文档库 最新最全的文档下载
当前位置:文档库 › 2014届高三数学(文)二轮复习专题卷【函数与导数】

2014届高三数学(文)二轮复习专题卷【函数与导数】

2014届高三数学(文)二轮复习专题卷【函数与导数】
2014届高三数学(文)二轮复习专题卷【函数与导数】

2014届高三数学(文)二轮复习专题卷【函数与导数】

1.已知函数x ax x f ln 1)(--=()a ∈R .

(1)讨论函数)(x f 在定义域内的极值点的个数;

(2)若函数)(x f 在1=x 处取得极值,对x ?∈),0(+∞,2)(-≥bx x f 恒成立, 求实数b 的取值范围.

2. 已知函数32()(,)f x ax x ax a x =+-∈R . (1)当1a =时,求函数()f x 的极值;

(2)若()f x 在区间[0,)+∞上单调递增,试求a 的取值或取值范围;

(3)设函数118

()()(2)1333

h x f x a x a '=

++-+,(]1,x b ∈-,(1)b >-,如果存在(],1a ∈-∞-,对任意(]1,x b ∈-都有()0h x ≥成立,试求b 的最大值.

3. 已知函数2()(1)ln 1f x a x x =-++.

(Ⅰ)当14

a =-时,求函数()f x 的极值;

(Ⅱ)若函数()f x 在区间[2,4]上是减函数,求实数a 的取值范围;

(Ⅲ)当[1,)x ∈+∞时,函数()y f x =图象上的点都在1,

0x y x ≥??-≤?

所表示的平面区域内,求

实数a 的取值范围.

4. 设函数232()cos 4sin cos 43422

x x

f x x t t t t =--++-+,x ∈R ,其中1t ≤,将()f x 的最小

值记为()g t .(I )求()g t 的表达式;(II )讨论()g t 在区间(11)

-,内的单调性并求极值.

5. 已知二次函数)(x g y =的导函数的图像与直线2y x =平行,且)(x g y =在x =-1处取得最小值m -1(m 0≠).设函数x

x g x f )

()(=

(1)若曲线)(x f y =上的点P 到点Q(0,2)的距离的最小值为2,求m 的值 (2) )(R k k ∈如何取值时,函数kx x f y -=)(存在零点,并求出零点.

6. 设2

()(1)x f x e ax x =++,且曲线y =f (x )在x =1处的切线与x 轴平行。

(1)求a 的值,并讨论f (x )的单调性;

(2)证明:当[0,]f(cos )f(sin )22

π

θθθ∈-<时,

二轮复习专题卷【函数与导数】参考答案

1.

2.

(3)由2()32f x ax x a '=+-,118

()()(2)1333

h x f x a x a '=

++-+,

∴2()(21)(13)h x ax a x a =+++-,(]1,,(1)x b b ∈->-, ……………10分 当1x b -<≤时,令2(21)(13)0ax a x a +++-≥,………………①, 由(],1a ∈-∞-,∴()h x 的图象是开口向下的抛物线, 故它在闭区间上的最小值必在区间端点处取得,

……………11分

又(1)40h a -=->, ∴不等式①恒成立的充要条件是()0h b ≥,即

2(21)(13)0ab a b a +++-≥,

∵1b >-,∴10b +>且0a <,∴

2231

1b b b a

+-≤-+,依题意这一关于a 的不等式在(],1-∞-上有解,

2max 231()1b b b a +-≤-+,即223

11

b b b +-≤+,240b b +-≤,

b ≤≤

1b >-,故1b -<≤, 从而max b =

3.

(Ⅱ)1

()2(1)f x a x x

'=-+,∵函数()f x 在区间[2,4]上单调递减, ∴1()2(1)0f x a x x '=-+≤在区间[2,4]上恒成立,即2

1

2a x x

≤-+在[2,4]上恒成立, 只需2a 不大于21

x x

-+在[2,4]上的最小值即可.……………………………………………6分

221111()24

x x x =-+--+(24)x ≤≤,则当24x ≤≤时,2111

[,]212

x x ∈---+,

∴1

22a ≤-,即14a ≤-,故实数a 的取值范围是1(,]4

-∞-.……………………………8分 (Ⅲ)因()f x 图象上的点在1,

0x y x ≥??

-≤?

所表示的平面区域内,即当[1,)x ∈+∞时,不等式

()f x x ≤恒成立,即2(1)ln 10a x x x -+-+≤恒成立,设2()(1)ln 1g x a x x x =-+-+(1x ≥),只需max ()0g x ≤即

可.………9分

由1

()2(1)1g x a x x '=-+-2

2(21)1ax a x x

-++=,

(ⅰ)当0a =时,1()x

g x x

-'=,当1x >时,()0g x '<,()g x 在(1,)+∞上单减,故()(1)0g x g ≤=成立.…10分

(ⅱ)当0a >时,由2

12(1)()

2(21)1

2()a x x ax a x a g x x

x

--

-++'=

=

,令()0g x '=,得11x =或2

12x a

=, ①若

112a <,即1

2

a >时,在区间(1,)+∞上,()0g x '>,函数()g x 在(1,)+∞上单调递增,函数()g x 在[1,)+∞上无最大值,不满足条件;

②若112a ≥,即102a <≤时,函数()g x 在1(1,)2a 上单调递减,在区间1

(,)2a +∞上单调递增,同

()

g x 在

[1,)

+∞上无最大值,不满足条件

.…………………………………………………………12分

(ⅲ)当0a <时,由1

2(1)()2()a x x a g x x

--

'=

,因(1,)x ∈+∞,故()0g x '<,则函数()g x 在(1,)

+∞上单调递减,故()(1)0g x g ≤=成立.综上所述,实数a 的取值范围是

(,0]-∞.……………………………14分

4.

【答案】(I )232()cos 4sin cos 43422

x x

f x x t t t t =--++-+

222sin 12sin 434x t t t t =--++-+223sin 2sin 433x t x t t t =-++-+

23(sin )433x t t t =-+-+.

由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+. (II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:

由此可见,()g t 在区间112??-- ???,和112?? ???,单调增加,在区间1122??

- ???

,单调减小,极小值为

122g ??= ???,极大值为42g 1??

-= ???. 5.

6.

从而对任意1x ,2x [0,1]∈,有12()()12f x f x e -≤-<. 而当[0,]2π

θ∈时,cos ,sin θθ∈[0,1].

从而(cos )(sin )2f f θθ-<

高三数学第二轮专题复习(4)三角函数

高三数学第二轮专题复习系列(4) 三角函数 一、本章知识结构: 二、高考要求 1.理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。 2.掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式) 3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。 4.会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωχ+φ)的简图、理解A 、ω、 的物理意义。 5. 会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx 表示角。 三、热点分析 1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强. 2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题。 3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解. 4.立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度. 四、复习建议 应用 同角三角函数的基本关任意角的概念 任意角的三角诱导公式 三角函数的图象与计算与化简 证明恒等式 已知三角函数值求和角公式 倍角公式 差角公式 弧长与扇形面积公角度制与弧度应用 应用 应用 应用

高考数学二轮复习专题02:函数与导数

高考数学二轮复习专题 02:函数与导数
姓名:________
班级:________
成绩:________
一、 单选题 (共 17 题;共 34 分)
1. (2 分) (2016 高一上·厦门期中) 已知函数 f(x)=xln(x﹣1)﹣a,下列说法正确的是( )
A . 当 a=0 时,f(x)没有零点
B . 当 a<0 时,f(x)有零点 x0 , 且 x0∈(2,+∞)
C . 当 a>0 时,f(x)有零点 x0 , 且 x0∈(1,2)
D . 当 a>0 时,f(x)有零点 x0 , 且 x0∈(2,+∞)
2. (2 分) (2018 高二下·沈阳期中) 函数 A. B. C. D.
恰有一个零点,则实数 的值为( )
3. (2 分) 已知函数 f(x)= -cosx,若 A . f(a)>f(b) B . f(a)0
, 则( )
4. ( 2 分 ) (2019 高 二 上 · 浙 江 期 中 ) 已 知
的两个相邻的零点,且
,则
,且


是函数
的值为( )
第 1 页 共 12 页

A. B. C. D.
5. (2 分) 定义在 R 上的奇函数 f(x),当 x≥0 时,f(x)= =f(x)﹣a(0<a<1)的所有零点之和为( )
A . 3a﹣1 B . 1﹣3a C . 3﹣a﹣1 D . 1﹣3﹣a
, 则关于 x 的函数 F(x)
6. (2 分) 已知函数 取值范围是( )
A. B.
的图像为曲线 C,若曲线 C 存在与直线
垂直的切线,则实数 m 的
C.
D.
7. (2 分) (2016 高一上·沈阳期中) 已知函数 f(x)满足:当 f(x)= ()
A.
第 2 页 共 12 页
,则 f(2+log23)=

高三数学文科第二轮专题复习

大田职专11级1—5班数学专题复习 立体几何模块 1、如图,四边形ABCD 与''ABB A 都是边长为a 的正方形,点E 是A A '的中点,'A A ⊥平面ABCD .。(I )计算:多面体A 'B 'BAC 的体积; (II )求证:C A '//平面BDE ; (Ⅲ) 求证:平面AC A '⊥平面BDE . 2、如图,已知四棱锥ABCD P -中,底面ABCD 是直角梯形,//AB DC ,ο45=∠ABC ,1DC =, 2=AB ,⊥PA 平面ABCD ,1=PA . (Ⅰ)求证://AB 平面PCD ; (Ⅱ)求证:⊥BC 平面PAC ; (Ⅲ)若M 是PC 的中点,求三棱锥M ACD -的体积. 3、如图,在三棱锥A —BCD 中,AB ⊥平面BCD ,它的正视图和俯视图都是直角三角形,图中尺寸单位为cm 。(I )在正视图右边的网格内,按网格尺寸和画三视图的要求,画出三棱锥的侧(左)视图;(II )证明:CD ⊥平面ABD ;(III )按照图中给出的尺寸,求三棱锥A —BC D 的侧面积。 B ' ? D C A ' B A E M C A P

5、(11-3泉质) 6、如图,四棱锥P —ABCD 的底面ABCD 是边长为2的菱形,60ABC ∠=?,点M 是棱PC 的中点,N 是棱PB 的中点,PA ⊥平面ABCD ,AC 、BD 交于点O 。 (1)求证:平面OMN//平面PAD ; (2)若DM 与平面PAC 所成角的正切值为2,求三棱锥 P —BCD 的体积。

8、 9、已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,F 为棱BB 1的中点,M 为线段AC 1的中点. 求证:(Ⅰ)直线MF ∥平面ABCD ; (Ⅱ)平面AFC 1⊥平面ACC 1A 1. A B C D 1 A 1 B 1 C 1 D M F

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

高三二轮复习函数与导数

第三课时函数与导数的应用 1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2 D .0 2.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系 式为y =-13 x 3 +81x -234,则使该生产厂家获取最大的年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件 3:由直线x =-π3,x =π 3 ,y =0与曲线y =cos x 所围成的封闭图形的面积为( ) A.12 B .1 C.3 2 D.3 4.若函数 y =f (x )在R 上可导,且满足不等式xf ′(x )>-f (x )恒成 立,且常数a ,b 满足a >b ,则下列不等式一定成立的是( ) A .af (a )>bf (b ) B .af (a )bf (a ) 5:放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少, 这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02- t 30 ,其中M 0为t =0时 铯137的含量.已知t =30时,铯137含量的变化率... 是-10ln2(太贝克/年),则M (60)=( ) A .5太贝克 B .75ln2太贝克 C .150ln2太贝克 D .150太贝克 6.曲线y =2x 4上的点到直线y =-x -1的距离的最小值为_____5 16 2___. 7:已知函数f (x )是定义在R 上的奇函数,f (1)=0, 2 '()() 0(0)xf x f x x x ->>,则不等式 x 2f (x )>0的解集是 (-1,0)∪(1,+∞) . 8:已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2 e e 上的最小值. 解:(Ⅰ)x x x x f ln 164)(2 --=, x x x x x x f ) 4)(2(21642)('-+= --= 2分

高考数学函数与导数相结合压轴题精选(含具体解答)

函数与导数相结合压轴题精选(二) 11、已知)0()(2 3 >+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M > 证明:由题设有),)((323)(212 x x x x a c bx ax x f --=++='不仿设21x x <, 则由时当时当时当知),(,0)(),(,0)(),(:02211+∞∈<'∈>'-∞∈>x x x f x x x x f x x a 1)(,0)(x x f x f 在故>'处取极大值,在x 2处取极小值, )()()()()(212 221323121x x c x x b x x a x f x f -+-+-=- ])()()[(212122121c x x b x ax x x a x x +++-+-= )] 3(92 )[(]3232)32()[(22121ac b a x x c a b b a c a a b a x x ---=+-?+?-- ?-= 由方程0232 =++c bx ax 有两个相异根,有,0)3(412)2(2 2>-=-=?ac b ac b 又)()(,0)()(,0,0212121x f x f x f x f a x x >>-∴><-即,得证. 12、已知函数ax x x f +-=3 )(在(0,1)上是增函数. (1)求实数a 的取值集合A ; (2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常 数),试比较n n a a 与1+的大小; (3)在(2)的条件下,问是否存在正实数C ,使20<-+< c a c a n n 对一切N n ∈恒成立? (1)设))(()()(,102 2212 1122121a x x x x x x x f x f x x -++-=-<<<则 由题意知:0)()(21<-x f x f ,且012>-x x )3,0(,2 22121222121∈++<++∴x x x x a x x x x 则 }3|{,3≥=≥∴a a A a 即 (4分) (注:法2:)1,0(,03)(2 ∈>+-='x a x x f 对恒成立,求出3≥a ). (2)当3时,由题意:)1,0(,2 3 21131∈=+- =+b a a a a n n n 且

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

(完整word版)2018届高三数学二轮复习计划

宾阳中学2018届高三数学备课组第二轮复习计划 为使二轮复习有序进行,使我们的复习工作卓有成效并最终赢得胜利,在校、年级领导指导下,结合年级2018届高考备考整体方案的基础上,经数学基组研究,制定本工作计划。 一、成员: 韦胜华(基组长)、黎锦勇、文育球、韦振、施平凡、候微、张善军、蓝文斌、陈卫庆、黄凤宾、李雪凤、韦衍凤、梁建祥、卢焕荣、黄恩端、林祟标。 本届高三学生由于高一、高二赶课较快,训练量较少,所以基础相对薄弱,数学的五大能力:计算能力、逻辑推理能力、空间想象能力、抽象概括能力、数据处理能力都较差,处理常规问题的通解通法未能落实到位,常见的数学思想还未形成。 二、努力目标及指导思想: 1、承上启下,使知识系统化、条理化,促进灵活应用。 2、强化基础夯实,重点突出,难点分解,各个击破,综合提高。 三、时间安排:2018年1月下旬至4月中旬。 四、方法与措施: (一)重视《考试大纲》(以2018年为准)与《考试说明》(参照2017年的考试说明)的学习,这两本书是高考命题的依据,是回答考什么、考多难、怎样考这3个问题的具体规定和解说。 (二)重视课本的示范作用,虽然2018年高考是全新的命题模式,但教材的示范作用绝不能低估。 (三)注重主干知识的复习,对于支撑学科知识体系的重点知识,要占有较大的比例,构成数学试题的主体。 (四)注重数学思想方法的复习。在复习基础知识的同时,要进一步强化基本数学思想和方法的复习,只有这样,在高考中才能灵活运用和综合运用所学的知识。 (五)注重数学能力的提高,数学能力包括空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。 (六)注重数学新题型的练习。以高考试题为代表,构建新题型。 宾阳中学2018届高三理科数学备课组第二轮复习计划第1页(共2页)

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高三数学二轮复习试题

数学思想三(等价转化) 1.设M={y|y=x+1, x ∈R}, N={ y|y=x 2+1, x ∈R},则集合M ∩N 等于 ( ) A.{(0,1),(1,2)} B.{x|x ≥1} C.{y|y ∈R} D.{0,1} 2.三棱锥的三个侧面两两垂直,它们的面积分别为M,N,Q ,则体积为 ( ) A.32MNQ B.42MNQ C.62MNQ D.8 2MNQ 3.若3sin 2 +2sin 2 =2sin ,则y= sin 2 +sin 2 的最大值为 ( ) A. 21 B.32 C.94 D.9 2 4.对一切实数x ∈R ,不等式x 4+(a-1)x 2+1≥0恒成立,则a 的取值范 围为 ( ) A.a ≥-1 B.a ≥0 C.a ≤3 D.a ≤1 5.(1-x 3)(1+x)10的展开式中,x 5的系数是 ( ) A.-297 B.-252 C.297 D.207 6.方程|2|)1(3)1(32 ++=-+-y x y x 表示的曲线是 ( ) A.圆 B.椭圆 C.双曲线 D.抛物线 7.AB 是抛物线y=x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 长度的最大值 ( ) A. 45 B.2 5 C.2 D.4 8.马路上有编号为1,2,3,4,5,6,7,8,9的9只路灯,为节约用电,可以把其中的3只路灯关掉,但不能同时关掉相邻的2只或3只,也不能关掉两端的路灯,则满足条件的关灯方法共有___________________种。 9.正三棱锥A BCD 的底面边长为a ,侧棱长为2a ,过B 点作与侧棱AC,AD 都相交的截面BEF ,则截面⊿BEF 的周长的最小值为_______________ 10.已知方程x 2+mx+m+1=0的两个根为一个三角形两内角的正切值,则 m ∈________________________________________ 11.等差数列{a n }的前项和为S n , a 1=6,若S 1,S 2,S 3,···S n ,···中S 8最大,问数列{a n -4}的前多少项之和最大?

2022年高考数学总复习:导数与函数的综合问题

第 1 页 共 15 页 2022年高考数学总复习:导数与函数的综合问题 命题点1 证明不等式 典例 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1; (2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )= x -1x (x >0), 当01时,g ′(x )>0, 即g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当02时,f ′(x )>0, 即f (x )在(0,2)上为减函数,在(2,+∞)上为增函数, 所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e 2. 命题点2 不等式恒成立或有解问题 典例 已知函数f (x )=1+ln x x . (1)若函数f (x )在区间? ???a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 解 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln x x 2, 令f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.

高三数学-理科函数与导数-专题练习(含答案与解析)

(Ⅰ)当(0,1)x ∈时,求()f x 的单调性; (Ⅱ)若2()()()h x x x f x =-?,且方程()h x m =有两个不相等的实数根1x ,2x .求证:121x x +>.

联立212y x y x ax =-??'=-+-? 消去y 得:2(1)10x a x +-+=, 由题意得:2(1)40a -=-=△, 解得:3a =或1-; (Ⅱ)由(1)得:l 1(n )x f x =+', 1(0,)e x ∈时,)0(f x '<,()f x 递减, 1(,)e x ∈+∞时,)0(f x '>,()f x 递增, ①1104e t t <<+≤,即110e 4 t <≤-时, min 111)ln )444 ()()((f x f t t t ==+++, ②110e 4t t <<<+,即111e 4e t -<<时, min e ()1e )(1f x f -==; ③11e 4t t ≤<+,即1e t ≥时,()f x 在[1,4]t t +递增, min ())ln (f x f t t t ==; 综上,min 1111)ln ),044e 41111,e e 4e 1l (e (,()n f x t t t t t t t ++<≤--???-<<≥?=?????; 因此(0,)x ∈+∞时,min max 1()()e f x m x ≥-≥恒成立, 又两次最值不能同时取到, 故对任意(0,)x ∈+∞,都有2ln e e x x x x >-成立.

∴()0g x '>, ∴函数()g x 在定义域内为增函数, ∴(1)(0)g g >,即12 e (1)(0) f f >,亦即(1) f > 故选:A . 2.解析:∵()1cos 0f x x '=+≥, ∴()sin f x x x =+在实数R 上为增函数, 又∵()sin ()f x x x f x -=--=-, ∴()sin f x x x =+为奇函数, ∴2222222222(23)(41)0(23)(41) (23)(41)2341(2)(1)1f y y f x x f y y f x x f y y f x x y y x x x y -++-+≤?-+≤--+?-+≤-+-?-+≤-+-?-+-≤, 由22(2)(1)11x y y ?-+-≤?≥? 可知,该不等式组所表示的区域为以点(2,1)C 为圆心,1为半径的上半个圆,1 y x +表示的几何意义为点(,)P x y 与点(1,0)M -连接的斜率,作出半圆与点P 连线,数形结合可得1 y x +的取值范围为13,44?????? . 3.解析:依题意,可得右图:()2f x =

2019年最新高考数学二轮复习 题型练8 大题专项(六)函数与导数综合问题 理(考试专用)

题型练8 大题专项(六)函数与导数综合问题1.(2018北京,理18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x. (1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a; (2)若f(x)在x=2处取得极小值,求a的取值范围. 2.已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}= (1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围; (2)①求F(x)的最小值m(a); ②求F(x)在区间[0,6]上的最大值M(a). 3.已知函数f(x)=x3+ax2+b(a,b∈R).

(1)试讨论f(x)的单调性; (2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值. 4.已知a>0,函数f(x)=e ax sin x(x∈[0,+∞)).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明: (1)数列{f(x n)}是等比数列; (2)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立. 5.(2018天津,理20)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间;

(2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明 x1+g(x2)=-; (3)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. 6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=a e(x-1). (1)求b的值; (2)若对任意x∈,f(x)与g(x)有且只有两个交点,求a的取值范围.

高考数学函数与导数复习指导

2019高考数学函数与导数复习指导 函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分。一般为2个选择题或2个填空题,1个解答题,而且常考常新。 在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。 在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在: 1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。 5.涌现了一些函数新题型。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素 养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练

工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 8.求极值,函数单调性,应用题,与三角函数或向量结合。

2012函数与导数(较难)含答案)

函数与导数问题解题方法探寻及典例剖析【考情分析】 【常见题型及解法】 1. 常见题型 2. 在解题中常用的有关结论(需要熟记):

【基本练习题讲练】 【例1】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发 现乌龟快到终点了,于是急忙追赶,但为时已晚 乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( ) 【答案】 B 【解析】在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.【点评】函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力, 在复习时应引起重视. 【例2】(山东高考题)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若 方程 ()(0 f x m m =>在区间 [8,8 -上有四个不同的根 123,,,x x x x ,则 1234 _________.x x x x +++= A B C D

【例3】若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为( ) A . 2 3错误!未指定书签。 B . 3 2 C .3 D . 31 【例4】若函数 ()(01)x f x a x a a a =-->≠且有两个零点,则实数a 的取值范围是 . 【例 5】已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1 ()3 f 的x 取值范围是( ) (A )( 1,2) (B) [1,2) (C)(1,2) (D) [1,2)

(完整版)高三数学第二轮复习的学法

高三数学第二轮复习的学法 1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。(备考指南与知识点总结)中学数学的重点知识包括:1)集合、函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。 (2)三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换是重点。 (3)数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。 (4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题是重点。 (5)解析几何。此专题中解析几何是重点,以基本性质、基本运算为目标。突出直线和圆、圆锥曲线的交点、弦长、轨迹等。 (6)概率与统计、算法初步、复数。此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。 (7)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。 2、对基础知识的复习应突出抓好两点: (1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。 (2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。 3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。例如以函数为主线的知识链。又如直线与平面的位置关系中“平行”与“垂直”的知识链。 4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。 数学思想和方法的考查必然要与数学知识的考查结合进行,在平时的做题中必须提炼出其中的数学思想方法,并以之指导自己的解题。 数学思想数学在高考中涉及的数学思想有以下四种: (1)分类讨论思想:分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。分类讨论的实质是“化整为零、积零为整”。科学分类的基本原则是

二轮复习-函数与导数

函数与导数 1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根、被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏. 对抽象函数,只要对应关系相同,括号里整体的取值范围就完全相同. [问题1] 函数y 的定义域是________. 答案 ??? ?0,14 2.用换元法求解析式时,要注意新元的取值范围,即函数的定义域问题. [问题2] 已知f (cos x )=sin 2x ,则f (x )=________. 答案 1-x 2(x ∈[-1,1]) 3.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数. [问题3] 已知函数f (x )=????? e x ,x <0,ln x ,x >0, 则f ????f ????1e =________. 答案 1e 4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响. [问题4] f (x )=lg (1-x 2) |x -2|-2是________函数(填“奇”“偶”或“非奇非偶”). 答案 奇

解析 由? ???? 1-x 2>0, |x -2|-2≠0得定义域为(-1,0)∪(0,1), f (x )=l g (1-x 2) -(x -2)-2=lg (1-x 2) -x . ∴f (-x )=-f (x ),f (x )为奇函数. 5.弄清函数奇偶性的性质 (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. (2)若f (x )为偶函数,则f (-x )=f (x )=f (|x |). (3)若奇函数f (x )的定义域中含有0,则必有f (0)=0. 故“f (0)=0”是“f (x )为奇函数”的既不充分也不必要条件. [问题5] 设f (x )=lg ????21-x +a 是奇函数,且在x =0处有意义,则该函数为( ) A .(-∞,+∞)上的减函数 B .(-∞,+∞)上的增函数 C .(-1,1)上的减函数 D .(-1,1)上的增函数 答案 D 解析 由题意可知f (0)=0,即lg(2+a )=0, 解得a =-1, 故f (x )=lg 1+x 1-x ,函数f (x )的定义域是(-1,1), 在此定义域内f (x )=lg 1+x 1-x =lg(1+x )-lg(1-x ), 函数y 1=lg(1+x )是增函数,函数y 2=lg(1-x )是减函数,故f (x )=y 1-y 2是增函数.选D. 6.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替. [问题6] 函数f (x )=1 x 的减区间为________. 答案 (-∞,0),(0,+∞) 7.求函数最值(值域)常用的方法: (1)单调性法:适合于已知或能判断单调性的函数.

函数与导数的综合应用

函数与导数的综合应用 命题动向:函数与导数的解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合进行深入考查,体现了能力立意的命题原则. 这几年,函数与导数的解答题一直作为“把关题”出现,是每年高考的必考内容,虽然是“把关题”,但是同其他解答题一样,一般都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难.从近几年的高考情况看,命题的方向主要集中在导数在研究函数、方程、不等式等问题中的综合应用. 题型1利用导数研究函数性质综合问题 例1 [2016·山东高考]设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ), 求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 解题视点 (1)求出g (x )的导数,就a 的不同取值,讨论导数的符号;(2)f ′(x )=ln x -2a (x -1),使用数形结合方法确定a 的取值,使得在x <1附近f ′(x )>0,即ln x >2a (x -1),在x >1附近ln x <2a (x -1). 解 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).则g ′(x )=1 x -2a =1-2ax x . 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x ) 单调递增; 当a >0时,x ∈??? ?0,1 2a 时,g ′(x )>0,函数g (x )单调递增, x ∈????12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为????0,12a ,单调减区间为??? ?1 2a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当01,由(1) 知f ′(x )在????0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,x ∈????1,1 2a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在??? ?1,1 2a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,1 2a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<1 2a <1,当x ∈????12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取得极大值,符合题意. 综上可知,实数a 的取值范围为????12,+∞. 冲关策略 函数性质综合问题的难点是函数单调性和极值、最值的分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 题型2利用导数研究方程的根(或函数的零点) 例2 [2017·全国卷Ⅰ]已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解题视点 (1)先求函数f (x )的定义域,再求f ′(x ),对参数a 进行分类讨论,由f ′(x )>0(f ′(x )<0),得函数f (x )的单调递增(减)区间,从而判断f (x )的单调性;(2)利用(1)的结论,并利用函数的零点去分类讨论,即可求出参数a 的取值范围. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .

相关文档
相关文档 最新文档