文档库 最新最全的文档下载
当前位置:文档库 › ISM频带及小范围设备天线基础 快速上手 第四章

ISM频带及小范围设备天线基础 快速上手 第四章

ISM频带及小范围设备天线基础 快速上手 第四章
ISM频带及小范围设备天线基础 快速上手 第四章

ISM频带及小范围设备天线基础:第四章

在此将介绍RF和天线的基础知识以及实际的天线设计原理。

Matthew Loy,Iboun Sylla,德州仪器

通道损失

在通信链路中,用于估算可实现的距离的基础是链路预算(link budget)。链路预算描述了所接收的功率P r及所传输的功率P t之间的关系,如下所示:

G t及G r分别为发射机及接收机天线的增益。λ为波长,d为发射机与接收机之间的距离。λ及 d必须使用相同的单位。正如我们所看到的,所接收到的功率与波长的平方成正比(或表述为与频率的平方成反比)。这是源于同等增益的天线,频率越低,则尺寸越大,并因此能捕捉到更多的辐射场功率。

通道损失增益指数描述了传输介质的影响。在自由空间中(free space),通道损失指数的理论值为2,描述了在球形辐射面上与等方向性辐射体相等的功率分配。N< 2则意味着介质会将电磁波集束(bundle),从而给出小于自由空间的通道损失。衰减介质所给出的通道损失指数n > 2。

以对数单位表述时,通道损失是发射机与接收机天线之间的功率比:

为方便计算,我们可使用如下公式:

在户外应用中,发射机与接收机之间通常具有可视的直线通路。此时,如果在第一阶菲涅耳区域(Fresnel zone)内不存在障碍,则我们可将通道损失系数设定为2。菲涅尔区域是一个椭圆体,发射机及接收及天线处于其焦点位置,如图19所示。

图19. 发射机及接收机之间的菲涅尔区域

在发射机及接收机中间,第一菲涅尔区域直径为:

通常情况下,再60%的区域为自由空间,不存在障碍时,所假定的通道损失系数为2依然可用。

图20展示了用于小范围频带的四个不同频率在自由空间的通道损失(n=2):

图20. 四个小范围频带在自由空间中的通道损失(P L)

当不处于直线可视的情况下,将会由于吸收、衍射及折射而造成额外的损失。此类损失将以经验化的通道损失系数n来描述。表3为部分通道损失系数的测量值,并结合了相关的标准差/5/、/6/。在此假定发射机及接收机处于同一楼层面上。

若发射机及接收机不处于同一楼层面上,与穿透楼层数N f相关的楼层衰减因数L(N f)必须纳入考虑。表4为部分典型的楼层衰减因数,依照/5/。

我们可以看到,标准差都非常大;因此对于通道损失的预测将带有很大的不确定性。如果我们沿着发射机及接收机之间的通路进行追踪,将有可能实现一定的改进。该方法被称为射线追踪 (ray tracing),并可计算所有独立的隔离物损失,如墙、门、窗等等。此时对通道损失的估算如下:

表5为部分典型的隔离物损失,依照/5/。

隔离物损失值取决于特定障碍所独有的结构,并同时取决于频率。

多径传播效应

在实际的传输系统中,接收机并不是仅通过直线通路来获取信号,而是同时接收反射、衍射及散射的射线。

图21. 多径传播

多径传播会引发两类问题:衰落(fading)及码间干扰(ISI)。衰落源于时间差,当直射波的及延迟(反射)波的到达时间差处于射频周期时长的数量级时产生。

如果时间差是周期时长的整数倍,波的干涉是建设性的(constructively),所接收到的信号将强于无衰落的情形。

如果时间差为半周期时长的奇数倍,直射分量及非直射分离将相互抵消,最坏的情况将是完全抵消。

当接收机进入到一个多径传输的环境,将接收到相互交替的增强及减弱的信号。相互抵消所造成的损害大大甚于在不同定位上建设性干涉的优势。若时间差τ处于位持续时间的数量级上,多经传输还将导致码间干扰。其原理如图22所示。

图22.源于多径传播的码间干扰

即使接收机的输入端具有很强的射频信号,传输也会因码间干扰而被打乱。码间干扰对于高比特率传输的影响尤为严重,因为此时处于比特位持续时间数量级的时间差将可能在更小的区间内出现。

为避免衰落问题,可采用发射机及接收机两侧的天线差异化。在最简单的实现中,两个或更多的天线被无源分频器所整合。此时,两个的天线都深度衰落的可能性将大大低于仅使用一个天线。此类简单的结构可令线路可靠性得到实质性的改善。

为了获得更良好的性能,射频开关被应用于连接任意一个天线至IC器件。在协议的开端,RSSI信号将给出关于两个天线性能优劣的信息。较优的天线将随后用于数据分组。

对于某些注重链路可靠性的场合,可采用自动选讯(true diversity)。该方法意味着将采用两个具有独立天线的完备接收机。取决于接收机输入端的信号质量,选取其一进行使用。

在大多数简单应用中,天线多样化或时间差异化因受成本制约而很少使用。如果发射机及接收机均不处于移动状态,具有良好方向性的天线足以抑制不期望的反射。

参考文献

1. L.J.Chu, Physical limitations of Omni-Directional Antennas, J. Appl. Phys., Vol19, Dec. 1948, pp. 1163 -1175

2. H.A.Wheeler, Fundamental Limitations of Small Antennas, Proc. IRE, Vol. 35, Dec. 1947, pp. 1479 " 1484

3. H. Johnson, M. Graham, High Speed Digital Design, Prentice Hall, 1993, ISBN 0133957241

4. C.A. Balanis, Antenna theory, Analysis and Design, Wiley, 1996, ISBN 0471 592684

5. T.S. Rappaport, Wireless Communication, Principles and Practice, Prentice Hall, 2002, ISBN 0-13-042232-0

6. Recommendation ITU-R P.1238-2 - Propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz.

螺旋天线原理与设计基础知识

一般成品螺旋天线都用导电性能良好的金属线绕成并密封好,其工作原理下: 图1 所示一般天线结构示意图。D是螺旋天线直径,L是螺旋天线长度,ρ是螺距,Ⅰ、Ⅱ是螺旋线上相对应两点。 一般可以认为,电磁波沿金属螺旋线以光速C作匀速运动。 从Ⅰ点到Ⅱ点即进行一个螺旋,所需时间为 t = πD/C 而对螺旋天线而言,其轴向电磁波只运动行进了一个螺距ρ,其轴向等效速率 υ=ρ/t =ρ/C (πD) 这种关系也可用图2形式解释。由图2可知: υ=Csinθ=Cρ/(πD)≤C 由上式可以看出,υ总是小于等于C的。故螺旋天线能使电磁波运动速度减慢,是一个慢波系统,其等效波长λ等效小于工作波长λ。对于螺旋天线而言,应谐振于其1/4等效波长,因而能缩短螺旋天线的几何长度。 对于工作于一定中心频率的通讯机来说,其所需绕的线圈数N可以由下式近似算出:

螺距:υ=L/N 所需金属线长度:ι=NπD 对于一般通讯机可取 L=20~40cm D=10~20mm 下表是对一些常用频率螺旋天线的设计实例,其他频率也可类似设计。 f是工作中心频率; D是螺旋天线直径; L是螺旋天线长度; N是螺旋圈数; ι是所需金属线长度。 以上N、ρ为了实际制作需要均取近似值。 制作时可用直径0.5~1.5mm漆包线或镀银铜线或铝线在直径为D的有机玻璃或其他绝缘材料上绕制,并在棒的两头打上小孔,以利于固定金属线;在棒的底端焊上较粗的金属杆或插头固定在棒上,以利于与机器连接;整个螺旋天线的外面可用橡胶管或其他材料套封,并在顶端盖上橡皮帽或用其他材料密封,这样既美观大方,又防雨防蚀,经久耐用。如果没有上述金属丝,也可采用多股细绝缘导线代替,效果相同,只是绕制时固定较为困难。 以上螺旋天线也可用于各种小型遥控设备及其他类似机器上。 为了比较慢波天线与常规拉杆天线的不同,说明慢波天线尺寸较小的优点,我们可对拉杆天线作一计算。 设定参数如下:

WIFI天线基础知识

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强 用事实拆穿双天线成倍增益的神话 双天线只能减少覆盖范围内的盲点 先看总结: 性能的区别主要来自芯片而不是品牌 这次参加横评的产品一共14款,但他们的芯片只有4种,而使用相同芯片的产品在性能上的差距根本不大,所以购买前了解产品的芯片组是一个重要环节。当然也不是说要放弃品牌的概念,各个品牌对产品质量的控制还是不一样,这也会让产品造成很大的差异(主要体现在产品质量)。 现阶段802.11N无线路由器已大幅度超越54M 从54M到11N,经历了好几年的时间,不过这次横评我们看到了11N的优势,看到了希望。实际测试表明,11N产品在产品整体性能上高出54M很多,速度、覆盖都有了质的飞跃。

天线根数与速度没关系 虽然这次评测分了两个组,双天线和多天线,但测试结果说明单从速度上来讲,双天线与三天线区别不大。(天线原理介绍过了,和我们的实际情况是一致的。当然是同一类芯片的基础上进行比较,不同种类芯片没有可比性)但是覆盖上确实有区别,所以要购买的用户不用总是迷恋多天线,从自己的实际情况出发,一般环境双天线已经足够了。 新的功能将改善人们使用无线网络的习惯 譬如WPS快速加密这样的新功能,将会改善人们使用无线网络的习惯,按下终端和路由器上的两个键就会自动连接并加密,拒绝输入繁琐的密码,进一步降低了无线网络的门槛,让用户更轻松使用。 802.11N是构建数字家庭的主干 除了改变人们的使用习惯,802.11N的传输速率已经可以完全应付高清影片的流畅传输,而传说中的数字家庭也可以由802.11N网络担当主角,撑起整个平台:无线播放高清媒体文件、无线控制家电产品、各种终端都无线,让你的家远离布线烦恼。 目前产品单调需要更多个性化产品问世 不过话又说回来,任何东西都是需要发展的,现在11N可以算是刚刚出道,所以还有许多可以改进的地方,譬如这次评测的产品除了提供无线上网之外,附加功能都比较少,让IT产品更个性,这是一个发展方向,让看不到的无线也能多姿多彩。 802. 11N横评第一波结束更多低价产品会接踵而来 这次评测历时1个月,在测试过程中又出现了多个新品,它们没有赶上这次横评很遗憾,但是我们还有的是机会,因为低价11N时代马上就要来临了,各个品牌都会有更多更优秀的产品放出,请继续关注泡泡网无线频道,更多的精彩会接踵而来.....

天线原理与设计习题集

天线原理与设计习题集 第一章 天线的方向图 1.如图1为一元天线,电流矩为Idz ,其矢量磁位表 示为A r j 0r 4Idz ?βπμ?=e z A ,试求解元天线的远区辐射电磁场。 ?θH E ,2.已知球面波函数r e r j /βψ?=,试证其满足波动方程: 022=+?ψβψ 3.如图2所示为两副长度为λ=A 2的对称线天线,其上的电流分别为均匀分布和三角形分布,试采用元天线辐射场的叠加原理,导出两天线的远区辐射场,方向图函数?θH E ,),(?θf 和归一化方向图函数),(?θF ,并分别画出它们在yoz 平面和xoy 平面内的方向图的示意图。 4.有一对称振子长度为,其上电流分布为:A 2|)|(sin )(z I z I m ?=A β试导出: (1) 远区辐射场; ?θH E ,(2) 方向图函数),(?θf ; (3) 半波天线(2/2λ=A )的归一化方向图函数),(?θF ,并分别画出其E 面 和H 面内的方向图示意图。 (4) 若对称振子沿y 轴放置,导出其远区场表达式和E 面、H 面方向图 函数。 H E , 5.有一长度为2/λ=A 的直导线,其上电流分布为,试求该天线的 方向图函数z j e I z I β?=0)(),(?θF ,并画出其极坐标图。 6.利用方向性系数的计算公式: ∫∫ = ππ ? θθ?θπ 20 2 sin ),(4d d F D 计算:(1) 元天线的方向性系数; (2) 归一化方向图函数为 ???≤≤≤≤=其它,0 0,2/,csc ),(0 0??πθθθ?θF 的天线方向性系数。

(3) 归一化方向图函数为: ?? ?≤≤≤≤=其它,0 20,2/0,cos ),(π ?πθθ?θn F n=1和2时的天线方向性系数。 7.如图3所示为二元半波振子阵,两单元的馈电电流关系为/212j I I e π=,要求导出二元阵的方向图函数),(?θT f ,并画出E 面(yz 平面)和H 面(xy 平面)方向图。 8.有三付对称半波振子平行排列在一直线上,相邻振子 间距为d ,如图4所示。 (1) 若各振子上的电流幅度相等,相位分别为 ββ,0,?时,求xy 面、yz 面和H 面方向图函数。 (2) 若4/λ=d ,各振子电流幅度关系为1:2:1,相位 关系为2/,0,2/ππ?时,试画出三元阵的E 面和H 面方向图。 9. 由四个元天线组成的方阵,其排列如图5所示。每个单元到阵中心的距离为8/3λ,各单元的馈电幅度相等,单元1和2同相,单元3和4同相但与1和2反相。试导出该四元阵的方向图函数及阵因子,并草绘该阵列xoy 平面内的方向图。 10. 设地面为无限大理想导电平面。图6所示为由等幅同相馈电的半波振子组成的水平和垂直二元阵,试求其 E 面方向图函数,要求: (1) 对图(a)求出xz 面和yz 面方向图函数,并画出xz 面的方向图; (2) 对图(b) 求出xz 面、yz 面 和xy 面方向图函数,并画出这三个面内的方向图;。 11.一半波对称振子水平架设在理想导电平面上,架设高度为。试分别画出h 0.25,0.5h λλ=两种情况下的E 面和H 面方向图,并比较所得结果。 12.由长为4/λ=A 的单极天线组成的八元天线阵如图7所示,各单元垂直于地

天线基础知识大全

天线基础知识大全 1天线1.1天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要 1天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。 1.3 天线方向性的讨论

(整理)天线原理与设计习题集解答_第8_11章.

第八章 口径天线的理论基础(8-1) 简述分析口径天线辐射场的基本方 法。 答:把求解口径天线在远区的电场问题分为两部分: ①. 天线的内部问题; ②. 天线的外部问题; 通过界面上的边界条件相互联系。 近似求解内部问题时,通常把条件理想化,然后把理想条件下得到的解直接地或加以修正后作为实际情况下的近似解。这样它就变成了一个与外部问题无关的独立的问题了。 外部问题的求解主要有: 辅助源法、矢量法,这两种是严格的求解方法; 等效法、惠更斯原理法、几何光学法、几何绕射法,这些都是近似方法。 (8-2) 试述几何光学的基本内容及其在口径天线设计中的应用。 答:在均匀的媒质中,几何光学假设能量沿着射线传播,而且传播的波前(等相位面)处处垂直于射线,同时假设没有射线的区域就没有能量。 在均匀媒质中,射线为直线,当在两种媒质的分界面上或不均匀媒质传播时,便发生反射和折射,而且完全服从光的反射、折射定律。 B A l nds =? 光程长度: 在任何两个给定的波前之间,沿所有射线路径的光程长度必须相等,这就是光程定律。''PdA P dA = 应用: ①. 可对一个完全聚焦的点源馈电的天线系统,求出它在给定馈源功率方向图 为P(φ,ξ)时,天线口径面上的相对功率分布。 ②. 对于完全聚焦的线源馈电抛物柱面天线系统,口径上的相对功率分布也可 用同样类似的方法求解。 (8-3) 试利用惠更斯原理推证口径天线的远区场表达式。 解:惠更斯元产生的场: (1cos )2SP j r S SP jE dE e r βθλ-?= ?+?? 222)()(z y y x x r S S SP +-+-= r , r sp >>D (最大的一边)

天线基础知识培训资料

天线基础知识 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图 1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 图1.1 a 图1.1 b 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

天线基本知识解析

天线基本知识 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。

1.3 天线方向性的讨论 1.3.1 天线方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图 1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。 1.3.2 天线方向性增强

(整理)天线的基础知识.

天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类:可分为通信天线、电视天线、雷达天线等; 按工作频段分类:可分为短波天线、超短波天线、微波天线等; 按方向性分类:可分为全向天线、定向天线等; 按外形分类:可分为线状天线、面状天线等。 电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。 必须指出,当导线的长度 L 远小于波长λ时,辐射很微

弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b 。

天线原理与设计期中考试资料

西南交通大学2012-2013 学年第( 2 )学期期 中考试试卷 课程代码 3143373 课程名称 天线原理与设计 考试时间 90分钟 阅卷教师签字: 一. 判断题:(20分)(正确标√,错误标?,每题2分) 1. 元天线的方向性系数为1.5。(√) 2. 元天线的远区辐射场是平面波。(?) 3. 在功率方向图中,功率为主瓣最大值一半对应两点所张的 夹角就是主瓣宽度。(√ ) 4. 侧射式天线阵须满足各单元馈电幅度和相位均相等。(√ ) 5. 坡印亭矢量法可以求出天线的辐射阻抗。(? ) 6. 对称振子的平均特性阻抗愈小,其频率特性就愈好。(√ ) 7. 对称振子的谐振长度总是略大于0.25和0.5。(? ) 8. 右旋圆极化天线可以接收左旋圆极化天线发射的信号。 (? ) 9. 要使接收天线接收到的功率达到最大,需满足阻抗匹配和 班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

极化匹配。(√ ) 10.笼形天线设计增加了阻抗频带宽度。(√ ) 二. 填空题:(30分,每空2分) 1.在场强方向图中,主瓣宽度是指场强大小下降到最大值的( 0.707 )倍处对应的两点之间的夹角。 2. 在功率方向图中,主瓣宽度是指功率大小下降到最大值的( 0.5 )倍处对应的两点之间的夹角。 3. 在分贝方向图中,主瓣宽度是指场强的分贝值下降到(-3 )dB 处对应的两点之间的夹角。 4.当2/(1.44)l λ≤时,对称阵子的最大辐射方向在0 90m θ=。 5.当2/ 1.44l λ≤时,对称阵子的最大辐射方向在 (90)m θ=。 6.半波天线的归一化方向图()cos cos 2( )sin F πθθθ ?? ???=, 方向性系数(1.64)D =,输入阻抗(73.142.5)Z j =+Ω。 7.间距为 d 的二元等幅同相(1,0)m α==阵因子 ()cos ,(2cos )a d f πθ θ?λ =。 8.间距为d 的二元等幅反相(1,)m απ==阵因子 ()cos ,(2sin )a d f πθ θ?λ =。 9. 间距为d 的均匀直线式N 元天线阵的阵因子

微波技术与天线—重修学习作业

微波技术与天线(重修学习作业) 教材:《微波技术与天线》(第三版),王新稳,李延平,李萍,电子工业出版社,2011 第一章传输线理论 1.1 长线理论 1)了解分布参数电路与传输线方程 2)传输线输入阻抗与反射系数 3)传输线工作状态分析,Smith圆图 4)传输线的阻抗匹配 1.2 波导与同轴线 1)导波系统一般分析,波导传输线 2)矩形波导,TE10模分析 学习重点: 1)传输线分析与计算,输入阻抗与驻波分析(习题1-7,1-8,1-10,1-45,1-46)2)阻抗匹配分析与设计;(习题1-21) 3)波导截止模式,矩形波导,TE10模分析;(习题1-25,1-30) 4)矩形波导传输模式与工作参数,矩形波导设计与分析;(习题1-49,1-50) 书本:26页,例1-2;28页,例1-4;40页,例1-10; 第二章微波网络 1)了解网络概念,微波元件等效网络; 2)散射矩阵S;双端口网络传输散射矩阵,工作特性参数 学习重点:1)无耗互易网络S参数, 2)S参数测量;(习题2-11,2-17,书本:105-107页) 第三章微波元件 1)阻抗匹配与变换元件 2)定向耦合元件,匹配双T 3)微波谐振器 学习重点:1)阻抗匹配;(习题3-2);矩形谐振器;(习题3-28) 2)定向器(习题3-17);匹配双T(习题3-21); 书本:152页,例3-6; 第四章天线基本理论 1)了解基本振子的辐射场; 2)对称振子的辐射场 3)发射天线的电参数; 4)接收天线理论;自由空间电波传播 学习重点:1)对称振子方向图(习题4-9); 2)天线电参数(习题4-20);电波传播与接收天线理论(习题4-28) 书本:198页,例4-2;199页,例4-3;

天线原理与设计 讲义

第八章 口径天线理论基础 在第七章以前我们讨论的是线状天线,其特点是天线呈直线、折线或曲线状,且天线的尺寸为波长的几分之一或数个波长。所构成的基本理论称之为线天线理论。既使是第七章的开槽缝隙天线,在分析时也是借助了缝隙天线的互补天线—金属线天线来分析。 在实际工作中,还将遇到金属导体构成的口径天线和反射面天线。有时我们统称为口面天线。它们包括:喇叭天线、透镜天线、抛物面天线、双反射面的卡塞格伦天线等。见P169图8-1。它们的尺寸可以是波长的十几到几十倍以上。 口面天线的分析模型如图8-1所示: 图8-1 口面天线的分析模型 S ′为天线金属导体面,为开口面,S S ′+构成一个封闭面,封闭面内有一源。 S 对这样一个分析模型,要求解空间某点p 处的电磁场E P 、H P 。它们可描述为由两部分组成:一部分是源的直达波,一部分是由天线导体面上感应电流产生的散射场。这种分析方法我们称之为面电流法。面电流法对反射面天线有效,它是分析反射面天线的方法之一。但是,面电流法对喇叭天线、波导口天线一类的口径天线无效,或者说处理很难。我们可采用口径场法。 口径场法步骤: 1、解内问题,即由场源求得口面上的场分布; 2、解外问题,即由口面上场分布求解远区辐射场。 由此可见,反射面天线也可用口径场法分析。 喇叭天线一类:口径场法; 反射面天线一类:口经场法,面电流法。(近似方法) 有的反射面天线如抛物环面,由于口径场不易确定,还只得用面电流法。 口径场法和面电流法都是近似的方法,它们只能求出口径面前方半空间的辐射场,口面后方半空间的场无法求得。实际上口面天线的外表面及口径边缘L 上均有感应电流。这部分电流就是对口面天线后向辐射的主要贡献。但通常的做法是采用几何绕射理论,求由边缘L 产生的绕射。 值得说明的是,口面天线的边缘绕射场与前方半空间的场相比是微不足道的。 如果采用口径场法,那么,现在的问题是:能否用口径天线口面上的场分布来确定天线辐射场?回答是肯定的,这就须由惠更斯—菲涅尔原理来说明。

天线基础知识

一. 方向性系数: 物理意义:方向图函数E(,)θφ或f (,)θφ表示了离辐射源相同距离上各点在各个方向上辐射场的相对大小,它不能明确表示天线辐射能量在某个特定方向上集中的程度,因而必须引进方向性系数这一指标参数。方向性系数是用来表征天线辐射能量集中程度的一个参数。 定义1:在相同辐射功率r r P P =o 情况下,某天线在给定方向i i (,)θφ的辐射强度i i U(,)θφ与理想点源天线在同一方向的辐射强度U o 之比,即 2220 4r r i i i i i P i i P i i U(,) f (,) D(,)U f (,)sin d d ππ θφπθφθφθφθθφ == ?? o o @ 定义2:在给定方向i i (,)θφ产生相同电场强度M E E =o 下,理想点源天线的辐射功率r P o 与某天线辐射功率r P 之比。即: 2220 4M r i i i i r i i i E E P f (,) D(,)P f (,)sin d d πθφθφθφθθφ == ?? o o @ 图0:两种条件下的某天线方向图和理想点源方向图 一般方向性系数我们都是指最大波束(,)θφo o 处的方向性系数(是否可以这么理解,工程上主要考虑最大波束方向上的能量集中的程度),则最大波束处的方向性系数可以表示为: 20000220 4f (,) D(,)f (,)sin d d ππ πθφθφθφθθφ = ?? 方向性系数表示无量纲的量,工程上一般采用分贝表示: 10dB D (,)lg D(,)θφθφ=o o o o 方向性系数两种定义的物理解释: 前面已经提到,天线的方向性系数是用来表征天线辐射能量集中程度的一个参数,对于最大辐射方向上的方向性系数D(,)θφo o 来说,其值愈大,天线的能量辐射就愈集中,定向性能就愈强。下面针对方向性系数的两种定义方法用图解来说明。图0所示为方向性系数的 两种定义方法对应的两种条件下某天线和理想点源天线的方向图。在相同辐射功率条件下,

天线原理与设计习题集解答-第2章

第二章 天线的阻抗 (2-1) 由以波腹电流为参考的辐射电阻公式:220 30 (,)sin r R d f d d π π ?θ?θθ?π = ? ? 计算对称半波天线的辐射电阻。(提示:利用积分201cos ln(2)(2)x dx C Ci x πππ-=+-?,式中,0.577, 023.0)2(-=πCi ) 解:半波振子天线的辐射方向图函数为 cos(cos ) 2(,)sin f π θθ?θ =, 则 2222000cos (cos )301cos(cos )2sin 60(cos )sin 2(1cos ) r R d d d ππππθπθ?θθθπθθ+==--??? 011130()[1cos(cos )](cos )21cos 1cos d ππθθθθ=+++-? 01cos(cos )1cos(cos )15[](cos )1cos 1cos d ππθπθθθθ++=++-? 01cos[(1cos )]1cos[(1cos )]15(cos )1cos 1cos d ππθπθθθθ -+--=++-? 1cos[(1cos )] 15[(1cos )](1cos )d ππθπθπθ-+=++? 01cos[(1cos )]15[(1cos )](1cos )d ππθπθπθ--+--? 20 1cos 215x dx x π -=?? 30[ln(2)(2)]C Ci ππ=+- 73.1()=Ω (2-2) 利用下式求全波振子的方向性系数 r R f D ) ,(120),(2?θ?θ= , θβθβ?θsin cos )cos cos(),( -=f 若全波振子的效率为5.0=a η,求其最大增益的分贝数和3/πθ=时的方向性系数。 解:(1) 求增益(即最大辐射方向上的方向性系数与效率的积) 全波振子半长度为/2l λ=,则 cos(cos )1()sin f πθθθ +=,max /2()|2f f θπθ===,199r R =Ω 2 max 1201204 2.41199 r f D R ?=== 0.5 2.41 1.205A G D η=?=?= (0.8)

天线基本知识(快速入门)

天线基本知识 6.1 天线 6.1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 6.1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。 6.1.3 天线方向性的讨论 1 天线方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部 分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈” 形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。

RFID天线基础知识

RFID天线基础知识 一、RFID系统组成 二、天线基础知识 2010-05-13 alay 2010-5-13

一、RFID系统的基本组成部分 v最基本的RFID系统由三部分组成: v标签(Tag):由耦合组件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象; v阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式; v天线(Antenna):在标签和读取器间传递射频信号。 2010-5-13

RFID无线识别电子标签基础介绍v无线射频识别技术(Radio Frequency Idenfication,RFID)是一种非接触的自动识别技术,其基本原理是利用射频信号和空间耦合(电感或电磁耦合)或雷达反射的传输特性,实现对被识别物体的自动识别。 2010-5-13

v RFID系统至少包含电子标签和阅读器两部分。电子标签是射频识别系统的数据载体,电子标签由标签天线和标签专用芯片组成。依据电子标签供电方式的不同,电子标签可以分为有源电子标签(Active tag)、无源电子标签(Passive tag)和半无源电子标签(Semi—passive tag)。有源电子标签内装有电池,无源射频标签没有内装电池,半无源电子标签(Semi—passive tag)部分依靠电池工作。 2010-5-13

v电子标签依据频率的不同可分为低频电子标 签、高频电子标签、超高频电子标签和微波 电子标签。依据封装形式的不同可分为信用 卡标签、线形标签、纸状标签、玻璃管标签、圆形标签及特殊用途的异形标签等。 v RFID阅读器(读写器)通过天线与RFID电 子标签进行无线通信,可以实现对标签识别 码和内存数据的读出或写入操作。典型的阅 读器包含有高频模块(发送器和接收器)、控 制单元以及阅读器天线。 2010-5-13

一些天线基本知识

一些天线基本知识 一、电磁波产生的基本原理 按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。 周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。 电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠“变化电场产生变化磁场,变化磁场产生变化电场”的机理来传播。 当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射出去。于是就有了传输线和天线。无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。 对于传输线,这种导线的结构应该能传递电磁能量,而不会向外辐射;对于天线,这种导线的结构应该能尽可能将电磁能量传递出去。不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!研究什么样结构的导线能够实现高效的发射和接收,也就形成了天线这门学问。

高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。 二、天线 在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波的装置称为天线。发射机所产生的已调制的高频电流能量(或导波能量)经馈线传输到发射天线,通过天线将转换为某种极化的电磁波能量,并向所需方向出去。到达接收点后,接收天线将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈线输送到接收机输入端。 综上所述,天线应有以下功能: 1.天线应能将导波能量尽可能多地转变为电磁波能量。这首先要求天线是一个良好的电磁开放系统,其次要求天线与发射机或接收机匹配。 2.天线应使电磁波尽可能集中于确定的方向上,或对确定方向的来波最大限度的接受,即方向具有方向性。 3.天线应能发射或接收规定极化的电磁波,即天线有适当的极化。 4.天线应有足够的工作频带。 这四点是天线最基本的功能,据此可定义若干参数作为设计和评价天线的依据。 把天线和发射机或接收机连接起来的系统称为馈线系统。馈线的形式随频率的不同而分为又导线传输线、同轴线传输线、波导或微带线等。所以,所谓馈线,实际上就是传输线。 天线的电参数 天线的基本功能就是能量转换和定向辐射,所谓天线的电参数,就是能定量表征其能量转换和定向辐射能力的量。 1. 天线的方向性

天线的基础知识

第一讲天线的基础知识 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。 1.1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB 的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 1.2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保 证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为 5dB,比单极化天线提高约2dB。) 1.3 天线的增益

天线原理与设计习题集解答_第3&4章

第三章 接收天线 (3-1) 已知半波对称振子天线的有效长度e l =λ/π,试求其有效面积。 解:半波振子的有效面积:(P56 已计算出) 1.64D =, 2 20.134D S λλπ == (3-2) 两微波站相距r ,收发天线的增益分别为G r 、G T ,有效面积分别为S r 、S T ,接收天线的最大输出功率为Pr ,发射天线的输入功率P T 。试求证不考虑地面影响时的两天线间的传输系数为 2 22 )4(r S S G G r P P T T r T r T r λπλ=== 并分析其物理意义。 解: 24r r G S λπ?= , 2 4T T G S λπ ?= r 2 4T T r P P G S r π∴= ?? 2 22 444r T r T r T P G S G G T P r r λπππ??===? 2 2 222444r T r T T r S S S S G G r r r λπππλλ??=?=?= ??? 费里斯传输方程是说明接收功率r P 与发射天线输入功率T P 之间的关系的方程,传输系数T 与空间衰减因子2 ( )4r λπ和收发天线的增益r G 和T G 成正比;或与收发天线的有效面积r S 和T S 成正比,与距离和工作波长的平方2()r λ成反比。 (3-3) 如图中的两半波振子天线一发一收,均处于谐振匹配状态。接收点在发射点的θ角方向,两天线相距r ,辐射功率为P T 。 试问: 1)发射天线和接收天线平行放置时收到的功率是否最大?写出表示式。当 60=θ°,r=5km ,P T =10W 时,计算接收功率。 2)计算上述参数时的最大接收功率,此时接收天线应如何放置? 解:(1) 平行放置时接收到的功率不是最大。

天线基础知识大全

天线基础知识大全 导读:无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。 关键字:天线 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a 。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。

天线与设计

[5] C.-P.Chen,K.Sugawara,Z.Ma,T.Anada,and D.W.P.Tomas, “Compact magnetic loop probe for microwave EM?eld-mapping and its applications in dielectric constant measurement,”in Proc.Eur.Microw. Conf.,Oct.2007,pp.226–229. [6]N.Ando et al.,“Miniaturized thin-?lm magnetic?eld probe with high spatial resolution for LSI chip measurement,”in Proc.Int.Symp. https://www.wendangku.net/doc/052565557.html,pat.(EMC),vol.2.Aug.2004,pp.357–362. [7]N.Tamaki,N.Masuda,T.Kuriyama,J.-C.Bu,M.Yamaguchi,and K.-I. Arai,“A miniature thin-?lm shielded-loop probe with a?ip-chip bonding for magnetic near?eld measurements,”https://www.wendangku.net/doc/052565557.html,mun.Jpn.,vol.88, no.4,pp.37–45,2005. [8]H.-H.Chuang et al.,“A magnetic-?eld resonant probe with enhanced sensitivity for RF interference applications,”IEEE Trans.Electromagn. Compat.,vol.55,no.6,pp.991–998,Dec.2013. [9]Y.-T.Chou and H.-C.Lu,“Magnetic near-?eld probes with high-pass and notch?lters for electric?eld suppression,”IEEE Trans.Microw. Theory Techn.,vol.61,no.6,pp.2460–2470,Jun.2013. [10]W.H.Haydl,“On the use of vias in conductor-backed coplanar circuits,” IEEE Trans.Microw.Theory Techn.,vol.50,no.6,pp.1571–1577, Jun.2002. [11]M.Yu,R.Vahldieck,and J.Huang,“Comparing coax launcher and wafer probe excitation for10mil conductor backed CPW with via holes and airbridges,”in IEEE MTT-S Int.Microw.Symp.Dig.,vol.2.Jun.1993, pp.705–708. [12] E.R.Pillai,“Coax via—A technique to reduce crosstalk and enhance impedance match at vias in high-frequency multilayer packages veri?ed by FDTD and MoM modeling,”IEEE Trans.Microw.Theory Techn., vol.45,no.10,pp.1981–1985,Oct.1997. [13]T.Harada,H.Sasaki,and E.Hankui,“Time-domain magnetic?eld waveform measurement near printed circuit boards,”Elect.Eng.Jpn., vol.125,no.4,pp.9–18,1998. A Wideband High-Gain Cavity-Backed Low-Pro?le Dipole Antenna Jian-Ying Li,Rui Xu,Xuan Zhang,Shi-Gang Zhou, and Guang-Wei Yang Abstract—In this communication,a compact,wideband,low-pro?le, and high gain dipole antenna is proposed.A microstrip coupling line is used to feed the ellipse pairs,which is two arms of the antenna. This simple feeding structure can signi?cantly enhance the impedance bandwidth(IBW).A cavity-backed structure is adopted to achieve the low-pro?le antenna.With the in?uence of the cavity-backed structure, the new antenna has a higher gain over the whole frequency band. An optimized antenna with a height of only0.17λ(whereλis the free space wavelength at the lowest frequency)is designed and measured. The measured result shows that the IBW for VSWR<2is117% (2.48–9.51GHz).Further,the gain bandwidth(Gain>6dBi)from 2.57to8.73GHz is more than108.9%.The antenna radiation pattern performs well over the whole band,and the peak gain can reach11.8dBi. Index Terms—Broadband antenna,higher antenna gain,low-pro?le. I.I NTRODUCTION In recent years,with the rapid development of modern wireless communication technologies,such as2G,3G,Wi-Fi,and4G LTE, and to meet the demand for simultaneous operation of such commu-nication systems,compact ultrawideband low-pro?le antennas have attracted increasing attention.In addition to the above communication systems,low-pro?le wideband antennas are used in such applications as ground-penetrating radar,through-wall radar,medical imaging,and precision location systems.There is an intensive demand to design an antenna suitable for the modern wireless systems with a compact structure,a broad operating band,stable radiation patterns,and higher gain over the whole working frequency band. The printed dipole[1]antenna,which includes a center-fed copla-nar strip dipole,a double-sided printed dipole,and a folded printed dipole,has a compact size.Additionally,the planar printed-strip dipole antenna has many other advantages,such as easy fabrication,a broad bandwidth,lower surface wave excitation,and low cost.In[2], a printed fat dipole fed by a tapered microstrip balun is discussed, which has a wide bandwidth of96%and little squint radiation pat-terns.Numerous antennas have been developed and are found in the literature[3]–[8].In[3],the antenna is excited by a coaxial probe that works as a balun,limiting the antenna impedance bandwidth(IBW). The antennas in[4]–[7]are fed by a microstrip feed-line to achieve a broad bandwidth.In[7],the antenna pro?le is decreased to0.1λ(whereλis the free space wavelength at the lowest frequency),but the antenna gain is very low at lower frequencies.The antenna in[8] is fed by a coupling microstrip line with a simple structure.However, the radiation patterns of this antenna deteriorate at the high-frequency band,and the antenna height is a little bigger(0.24λ).In[9],the antenna is excited by an air microstrip line embedded in the patch, Manuscript received November11,2015;revised August5,2016; accepted September2,2016.Date of publication October24,2016;date of current version December5,2016.This work was supported in part by the National Natural Science Foundation of China under Grant61271416 and Grant61301093and in part by the Fundamental Research Funds for the Central Universities under Grant GEKY8002. The authors are with the School of Electronics and Information, Northwestern Polytechnical University,Xi’an710072,China(e-mail: jianyingli@https://www.wendangku.net/doc/052565557.html,;rxuilj@https://www.wendangku.net/doc/052565557.html,). Color versions of one or more of the?gures in this communication are available online at https://www.wendangku.net/doc/052565557.html,. Digital Object Identi?er10.1109/TAP.2016.2620607 0018-926X?2016IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission. See https://www.wendangku.net/doc/052565557.html,/publications_standards/publications/rights/index.html for more information.

相关文档