文档库 最新最全的文档下载
当前位置:文档库 › 1高考湘教考苑数学一轮复习教材研读:第二章 第六节 对数与对数函数 含解析

1高考湘教考苑数学一轮复习教材研读:第二章 第六节 对数与对数函数 含解析

1高考湘教考苑数学一轮复习教材研读:第二章 第六节 对数与对数函数 含解析
1高考湘教考苑数学一轮复习教材研读:第二章 第六节 对数与对数函数 含解析

第六节 对数与对数函数

命题导航

考试要点

命题预测

(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在化简运算中的作用.

(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.

(3)知道对数函数是一类重要的函数模型.

(3)了解指数函数y=a x

与对数函数y=log a x 互为反函数(a>0,且a ≠1).

1.考向预测:①利用对数函数的单调性比较大小;

②求对数型函数的定义域、值域及最值;

③对数函数性质的应用.

2.学科素养:主要考查直观想象、逻辑推理、数学运算的核心素养.

1.对数的概念

(1)对数的定义:

一般地,如果① a x =N(a>0,且a ≠1) ,那么数x 叫做以a 为底N 的对数,记作② x=log a N ,其中③ a 叫做对数的底数,④ N 叫做真数.

(2)几种常见的对数: 对数形式

特点

记法 一般对数 底数为a(a>0且a ≠1) ⑤ log a N 常用对数 底数为10 ⑥ lg N 自然对数

底数为e

⑦ ln N

2.对数的性质与运算法则

(1)对数的性质:

a log a N =⑧ N ;log a a N =⑨ N .(a>0且a ≠1) (2)对数的重要公式:

换底公式:⑩ log b N =log a N

log a

b (a,b 均大于0且不等于1);

相关结论:log a b=1

log b

a ,log a

b ·

log b c ·log c d= log a d (a,b,c 均大于0且不等于1,d 大于

0).

(3)对数的运算法则:

如果a>0且a ≠1,M>0,N>0,那么 log a (MN)= log a M+log a N ; log a M

N = log a M-log a N ; log a M n = nlog a M (n ∈R); lo g a m M n =n

m log a M(m,n ∈R,且m ≠0). 3.对数函数的图象与性质

a>1

0

图象

性质

定义域:(0,+∞)

值域:R

图象恒过点(1,0),即x=1时,y=0

当x>1时,y>0; 当01时,y<0; 当00 是(0,+∞)上的增函数

是(0,+∞)上的减函数

?提醒 当对数函数的底数a 的大小不确定时,需分a>1和0

指数函数y=a x (a>0,且a ≠1)与对数函数 y=log a x (a>0,且a ≠1)互为反函数,它们的图象关于直线 y=x 对称.

知识拓展

对数函数的图象与底数大小的比较如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,故0

1.判断正误(正确的打“√”,错误的打“?”).

(1)log a(MN)=log a M+log a N.(?)

(2)log a x·log a y=log a(x+y).(?)

(3)log2x2=2log2x.(?)

(4)若log a m

(5)函数y=ln1+x

与y=ln(1+x)-ln(1-x)的定义域相同.(√)

1-x

,-1),函数图象经过第一、(6)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(1

a

四象限.(√)

π,c=π-2,则a,b,c的大小关系是()

2.设a=log2π,b=lo g1

2

A.a>b>c

B.b>a>c

C.a>c>b

D.c>b>a

答案C

3.计算:log23·log34+(√3)log34=.

答案4

4.函数f(x)=log2x,x≥4的值域为.

答案[2,+∞)

5.函数y=√log0.5(4x-3)的定义域为.

,1]

答案(3

4

6.(教材习题改编)函数y=log a(4-x)+1(a>0,且a≠1)的图象恒过点.

答案 (3,1)

对数的概念、性质与运算

命题方向一 对数的概念与性质

典例1 (1)若log a 2=m,log a 5=n,则a 3m+n ( ) A.11

B.13

C.30

D.40

(2)已知2a =5b =10,则a+b

ab = . (3)设52log 5(2x -1)=9,则x= . 答案 (1)D (2)1 (3)2

命题方向二 对数的运算

典例2 计算:(1)(lg 2)2+lg 2·lg 50+lg 25; (2)log 3

√274

3

+lg 5+7log 72

+log 23·log 94+lg 2; (3)(log 32+log 92)·(log 43+log 83).

解析 (1)原式=(lg 2)2+(1+lg 5)·lg 2+lg 52

=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2. (2)原式=log 3334

-1+lg 5+2+lg3lg2·2lg22lg3+lg 2=3

4-1+(lg 5+lg 2)+2+1

=-1

4+1+3=15

4.

(3)原式=log 32·log 43+log 32·log 83+log 92·log 43+log 92·log 83 =lg2

lg3·lg3

2lg2+lg2

lg3·lg3

3lg2+lg2

2lg3·lg3

2lg2+lg2

2lg3·lg3

3lg2 =12+13+14+16=1512=54.

规律方法

对数运算的求解思路

(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数的运算性质求解.

(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,将其转化为同底数对数真数的积、商、幂的运算.

1-1 (1)(lg 5)2+lg 2·lg 5+lg 20-log 23·log 38+2(1+log 25)= .

(2)如果45x =3,45y =5,那么2x+y= . 答案 (1)9 (2)1

解析 (1)原式=lg 5(lg 5+lg 2)+lg 2+lg 10-log 23·log 28

log 2

3+2·2log 25=1+1-3+10=9.

(2)∵45x =3,45y =5,∴x=log 453,y=log 455,

∴2x+y=2log 453+log 455=log 459+log 455=log 45(9×5)=1.

对数函数的图象及应用

典例3 (1)函数f(x)=ln|x-1|的大致图象是( )

(2)当0

2时,4x 0且a ≠1),则a 的取值范围是( ) A.(0,

√2

2

) B.(√2

2,1)

C.(1,√2)

D.(√2,2)

(3)已知函数f(x)=4+log a (x-1)的图象恒过定点P,则点P 的坐标是 . 答案 (1)B (2)B (3)(2,4)

解析 (1)当x>1时, f(x)=ln(x-1),又f(x)的图象关于直线x=1对称,故选B.

(2)易知0

与y=log a x 的大致图象如图,则由题意可知只需满足log a 1

2>412

,解得a>√2

2,∴√2

2

方法技巧

对数函数图象的应用方法

一些对数型方程、不等式问题常转化为相应的函数的图象问题,利用数形结合法求解.

2-1函数y=log a x与y=-x+a在同一平面直角坐标系中的图象可能是()

答案A

对数函数的性质及应用

命题方向一比较对数值的大小

典例4(1)(2018天津,5,5分)已知a=log2e,b=ln2,c=lo g1

21

3

,则a,b,c的大小关系为()

A.a>b>c

B.b>a>c

C.c>b>a

D.c>a>b

1<1

a <1

b

,则下列结论中正确的是()

A.log a b>log b a

B.|log a b+log b a|>2

C.(log b a)2<1

D.|log a b|+|log b a|>|log a b+log b a|

答案(1)D(2)AB

解析(1)由已知得c=log 23,

∵log23>log2e>1,b=ln2<1,

∴c>a>b,故选D.

(2)∵1<1

a <1

b ,

∴0

则log a b>1,0log b a,故A 正确. 由基本不等式得

log a b+log b a ≥2√a b ·log b a =2, 当且仅当log a b=log b a 时,等号成立, 又易知其不相等,故B 正确. 0<(log b a)2<1,故C 错误.

|log a b|+|log b a|=|log a b+log b a|,故D 错误.

命题方向二 解简单对数不等式

典例5 (1)函数f(x)=√(log 2x)2-1

的定义域为( )

A.(0,1

2)

B.(2,+∞)

C.(0,12)∪(2,+∞)

D.(0,1

2]∪[2,+∞)

(2)函数y=√3(2x -1)+1的定义域是( ) A.[1,2] B.[1,2) C.[23,+∞) D.(2

3,+∞) 答案 (1)C (2)C

命题方向三 对数函数性质的综合应用

典例6 已知函数f(x)=log a (ax 2-x+1)(a>0,且a ≠1). (1)若a=1

2,求函数f(x)的值域;

(2)当f(x)在区间[14,3

2]上为增函数时,求a 的取值范围. 解析 (1)当a=12时,ax 2-x+1=12x 2-x+1=1

2[(x-1)2+1]>0恒成立, 故函数f(x)的定义域为R,

∵12x 2-x+1=12[(x-1)2+1]≥1

2,且函数y=lo g 12

x 在(0,+∞)上单调递减,

∴lo g 12

(12x 2-x +1)≤lo g 12

1

2=1,

即函数f(x)的值域为(-∞,1].

(2)依题意可知,

①当a>1时,由复合函数的单调性可知,必有y=ax 2-x+1在[14,3

2]上单调递增,且ax 2-x+1>0对任意x ∈[14,3

2]恒成立.

故有{x =12a ≤1

4,a ·(14)2-1

4+1>0,

解得a ≥2; ②当00对任意x ∈[14,3

2]恒成立,故有{x =12a ≥3

2,

a ·(32)2-32+1>0,

解得29

3

. 综上,实数a 的取值范围是(29,1

3]∪[2,+∞). 规律方法

1.比较对数值的大小的方法

(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.

(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0等中间量进行比较. 2.对数不等式的类型及解法

(1)形如log a x>log a b(a>0且a ≠1)的不等式,需借助y=log a x 的单调性求解,如果a 的取值不确定,那么需分a>1与0

(2)形如log a x>b 的不等式,需先将b 化为以a 为底的对数式的形式,再求解. 3-1 设a=log 36,b=log 510,c=log 714,则( )

A.c>b>a

B.b>c>a

C.a>c>b

D.a>b>c

答案 D ∵a=log 36=1+log 32=1+1

log 2

3, b=log 510=1+log 52=1+1

log 2

5,

c=log 714=1+log 72=1+1

log 2

7,

且log 27>log 25>log 23>0, ∴a>b>c.

3-2 已知函数f(x)=ln(2求f(lg 2)+f (lg 1

2)的值. 解析 由√1+9x 2-3x>0恒成立知,函数f(x)的定义域为R, 又f(-x)+f(x)=[ln(√1+9x 2+3x)+1]+[ln(√1+9x 2-3x)+1] =ln[(√1+9x 2+3x)(√1+9x 2-3x)]+2 =ln 1+2=2, 所以f(lg 2)+f (lg 1

2) =f(lg 2)+f(-lg 2)=2.

1.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总

数N 约为1080,则下列各数中与M

N 最接近的是(参考数据:lg 3≈0.48)( ) A.1033 B.1053 C.1073 D.1093

答案 D 设M

N =x=3361

1080,两边取对数,

得lg x=lg 3361

1080=lg 3361-lg 1080=361×lg 3-80≈93.28, 所以x=1093.28,即M

N 最接近1093.

2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足

m 2-m 1=52lg E

1E 2

,其中星等为m k 的星的亮度为E k (k=1,2).已知太阳的星等是-26.7,天狼星的星等是

-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1 D.10-10.1 答案 A 依题意,m 1=-26.7,m 2=-1.45, 所以52·lg E

1E 2

=-1.45-(-26.7)=25.25,

所以 lg E 1E 2

=25.25×2

5

=10.1,

所以E

1E 2

=1010.1.故选A.

A 组 基础题组

1.函数y=√log 23

(2x -1)的定义域是( )

A.[1,2]

B.[1,2)

C.[1

2,1] D.(1

2,1] 答案 D

2.log 6[log 4(log 381)]的值为( ) A.-1

B.1

C.0

D.2

答案 C

3.已知函数y=log a (x+c)(a,c 为常数,其中a>0,且a ≠1)的图象如图,则下列结论成立的是( )

A.a>1,c>1

B.a>1,0

C.01

D.0

4.(2019河南郑州模拟)设a=log 50.5,b=log 20.3,c=log 0.32,则 ( ) A.b

答案 B a=log 50.5>log 50.2=-1,b=log 20.3log 0.310

3=-1,log 0.32=lg2

lg0.3, log 50.5=lg0.5lg5=lg2

-lg5=lg2

lg0.2. ∵-1

lg0.3

即c

5.若lg 2=a,lg 3=b,则log 418=( ) A.a+3b a B.

a+3b 2a C.

a+2b

a 2 D.

a+2b

2a

答案 D log 418=lg18lg4=

lg2+2lg3

2lg2

.因为lg 2=a,lg 3=b,所以log 418=

a+2b 2a

.故选D.

6.已知函数f(x)=log 2(x 2-2x+a)的最小值为2,则a=( ) A.4 B.5 C.6 D.7 答案 B

7.已知函数f(x)=lg 1-x

1+x ,若f(a)=1

2,则f(-a)=( ) A.2 B.-2

C.1

2 D.-12

答案 D ∵f(x)=lg 1-x

1+x 的定义域为{x|-1

1-x =-lg 1-x

1+x =-f(x), ∴f(x)为奇函数,∴f(-a)=-f(a)=-1

2.

8.若y=log 13

(3x 2-ax+5)在[-1,+∞)上单调递减,则a 的取值范围是( )

A.(-∞,-6)

B.(-6,0)

C.(-8,-6]

D.[-8,-6]

答案 C 由题意得a

6≤-1,且3x 2-ax+5>0 在[-1,+∞)上恒成立,所以3+a+5>0?a>-8, 即-8

9.设f(x)=lg(10x +1)+ax 是偶函数,那么a 的值为( ) A.1 B.-1

C.1

2 D.-12

答案 D 函数f(x)=lg(10x +1)+ax 的定义域为R,因为f(x)为偶函数,所以f(x)-f(-x)=0,即lg(10x +1)+ax-[lg(10-x +1)+a(-x)]=(2a+1)x=0.从而2a+1=0,a=-1

2.

10.若函数f(x)=log a x(0

√2

4

11.若log a (a 2+1)

2,1)

解析 由题意得a>0且a ≠1,故必有a 2+1>2a,又log a (a 2+1)1,所以a>1

2. 综上,a ∈(1

2,1).

12.已知2x ≤16且log 2x ≥1

2,求函数f(x)=log 2x

2·lo g √2

√x

2

的值域.

解析 由2x ≤16,解得x ≤4, ∴log 2x ≤2, 又log 2x ≥1

2, ∴1

2≤log 2x ≤2, f(x)=log 2x

2·lo g √2

√x 2

=(log 2x-1)(log 2x-2) =(log 2x)2-3log 2x+2 =(log 2x -32)2-1

4,

∴当log 2x=3

2时, f(x)min =-1

4. 又当log 2x=1

2时, f(x)=3

4; 当log 2x=2时, f(x)=0, ∴当log 2x=1

2时, f(x)max =3

4. 故f(x)的取值范围是[-14,3

4].

B 组 提升题组

1.已知f(x)=lo g 12

x,则不等式(f(x))2>f(x 2)的解集为( )

A.(0,1

4) B.(1,+∞) C.(14,1) D.(0,1

4)∪(1,+∞)

答案 D 由(f(x))2>f(x 2)得,(lo g 12

x)2>lo g 12

x 2?lo g 12

x(lo g 12

x-2)>0,即lo g 12

x>2或lo g 12

x<0,解得

x ∈(0,1

4)∪(1,+∞).

2.设方程10x =|lg(-x)|的两个根分别为x 1,x 2,则( ) A.x 1x 2<0 B.x 1x 2=0 C.x 1x 2>1

D.0

答案 D 作出y=10x 与y=|lg(-x)|的大致图象,如图.

显然x1<0,x2<0.

不妨令x1

所以10x1=lg(-x1),10x2=-lg(-x2),

此时10x1<10x2,即lg(-x1)<-lg(-x2),

由此得lg(x1x2)<0,

所以0

3.设x、y、z为正数,且2x=3y=5z,则()

A.2x<3y<5z

B.5z<2x<3y

C.3y<5z<2x

D.3y<2x<5z

答案D令2x=3y=5z=k(k>1),则x=log 2k,y=log3k,z=log5k,∴2x

3y =2lgk

lg2

·lg3

3lgk

=lg9

lg8

>1,则2x>3y,

2x 5z =2lgk

lg2

·lg5

5lgk

=lg25

lg32

<1,则2x<5z,故选D.

4.已知函数f(x)=|log3x|,实数m,n满足0

n

m

=.

答案9

解析∵f(x)=|log 3x|,

实数m,n满足0

∴m<1

∴mn=1.

∵f(x)在区间[m2,n]上的最大值为2,

函数f(x)在[m2,1)上是减函数,在(1,n]上是增函数,

∴-log3m2=2或log3n=2.

若-log3m2=2,则m=1

3

,

从而n=3,

此时log3n=1=-log3m,符合题意,

则n

m =3÷1

3

=9;

若log 3n=2,则n=9,从而m=19,此时-log 3m 2=4>2,不符合题意.故n

m =9. 5.已知函数f(x)=3-2log 2x,g(x)=log 2x.

(1)当x ∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;

(2)如果对任意的x ∈[1,4],不等式f(x 2)·f(√x )>k ·g(x)恒成立,求实数k 的取值范围. 解析 (1)h(x)=(4-2log 2x)·log 2x=-2(log 2x-1)2+2. 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h(x)的值域为[0,2]. (2)由f(x 2)·f(√x )>k ·g(x)得 (3-4log 2x)(3-log 2x)>k ·log 2x. 令t=log 2x,因为x ∈[1,4], 所以t=log 2x ∈[0,2],

所以(3-4t)(3-t)>k ·t 对一切t ∈[0,2]恒成立. 当t=0时,k ∈R; 当t ∈(0,2]时,k<

(3-4t)(3-t)

t

恒成立,

即k<4t+9

t -15恒成立. 因为4t+9

t ≥12, 当且仅当4t=9t , 即t=3

2时取等号, 所以(4t +9

t -15)min

=-3,

则k<-3. 综上,k ∈(-∞,-3).

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

中职数学指数函数与对数函数试卷

精品资料 欢迎下载 第四章《指数函数与对数函数》测试卷 一、填空题 1. ( ) A 、118 4 23? B 、314 4 23? C 、213 4 23? D 、8 4 23? 2. =??4 36482( ) A 、4 B 、8152 C 、2 72 D 、8 3. 函数()f x = ( ) A.(1,3) B. [-∞,3] C. [3,+∞] D. R 4. 3log 81= ( ) A 、2 B 、4 C 、2- D 、-4 5. 指数函数的图象经过点)27,2 3(,则其解析式是 ( ) A 、x y 3= B 、x y )3 1(= C 、x y 9= D 、x y )9 1(= 6. 下列函数在区间(0,+∞)上是减函数的是 ( ) A 、12y x = B 、3 1x y = C 、2y x -= D 、2 y x = 7. 将25628 =写成对数式 ( ) A 、2256log 8= B 、28log 256= C 、8256log 2= D 、2562log 8= 8. 将ln a = b (a >0) 写成指数式 ( ) A 、10 b = a B 、e b = a C 、 a b = e D 、 e a = b 9. 求值2 2ln log 16lg 0.1e +-等于( ) A 、5 B 、6 C 、7 D 、8 10. 如果32log (log )1x =,那么x =( ) A 、8 B 、9 C 、2 D 、3 11. 函数x x f lg 21)(-= 的定义域为( ) A 、(,10) -∞ -(10,)+∞ B 、(-10,10) C 、(0,100) D 、(-100,100) 12. 3 0.7、3log 0.7、0.7 3 的大小关系是( ) A 、30.730.73log 0.7 << B 、30.730.7log 0.73<< C 、 30.7 3log 0.70.73<< D 、 0.73 3log 0.730.7<< 二、填空题: 1.用不等号连接: (1)5log 2 6l o g 2 ,(2)若n m 33>,则m n ;(3)35.0 36.0 2. 若43x =, 3 4 log 4=y ,则x y += ; 3. 方程x x 28 )3 1 (3 2--=的解集为______________; 4. 若x x f 2)2(=,则=)8(f ; 三、解答题 1.. 解下列不等式: (1)0)3(log 3<-x (2)14 3log

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

对数函数与指数函数的运算

对数函数与指数函数的运算 1.化简下列各式(其中各字母均为正数): (1) ;)(65312121132 b a b a b a ????-- (2).)4()3(6521 332121231----?÷-??b a b a b a 2.化简(1) 313 2)3(---a y x (2) )111)((2211b ab a b a +-+-- 3.化简下列各式 (1) 6113175.0231729)95()27174(256)61(027 .0------+-+-- (2) (a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)] 4.求值(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg

(3) 2.1lg 10lg 38lg 27lg -+ (4)(lg2)3+(lg5)3+3lg2?lg5 (5)化简22)4(lg 16lg 25lg )25(lg ++ 答案: 1.(1)原式= .100653121612131656131212131=?=?=?-+-+--b a b a b a b a b a (2)原式=- )(45)4(25233136121332361------÷-=?÷b a b a b a b a .45145452 32321ab ab ab b a -=?-=?-=-- 2. (1) 639 27x a y ; (2) 3311b a +;

3.(1) 5132;(2) a a 1 ; 4. (1) 0;(2) 25;(3) 23;(4) 1;(5) 2 ;

高考数学 对数与对数函数

第八节 对数与对数函数 [知识能否忆起] 1.对数的概念 (1)对数的定义: 如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.当a =10时叫常用对数.记作x =lg_N ,当a =e 时叫自然对数,记作x =ln_N . (2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0. ②log a a =1. ③对数恒等式:a log a N =N . ④换底公式:log a b =log c b log c a . 推广log a b =1 log b a ,log a b ·log b c ·log c d =log a d . (3)对数的运算法则: 如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log am M n =n m log a M . 2.对数函数的概念 (1)把y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)函数y =log a x (a >0,a ≠1)是指数函数y =a x 的反函数,函数y =a x 与y =log a x (a >0,a ≠1)的图象关于y =x 对称. 3.对数函数的图象与性质

图象 性质 定义域:(0,+∞) 值域:R 过点(1,0),即x =1时,y =0 当x >1时,y >0当01时,y <0当00 在(0,+∞)上是增函数 在(0,+∞)上是减函数 [小题能否全取] 1.(教材习题改编)设A ={y |y =log 2x ,x >1},B =? ??? ?? y |y =??? ?12x ,00},B =? ??? ??y |120,a ≠1)的图象经过定点A ,则A 点坐标是( ) A.????0,2 3 B.???? 23,0 C .(1,0) D .(0,1) 解析:选C 当x =1时y =0. 3.函数y =lg |x |( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递减 D .是奇函数,在区间(0,+∞)上单调递增 解析:选B y =lg |x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增. 4.(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________.

指数函数对数函数计算题30-1

指数函数对数函数计算题30-1 1、计算:lg 5·lg 8000+06.0lg 6 1lg )2 (lg 23++. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、解方程:23log 1log 66-=x . 4、解方程:9-x -2×31-x =27. 5、解方程:x )8 1(=128. 6、解方程:5x+1=12 3-x . 7、计算:10log 5log )5(lg )2(lg 2233+ +·.10 log 18 8、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求函数121log 8.0--= x x y 的定义域. 10、已知log 1227=a,求log 616.

11、已知f(x)=1322+-x x a ,g(x)=522 -+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、解对数方程:log 2(x -1)+log 2x=1 17、解指数方程:4x +4-x -2x+2-2-x+2+6=0 18、解指数方程:24x+1-17×4x +8=0 19、解指数方程:22)223()223( =-++-x x ±2 20、解指数方程:014332 14111=+?------x x 21、解指数方程:042342222=-?--+-+x x x x

相关文档 最新文档