搅拌装置,设计合理的发酵罐径高比,增加通气量提高溶解氧。 色氨酸发酵过程中,采用高糖流加技术,使发酵糖浓度始终处于低浓度,从而有效减少残糖对发酵产生的抑制作用,避免发酵后期产生乙酸上升的现象,保证高产酸及转化率。此外,色氨酸发酵生产可采用先进的培养基连消技术,高精度空气膜滤技术,使发酵污染程度控制最低水平,确保发酵产酸水平;对发酵车间的环境定期进行消毒,提高环境清洁度,对排污要控制,对排污口要用漂白粉处理,对空气过滤系统要定期清理,减少染菌机率。[4]3、发酵法生产色氨酸过程代谢控制 芳香族氨基酸的生物合成存在着特定的代谢调节机制,因此不可能从自然界中找到大量积累色氨酸的菌株,但是可以黄色短杆菌、谷氨酸棒杆菌等为出发菌株,设法得到从遗传角度解除了芳香族氨基酸生物合成正常代谢调节机制的突变菌株,用微生物直接发酵法生产色氨酸"这些方法包括:解除菌体自身反馈调节、切断支路代谢、增加前体物的合成等。[5] 4、发酵法生产色氨酸产物提取工艺

氨基酸生产工艺

氨基酸生产工艺 主讲人:韩北忠 刘萍 氨基酸是构成蛋白成分 目前世界上可用发酵法生产氨基酸有20多种。 氨基酸 α 碳原子分别以共价键连接氢原子、羧基和氨基及侧链。侧链不同,氨基酸的性质不同。 氨基酸的用途 1. 食品工业: 强化食品(赖氨酸,苏氨酸,色氨酸于小麦中) 增鲜剂:谷氨酸单钠和天冬氨酸 苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(α-天冬酰苯丙氨酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。 2. 饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 3. 医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。 4. 化学工业:谷氨基钠作洗涤剂,丙氨酸制造丙氨酸纤维。 氨基酸的生产方法 发酵法: 直接发酵法:野生菌株发酵、营养缺陷型突变发酵、抗氨基酸结构类似物突变株发酵、抗氨基酸结构类似物突变株的营养缺陷型菌株发酵和营养缺陷型回复突变株发酵。 添加前体法 酶法:利用微生物细胞或微生物产生的酶来制造氨基酸。 提取法:蛋白质水解,从水解液中提取。胱氨酸、半胱氨酸和酪氨酸 合成法:DL-蛋氨酸、丙氨酸、甘氨酸、苯丙氨酸。 传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。 生产氨基酸的大国为日本和德国。 日本的味之素、协和发酵及德国的德固沙是世界氨基酸生产的三巨头。它们能生产高品质的氨基酸,可直接用于输液制剂的生产。 日本在美国、法国等建立了合资的氨基酸生产厂家,生产氨基酸和天冬甜精等衍生物。 国内生产氨基酸的厂家主要是天津氨基酸公司,湖北八峰氨基酸公司,但目前无论生产规模及产品质量还难于与国外抗衡。 在80年代中后期,我国从日本的味之素、协和发酵以技贸合作的方式引进输液制剂的制造技术和仿造产品, 1991年销售量为二千万瓶,1996年达六千万瓶,主要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特,但生产原

氨基酸工艺学

1、味精是L-谷氨酸单钠的商品名称,含有一分子的结晶水,其分子式为NaC5H8O4N·H2O 2、国内味精厂所使用的谷氨酸生产菌株主要有北京棒杆菌AS1.299、钝齿杆菌AS1.542 和天津短杆菌T 6-13三类。 3、谷氨酸发酵中,谷氨酸产生菌只有一条生物合成途径中,生成谷氨酸的前体物为α-酮戊二酸。而在赖氨酸发酵中,存在两条不同的生物合成途径,即二氨基庚二酸途径和α-氨基己二酸途径 4、谷氨酸制味精过程中,中和操作时一般应先加谷氨酸后加碱,否则会发生消旋化,生成DL- 谷氨酸钠。 5、在谷氨酸发酵中,溶解氧的大小对发酵过程有明显的影响。若通气不足,会生成乳酸或琥珀 酸,若通气过量,会生成ɑ-酮戊二酸 6、从发酵液中提取赖氨酸,目前一般采用离子交换方法。影响提取得率最大的是菌体和钙离子 7、谷氨酸的晶型分为α-型结晶和β-型结晶两种,等电点提取谷氨酸时,首先必须形成一定数量 的晶核,然后才能进行育晶。谷氨酸起晶有自然起晶和加晶种起晶两种方法。 8在谷氨酸发酵中,生成谷氨酸的主要酶有谷氨酸脱氢酶(GHD)、转氨酶(AT)和谷氨酸合成酶(GS)三种。 9、L–谷氨酸在水溶液中的等电点是3.22,L–赖氨酸的等电点是6.96 10、在谷氨酸发酵过程中,对生物素的要求是亚适量,而在赖氨酸发酵生产中要求生物素过量。 11、游离的赖氨酸具有很强的呈盐性,因此,一般工业制造产品是以赖氨酸盐酸盐形式存在,其化学性质相当稳定。 二、单项选择题(共10小题,每小题2分,共20分) 得分评卷人 1、下列菌株中,_C_属于赖氨酸产生菌。 A.Hu7251 B.FM84-415 C.AS1.563 D.WTH-1 2、下列哪种氨基酸发酵是在供氧不足的条件下产酸最高?(D ) A.精氨酸B.赖氨酸C.苏氨酸D.亮氨酸 3、谷氨酸发酵产酸期的最适温度一般为(C )。 A.30℃~32℃B.32℃~34℃C.34℃~37℃D.38℃~40℃ 4、在谷氨酸(AS1.299菌)发酵中后期,为有利于促进谷氨酸合成,pH值维持在___C__范围为好。A.pH6.2~6.4 B.pH6.8~7.0 C.pH7.0~7.2 D.pH7.3~7.6

氨基酸工艺学

1.什么是氨基酸发酵工业?答:氨基酸发酵是典型的代谢控制发酵,由发酵所生成的产物氨基酸,都是微生物的中间代谢产物,它的积累是建立于对微生物正常代谢的抑制。在脱氧核糖核酸(DNA)的分子水平上改变、控制微生物的代谢,使有用产物大量生成、积累。氨基酸发酵工业是利用微生物的生长和代谢活动,发酵生产氨基酸的现代工业. 2.简述氨基酸的生产方法有哪些?抽提法,化学合成法,生物法(直接发酵法和酶转化). 3.举例氨基酸的应用领域有哪些?答:临床营养制剂及氨基酸药物:①Glu治疗肝昏迷。②氨基酸大输液。医药中间体:合成手性药物。肽类:乳链菌肽,可强烈抑制食品腐败.谷胱甘肽GSH含疏基,有抗氧化和整合解毒作用,用于治疗肝脏疾病、药物和重金属中毒。食品补充剂:①调味品:味精,稀释3000倍,鲜味,阈值0.03%。Gly:蔗糖的0.8倍。Asp-phe甲酯(阿斯巴甜),蔗糖的200倍。②提高食品营养价值,强化食品.评价蛋白质营养价值的指标,看食物中蛋白质的量(含量)和质(氨基酸之间的构成比例)。饲料添加剂:农业饲料用Lys,添加0.2%,鸡每年生蛋250个,猪120天长只至180斤,鸡56天长3.5斤。工业绿色化学产品:多聚氨基酸。α-聚赖氨酸(α-PL),作为安全食品保鲜剂;r-聚谷氨酸(r-PGA),可降解塑料,环境友好材料;聚天冬氨酸PASP,可生物降解的高吸水材料。保健化妆品:氨基酸系表面活性剂. 4.简述淀粉的组成及特性:淀粉白色无定形结晶粉末,圆形椭圆形多角形.是一种碳水化合物,组成元素为44.4%C,6.2%H,49.4%O.淀粉分子是由许多葡萄糖脱水缩聚而成的高分子化合物(C6H10O5)n. 分直链淀粉(不分支的葡萄糖链构成, α-1,4糖苷键聚合,空间构象卷曲螺旋状.水溶液加热不产生糊精,以胶体状态溶解,遇碘反应纯蓝色)和支链淀粉(α-1,6糖苷键连接直链,只有加热加压溶于水遇碘紫红色.)两部分.特性:无还原性无甜味,不溶于冷水,酒精,醚等有机溶剂.在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶于水中形成带有黏性的淀粉糊,即糊化.生淀粉的颗粒在偏光显微镜下观察有双折射现象,淀粉有黑色十字,将颗粒分成白色的四部分,有晶体结构.淀粉含有较多水分却不显潮湿,原因淀粉分子中羟基和水分子相互作用形成氢键.淀粉遇碘反应强烈生成蓝色碘淀粉和淀粉-碘复合物.加热蓝色消失,冷却出现.温度太高碘极易逃逸,冷却后无蓝色. 5.分析玉米淀粉生产中浸泡工序的目的。玉米子粒坚硬有胚,需浸泡才能破碎. ①可软化子粒,增加皮层和胚的韧性.有利于胚的破碎②水分通过胚和皮层向胚乳内部渗透,溶出水溶性物质.有利于分离操作.③使粘附在玉米表面上的泥沙脱落.有利于玉米的破碎和提取淀粉.(逆流浸泡,水中加入SO2(不超过0.4%)以分散和破坏玉米子粒细胞中蛋白质网状组织,促使淀粉游离出来,同时抑制微生物繁殖活动.浸泡条件:浸泡水SO2浓度0.15-0.2%,PH3.5,温度50-55℃,时间48h) 清理浸泡粗碎胚芽分离磨碎纤维分离(筛选法)蛋白质分离(利用相对密度不同)清洗脱水干燥成品整理. 6.简述淀粉水解糖生产的意义. 谷氨酸产生菌不能直接利用淀粉或糊精作为碳源.淀粉必须经水解成葡萄糖才能供发酵使用.工业上将淀粉水解为葡萄糖的过程成为糖化,所制得糖液称为淀粉水解糖,主要是葡萄糖.它是谷氨酸产生菌生长的营养物质,易被其利用.淀粉水解糖液的质量关系到谷氨酸菌的生长速度,谷氨酸的积累及分离提取. 7.谷氨酸发酵水解糖液的要求.1.严格控制淀粉质量(无霉烂变质)2.正确控制淀粉乳的浓度(浓度高低满足发酵的初糖浓度)3.糖液中不含糊精(水解完全)4.糖液清、色泽浅,有一定的透光率5.糖液新鲜6.降低糖液蛋白质的含量7.质量标准:色泽:浅黄、杏黄通明液体;糊

氨基酸工艺学复习题

《氨基酸工艺学》复习题 1、什么是能荷? 2、谷氨酸发酵中污染噬菌体出现“二高三低”的现象,主要指的是什么? 3、什么是谷氨酸的α-结晶? 4、添加表面活性剂控制谷氨酸菌种细胞膜通透性机制是什么? 5、谷氨酸发酵过程中,谷氨酸生成后又下跌,请分析可能原因并给出相应的解决方法。 6、在等电-离交法提提取谷氨酸过程中,影响谷氨酸结晶的因素有哪些? 7、什么是优先合成? 8、谷氨酸生物素缺陷型菌种通过生物素控制细胞膜通透性的作用机制是什么? 9、试述生物素对糖代谢的调节? 下表是200 m3发酵罐数据记录,流加糖浓度为50%,放罐体积为180m3,总糖酸转化率为64%,结合表格数据,请计算: 1)、整个发酵过程谷氨酸生产强度? 2)、单罐谷氨酸产量? 3)、前10h平均耗糖强度? 4)、发酵过程流加50%糖液量? 10、在谷氨酸离子交换法提取工艺中,若谷氨酸发酵液中存在以下离子Ca2+、Mg2+、NH4+、丙氨酸+、谷氨酸+、天门冬氨酸+,在下图离子交换柱上标示的①②③④⑤分别应为什么物质?

11、下图是提取谷氨酸的单柱法离子交换工艺流程,请把下列内容对应的序号填入相应的方框中:①上柱交换、②收集洗脱液、③水洗树脂、 ④高流分、⑤等电点法提取谷氨酸。

12、下图是谷氨酸生物合成途径,如图根据谷氨酸“进、通、节、堵、出”育种策略,从“通和节”两方面阐述谷氨酸产生菌的代谢控制育种方案。

13、在淀粉制糖工艺中,使用连续喷射液化工艺进行液化,其优点是什么? 14、什么是谷氨酸的β-结晶? 15、氨基酸菌种保藏的原则是什么? 16、配制种子培养基的基本原则是什么 17、生物素亚适量控制谷氨酸菌种细胞膜通透性机制是什么? 18、谷氨酸发酵中,在没有感染杂菌和噬菌体的情况下,为什么中后期谷氨酸生成后又下跌,请分析可能原因并给出相应的解决方法。

氨基酸发酵实用工艺学试题集

氨基酸发酵工艺学试题集 一、名词解释 名词解释: 1. 液化:是利用液化酶使淀粉糊化,粘度降低,并水解得到糊精和低聚糖的程度。 2.糖化:是用糖化酶将液化产物进一步彻底水解成葡萄糖的过程。 3.发酵热:发酵过程中释放出来的净热量称为发酵热,发酵热 = 生物热 + 搅拌热 - 蒸发热 - 辐射热 - 显热。 4. DE值:即葡萄糖值,表示淀粉水解程度及糖化程度。DE值 = 还原糖 / 干物质× 100% 5. DX值:糖液中葡萄糖含量占干物质的百分率。 6. 代谢控制发酵:就是用遗传学或其它生物化学的方法,人为的改变、控制微生物的代谢,使有用产物大量生成、积累的发酵。 7. 噬菌体效价:每毫升试样中所含有具有侵染性的噬菌体的粒子数。 8. 发酵转换:当发酵条件发生改变时,必然会影响到生物代谢途径分支的关键酶的酶量和酶活性的改变,从而导致发酵方向发生转换,从而产生不同的代谢产物。 9. 淀粉液化:利用α-淀粉酶将淀粉液化,转化为糊精及低聚糖,使淀粉的可溶性增加。 10. 临界溶氧浓度:指不影响菌的呼吸所允许的最低氧浓度。 11. 末端产物阻遏:是指由某代谢途径末端产物的过量累积时而引起的反馈阻遏,是一种较为重要的反馈阻遏。 12.糖酸转化率:产出的谷氨酸与投入的葡萄糖总量的百分比,糖酸转化率 = 产出的谷氨酸 / 投入的葡萄糖量× 100% = (产酸水平×放罐体积) / (种子用糖量 + 发酵培养基用糖量 + 流加糖量)× 100% 。 13. 生物素的“亚适量”:指淀粉糖原料产谷氨酸生产过程中,控制发酵培养基的生物素浓度在5~6μg / L,此浓度即为生物素的“亚适量。生物素是催化乙酰CoA羧化酶的辅酶,参与脂肪酸的合成,从而影响磷脂合成及细胞膜的形成。它的作用主要影响谷氨酸产生菌细胞膜的谷氨酸通透性;同时也影响菌体的代谢途径。因此,为了形成有利于谷氨酸向外渗透的细胞膜,必须使磷脂合成不充分,因而必须要控制生物素“亚适量”。 14. 种子扩大培养:指将处于休眠状态的保藏菌种接入试管斜面活化后,再经过摇瓶、种子罐等逐级扩大培养,从而获得一定数量和质量的纯种的过程。 15. 营养缺陷型:对某些必须的营养物质(AA)或生长因子的合成能力出现缺陷的变异菌株或细胞。必须在基本培养基(如由葡萄糖和无机盐组成的培养基)中补加相应的营养成分才能正常生长。 16. 流加发酵:也叫补料分批发酵、半连续发酵、半连续培养。它是以分批培养为基础,间歇或连续地补加新鲜培养基的一种发酵方法。 17. 糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有粘性的淀粉糊,此过程称为糊化。 18. 连续等电点法:是指在大量谷氨酸晶体存在的条件下,一边连续等当量添加发酵液(或谷氨酸锌盐溶液)与盐酸(或硫酸)使溶液始终在结晶点PH3.0(或PH2.4),一边连续从底部打出谷氨酸结晶液,送入育晶罐(池)继续育晶的工艺。

发酵工艺学名词解释

名词解释:1.发酵:通过微生物的生长和代谢活动,产生和积累人们所需代谢产物的一切微生物培养过程。 2.发酵工艺:指工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺。 3.前体:在微生物代谢产物的生物合成过程中,有些化合物能直接被微生物利用构成产物分子结构的一部分,而化合物本身的结构没有大的变化,这些物质称为前体。 4.热阻:指微生物在某一特定条件下的致死时间。 5.对数残留定律:指在一定温度下,微生物受热后,活菌数不断减少,其减少速度随残留活菌数的减少而降低,且在任何瞬间,菌的死亡速率与残存的活菌数成正比。 6.实消:将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所有设备一起进行加热灭菌的操作过程称为实罐灭菌。 7.连消:培养基在发酵罐外经过一套灭菌设备连续加热灭菌,冷却后送入已灭菌的发酵罐内,这种工艺过程称为连消灭菌。 8.空消:无论是种子罐、发酵罐还是液氨罐、消泡罐,当培养基尚未进罐前对罐进行预先灭菌,为空罐灭菌。 9.液化:用ɑ-淀粉酶将淀粉转化为糊精和低聚糖。 10.糖化:用糖化酶将糊精和低聚糖转化葡萄糖。 11.种子制备:将固体培养基上培养出的孢子或菌体转入到液体培养基中培养,使其繁殖成大量菌丝或菌体的过程。 12.菌种保藏:根据菌种的生理、生化特性,人工创造条件使菌体的代谢活动处于休眠状态。 13.呼吸临界氧浓度:在溶解浓度低时,呼吸强度随溶氧浓度的增加而增加,当溶氧浓度达到某一值后,呼吸强度不再随溶解氧浓度的增加而变化,把此时的溶解氧浓度称为呼吸临界氧浓度。 14.溶解氧饱和度:在一定温度和压力下,空气中的氧在水中的溶解度。 15.氧传递系数:比表面积与以浓度差为推动力的氧传质系数的乘积。 16.分批发酵:指一次性投入料液,发酵过程中不补料,一直到放罐。 17.补料分批发酵:指在发酵过程中一次或多次补入含有一种或多种营养成分的新鲜料液,以达到延长发酵周期,提高产量的目的。 18.连续发酵:指在特定的发酵设备中进行的,一边连续不断地输入新鲜无菌料液,同时一边连续不断地放出发酵料液。 简答题:1发酵过程有哪些特征谈谈你对发酵工程技术应用前景的想法 特征:1.原料广 2.反应条件温和,易控制 3.产物单一,纯度高 4.投资少,效益好想法:随着生物技术的发展,发酵工程的应用领域也在不断扩大,基因工程及细胞杂交技术在微生物育种上的应用,将使发酵用菌种量达到前所未有的水平;生物反应器技术及分离技术的相应进步将发酵工业的某些神秘特征;由于物理微生物数据库、发酵动力学、发酵传递学的发展,将使人们能够清楚的描述与使用微生物。(个人的,你也可以自已) 2.发酵工业对菌种的要求 答:1.菌种不能是病源菌 2.发酵周期短,生产能力强 3.发酵过程中不产生或少产生与目标产物性质相似的副产物 4.原料来源广泛价格低廉,菌种能高效地将原料转化为产品5.对需添加剂的前体有耐受能力,且不能将前体作为一般碳源利用 6.遗传性状稳定,菌种不易变异退化 7培养条件易于控制 3.菌种选育有哪些方法 答:1.自然选育 2、诱变选育 3.原生质体技术育种 4.基因工程技术育种 4.自然选育、诱变选育的概念,一般步骤,影响诱变的主要因素。

氨基酸发酵生产工艺

氨基酸发酵生产工艺 1. 概述 氨基酸在药品、食品、饲料、化工等行业中有重要应用。 氨基酸的制造始于1820年,蛋白质酸水解生产氨基酸,1850年化学合成氨基酸,1956年分离到谷氨酸棒状杆菌,日本采用微生物发酵法工业化生产谷氨酸成功,1957年生产谷氨酸钠(味精)商业化,从此推动了氨基酸生产的大发展。目前绝大多数应用发酵法或酶法生产,极少数为天然提取或化学合成法生产。 主要菌种有谷氨酸棒杆菌、黄色短杆菌、乳糖发酵短杆菌、短芽孢杆菌、粘质赛式杆菌等,往往是生物素缺陷型,也有些是氨基酸缺陷型。还有采用基因工程菌进行生产的。 氨基酸的世界市场中,谷氨酸钠约占氨基酸总量的75%,其次为赖氨酸,占产量10%,其他约占15%。 国外谷氨酸采用甘蔗糖蜜或淀粉水解糖为原料的强制发酵工艺,产酸率13-15%,糖酸转化率50-60%;国内采用淀粉水解糖或甜菜糖蜜为原料生物素亚适量发酵工艺,产酸率10%,转化率60%。 菌种改良和新工艺开发,促进了中国氨基酸产业发展,应用于输液的18种氨基酸原料只有丝氨酸和色氨酸不能工业化生产仍需进口外,其余16种均已投产,国产化80%以上。2002年,全国氨基酸原料产品万吨,医药用总产量超过4200吨。2002年氨基酸制剂近1亿支(片/瓶)。氨基酸原料生产企业约20多家,制剂生产企业30多家。甘氨酸3000多吨,赖氨酸及其盐酸盐约1000吨,天门冬氨酸、缬氨酸、谷氨酸、亮氨酸、丙氨酸等几百吨。谷氨酸钠的生产规模最大,居世界首位。 2 氨基酸生产工艺 培养基制备 水解淀粉、糖蜜、醋酸、乙醇、烷烃等可作为碳源,取决于菌种和氨基酸种类和操作方式,常采用水解淀粉糖、糖蜜。氨盐、尿素、氨水等作为无机氮源,有机氮源有玉米浆、麸皮水解液、豆饼等。有机氮源还可提供生物素等微生物生长因子的来源。碳氮比对于氨基酸发酵非常重要,调节适宜的碳氮比。无机盐是发酵必需的,磷有很重要的影响。 主要发酵参数控制 三级发酵进行生产,主要参数控制如下。 pH:流加尿素和氨水控制,常用尿素,根据pH变化、菌体生长、残糖等调节,少量多次。如果用氨水,采用流加连续方式调节pH。PH的范围之间。 温度:最适温度因菌种和氨基酸种类而不同,菌体生长和氨基酸生产的温度也不同。对于温度敏感突变株,可采用分段调节控制策略。 溶解氧:供氧充足时,产率最高的氨基酸有谷氨酸、谷氨酰氨、脯氨酸和精氨酸等,它们对氧有高依赖性,氧分压应该在×105Pa以上,才能获得高产。低氧分压下,生产受阻。适当缺氧时,产率最高的氨基酸有亮氨酸、苯丙氨酸和缬氨酸等,菌体呼吸在受阻时,氧分压接近零,有利于发酵。供氧不足对生产影响不大的氨基酸发酵包括赖氨酸、异亮氨酸、苏氨酸等。 泡沫:加入天然豆油、玉米油或泡敌等进行消泡,控制泡沫的产生。 主要提炼工艺过程 过滤:用板框式压滤机过滤发酵液。 沉淀:根据氨基酸的等电点,采用等电沉淀、离子交换,提取氨基酸。 脱色:加入活性炭脱除色素。 精制:离子交换、重结晶等进行精制。

发酵法生产L缬氨酸技术

发酵法生产L-缬氨酸技术简介 1.产品简介 L-缬氨酸属于分枝链氨基酸,是人体必需氨基酸之一,具有多种生理功能,主要用于配制复合氨基酸输液和其它治疗药物。最近,人们发现L-缬氨酸是合成一种免疫抗生素的重要中间体,其年消耗量猛增到数千吨。 分子结构式: 分子式:C5 H11 NO2 分子量:117.5 CAS号:72-18-4 2.产品规格 本品为白色结晶或结晶性粉末;无臭,味微甜而后苦。 本品在水中溶解,在乙醇中几乎不溶。 比旋度取本品,精密称定,加6mol/L盐酸溶液溶解并释稀成每1ml 中含80mg的溶液,依法测定(附录Ⅵ E),比旋度为+26.5°至+29.0°。 ?形态:白色结晶粉末 ?纯度:≥98.5 ?PH值(50g/l):5.5-7.0 ?干燥失重:≤0.3% ?硫酸盐灰分:≤0.1% ?硫酸盐:0.03% 饲料级别的缬氨酸要求含量30-35%即可。 3.菌种分类 谷氨酸棒杆菌(亮氨酸缺陷型)。 4.工艺描述

发酵在通过大型微生物工艺灭菌后的无菌容器中进行。发酵过程中,温度、曝气、搅拌、PH值都可控,并添加豆油作为碳源和防沫剂。发酵的培养基纯度通常通过检查菌落的生长行为和均匀度来测定。当发酵进行到预计程度时,将发酵液进行转移以进行下一步的提取。 将发酵液进行酸化、过滤。用溶剂从滤液中提取,并在酸性PH值条件下结晶得到产品。经过筛选和拌匀后,将晶体分离、干燥和包装。 5.技术参数 ?最终效价:40 ± 5 g/lt ?发酵时间:65 ± 5 hrs ?回收率:65%(医药级),75%(食品级),80%(饲料级) ?糖转化率:24 % ?发酵类型:批式+补料(葡萄糖和尿素)

相关文档
相关文档 最新文档