文档库 最新最全的文档下载
当前位置:文档库 › 聚合物结晶行为的流变学研究进展

聚合物结晶行为的流变学研究进展

聚合物结晶行为的流变学研究进展
聚合物结晶行为的流变学研究进展

前言

针对结晶型聚合物在结晶过程中出现的相转变和热力学性能变化,传统方法主要采用差示扫描量热仪(DSC)进行程序升降温测试,通过热焓值的变化研究结晶行为,并配以热台偏光显微镜对相转变后晶核的形成和晶体的生长加以直观观察。而对于相转变前聚合物分子链的变化,可通过流变学参数(即凝胶转变点)来确定聚合物的早期结晶行为。这在静态和实际生产过程中不可避免的剪切条件下均适用,但必须保证在剪切过后尚无晶核生成。而且在聚合物的整个结晶过程中,熔体微观物理状态的变化将引起宏观流变学参数的相应变化,所以可实时检测熔体流变学参数的变化来分析整个结晶过程。

1凝胶转变点

对于结晶型聚合物,早期结晶过程性能的转变表现为液一固相微结构的转变。国外研究者[1-2]利用流变技术研究结晶过程的凝胶转变,并将液一固相转变点确定为凝胶点。在此基础上,Fu[3]和Winter[4]利用自相似松弛形式也研究了凝胶点,且临界凝胶点参数可由式(1)~(3)得到[5-6]:

G(t)-St,20o (1)

H(λ)=Sλ-n/Γ(n),λ0

tanδ=G"/G'=tan(n兀/2),ω<1/λ0 (3)

式中S--凝胶硬度

n--临界松弛指数

Γ(n)--伽玛函数

卜黏弹相转变角,与动态模量的比值有关

G'--储能模量,MPa

G"--损耗模量,MPa

γ0--在低频区内从平缓橡胶态转变到倾斜区的松弛时间,即G'与G"对频率所作曲线的交点对应的时间根据式(3)确定,在低频下tanδ随着频率的变化表现为常数时,则该点为临界凝胶点,这是决定凝胶点的一个很简单的方法。然而为了保证凝胶点测定的准确性,必须使聚合物熔体在较低的结晶度条件下完成。为此,Salvatore Coppola[7]采用“逆相淬火”的方法控制聚合物的结晶度,即先将样品完全熔融,然后快速降温(淬火)至所需结晶度,这个过程的控制需要以晶体生长速率的大小和过冷度的大小为基础。在不同的淬火条件下,通过流变方法测定模量的变化,并计算聚合物的结晶动力学。

2静态条件下结晶动力学研究

传统研究静态条件下聚合物结晶动力学的方法主要采用DSC法,实际测量过程是微量样品对热的精确响应,偏离于实际加工过程中的热散失等。而流变测试过程中所需的样品量相对较多,且整个过程是对力的响应,并发现将黏弹性能与结构结合起来研究聚合物的结晶动力学,对于生产有指导意义。对于静态条件下,Teh[8]和Emmanuelle[。]利用流变技术研究了通用塑料在结晶过程中的成核诱导时间、成核密度以及结晶动力学,发现实验结果与DSC和热台偏光显微镜结果基本一致。该方法同样适用于特种工程塑料--聚苯硫醚(PPS)[10。Khannallll也用同样的方法研究了不同材料的结晶动力学,发现流变技术比传统的方法更灵敏,同时还推导出结晶度与储能模量的关系式:

α(t)=x/x∞=(G'-G0')/(G'∞-G0') (4)式中a(t)--结晶度

X--结晶体积分数

X∞--完全结晶体积分数

G0--开始结晶的储能模量,MPa

G'∞--结晶完全的储能模量,MPa

在整个结晶动力学过程中,随着时间的增加,G'增加约5%o左右为结晶诱导时间(tonset)。在实验过程中,结晶降温时间必须小于结晶诱导时间。半结晶时间(t0.5)可由从结晶开始到结束的过程中G'变化值的一半所对应的时间决定。

3剪切条件下结晶动力学研究

传统的DSC方法无法用于研究剪切条件下聚合物的结晶行为,所以早期大多数都是通过纤维的抽出研

究在剪切作用下的结晶行为,然而在聚合物熔体中抽动纤维引起的剪切应力相对微弱,且只对纤维附近的聚合物熔体产生剪切影响,为了进一步模拟生产加工过程,人们将流变技术用来研究剪切对聚合物结晶行为的影响是合理且方便的。因为剪切过后将引起聚合物的微结构及结晶动力学改变,即通过多种理论模型研究剪切条件下聚合物的线性黏弹性变化来计算聚合物的结晶动力学[12-17]。

Yoon[18利用流变学研究了在剪切条件F聚萘二甲酸乙二醇酯(PEN)的等温结晶行为,在不同剪切速率和不同结晶温度下进行时间扫描,得到在不同结晶条件下的G'和动态黏度(η')值,通过G'和η'与t作图,可得到PEN在一定实验条件下物理化学性能的变化。即在施加剪切过后,聚合物分子链开始解缠结,即分子链从无规向有序转变,G'和η'随着时间的变化出现的突然转变点对应的时间为结晶诱导时间。随后成核阶段出现大量的PEN晶核分散在均相熔融体中,其熔融体系逐渐由均相转变为异相。

Lagasse等[19]和Lucia等[20]在静态条件研究结晶行为的基础上,利用流变学研究了在剪切条件下聚丙烯(PP)的结晶动力学,发现在一定温度下,剪切速率达到临界值时,将促进其结晶;且在给定的剪切速率和温度下,不同相对分子质量的PP中,相对分子质量大的结晶相对较快。

为了从理论上计算聚合物在剪切条件下的结晶动力学,Emmanuelle[9]将热台偏光显微镜和流变学结合起来计算剪切后结晶动力学的变化。采用此方法计算结晶动力学,要保证剪切后没有行式成核结构和晶核的取向生长。用热台偏光显微镜计算剪切后结晶动力学时,晶核数的计算相对于静态下就发生较明显的变化,即整个活化晶核数由静态结晶晶核数(Nq)与剪切作用下晶核数(Ns)之和组成,如式(5)所示:N=Nq+Ns (5)

其中,Nq由静态下等温结晶得到,Ns与第一法向力(N1)有关,即

Ns=CN1 (6)

而第一法向应力差的计算可通过Maxwell方程[21]计算得到。

然而在目前的研究中,都没有考虑到结晶度对松弛时间的影响,主要是因为对于大多数实验,剪切时间都相当短,并且结晶度都较低。在较长的剪切时间后计算结晶动力学时,就需要改进结晶动力学模型。

考虑在剪切时间内,第一法向应力差可表示为:

由此可以较准确地计算出聚合物在剪切作用下的结晶动力学。4结语

流变学可用于在静态和动态条件下研究聚合物从熔融到成核,到晶体生长,再到结晶完全的整个结晶过程,整个结晶过程中微观物理状态的变化都将引起宏观流变学参数的变化,这对于模拟并指导实际生产过程有着举足轻重的作用。

聚合物的流变性能

第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。 在纯剪切流动中法向效应是较小的。粘弹性熔体的法向效应越大则离模膨胀效应越明显。流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。 (3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。这样就助止了链段之间相对运动和内磨擦的减小。可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。 当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。这是因为熔体发生破裂。 (4)温度对粘度的影响

聚合物的结晶

聚合物的结晶 聚合物按其能否结晶可以分为两大类:结晶性聚合物和非结晶性聚合物。后者是在任何条件下都不能结晶的聚合物,而前者是在一定条件下能结晶的聚合物,即结晶性聚合物可处于晶态,也可以处于非晶态。聚合物结晶能力和结晶速度的差别的根本原因是不同的高分子具有不同的结构特征,而这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键。 聚合物结晶的必要条件是分子结构的对称性和规整性,这也是影响其结晶能力、结晶速度的主要结构因素。此外,结晶还需要提供充分条件,即温度和时间。首先讨论分子结构的影响。高聚物结晶行为的一个明显特点就是各种高分子链的结晶能力和结晶速度差别很大。大量实验事实说明,链的结构愈简单,对称性愈高,取代基的空间位阻愈小,链的立构规整性愈好,则结晶速度愈大。例如,聚乙烯链相对简单、对称而又规整,因此结晶速度很快,即使在液氮中淬火,也得不到完全非晶态的样品。类似的,聚四氟乙烯的结晶速度也很快。脂肪族聚酯和聚酰胺结晶速度明显变慢,与它们的主链上引入的酯基和酰胺基有关。分子链带有侧基时,必须是有规立构的分子链才能结晶。分子链上有侧基或者主链上含有苯环,都会使分子链的截面变大,分子链变刚,不同程度地阻碍链段的运动,影响链段在结晶时扩散、迁移、规整排列的速度。如全同立构聚苯乙烯和聚对苯二甲酸乙二酯的结晶速度就慢多了,通过淬火比较容易得到完全的非晶态样品。另外,对于同一种聚合物,分子量对结晶速度是有显著影响的。一般在相同的结晶条件下,分子量大,熔体粘度增大,链段的运动能力降低,限制了链段向晶核的扩散和排列,聚合物的结晶速度慢。最后,共聚物的结晶能力与共聚单体的结构、共聚物组成、共聚物分子链的对称性、规整性有关。无规共聚通常会破坏链的对称性和规整性,从而使共聚物的结晶能力降低。如果两种共聚单元的均聚物结晶结构不同,当一种组分占优势时,该共聚物是可以结晶的。这时,含量少的组分作为结晶缺陷存在。但当两组分配比相近时,结晶能力大大减弱,如乙丙共聚物当丙烯含量达25%左右时,产物便不能结晶而成为乙丙橡胶。如果两种共聚单元的均聚物结晶结构相同,这种共聚物也是可以结晶的。通常,晶胞参数随共聚物组成而变化。嵌段共聚物的各个嵌段基本上保持着相对的独立性,其中能结晶的嵌段将形成自己的晶区。如聚酯-聚丁二烯-聚酯嵌段共聚物,聚酯段仍可较好地结晶,形成微晶区,起到物理交联的作用。而聚丁二烯段在室温下可以有高弹性,使共聚物成为一种良好的热塑性弹性体。 4.4.1结晶动力学 结晶性聚合物因分子结构和结晶条件不同,其结晶速度会有很大差别。而结晶速度大小,又对材料的结晶程度和结晶状态影响显著。为此,研究聚合物的结晶动力学将有助于人们控制结晶过程,改善制品性能。 一、结晶速度的测定方法 研究聚合物结晶速度的实验方法大体可以分为两种:一种是在一定温度下观察试样总体结晶速率,如膨胀计法、光学解偏振法、DSC法等;另一种是在一定温度下观察球晶半径随时间的变化,如热台偏光显微镜法、小角激光光散射法等。

第9章 聚合物的流变性

第9章聚合物的流变性 1.什么是假塑性流体?绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现假塑性流体的性质?试用缠结理论加以解释。 答:(1)流动指数n<1的流体称为假塑性流体; (2)略 2.聚合物的粘性流动有何特点?为什么? 3.为什么聚合物的粘流活化能与分子量无关? 答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动 活化能与分子的长短无关。,由实验结果可知当碳链不长 时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相对分子质量无关。 4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。 答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当 时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链 缠结结构破坏程度增加,分子量对体系粘度影响减小。 聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。 5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温敏性的;当温度处于一定范围即Tg

3.2 结晶的热力学条件

3.2 结晶的热力学条件 一 结晶的过冷现象 在纯金属液体缓慢冷却过程中测得的温度—时间关系曲线(冷却曲线)如图3—2所示。 从冷却曲线可见,纯金属液体在平衡结晶温度T m 时,不会结晶。只有冷却到T m 以下的某个温度才开始形核,而后长大并放出大量潜热,使温度回升到略低于T m 温度。结晶完成后,由于没有潜热放出,温度继续下降。过冷是指液态材料在理论结晶温度以下仍保持液态的现象。通常将平衡结晶温度T m 与实际结晶温度T n 之差T ?称为过冷度,即n m T T T -=?。 图1 纯金属的冷却曲线 二 凝固的热力学条件 什么是平衡结晶温度,为什么形核必需在过冷条件下才能发生,这类问题需用热力学来解释。 由热力学第二定律知道,在等温等压条件下,一切自发过程都朝着使系统自由能降低的方向进行。液、固金属自由能G 与温度T 的关系曲线如图2所示。曲线上G L =G S 对应的温度T m 被称为平衡结晶温度,只有T

m m T T L V G ?-=?。式中T ?是过冷度,m L 为熔化潜热。该式表明过冷度越大结晶的驱动力也越大。由上式可知,要使ΔGv <0,必须使ΔT >0,即T <Tm ,故ΔT 称为过冷度。晶体凝固的热力学条件表明,实际凝固温度应低于熔点Tm ,即需要有过冷度。

第五章 高聚物的流变性

第五章 高聚物的流变性 热塑性塑料成型过程一般需经历加热塑化、流动成型和冷却固化三个基本步骤。加热塑化:经过加热使固体高聚物变成粘性流体;流动成型:借助注塑机或挤塑机的柱赛或螺杆的移动,以很高的压力将粘性流体注入温度较低的闭合模具内,或以很高的压力将粘性流体从所要求的形状的口模挤出,得到连续的型材。冷却固化:是用冷却的方法使制品从粘流态变成玻璃态。 聚合物的粘流发生在g T 以上,热塑料、合成纤维和合成橡胶的加工成型都是在粘流态下进行的.由于大多数高分子的f T 都低于300℃,经一般无机材料低得多,给加工成型带来很大方便,这也是高分子得以广泛应用的一个重要原因. 5.1牛顿流体与非牛顿流体 牛顿流体:粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,通称为~。 非牛顿流体:凡是不符合牛顿流体公式的流体,统称为非牛顿流体。 牛顿流体: d dt γ σηηγ== 非牛顿流体: 'n a K σγηγ == 式中γ 为剪切速率,n 为非牛顿性指数(n<1称为假塑性); a η为表观粘度,表观粘度比高聚物真正的粘度(零剪切粘度0η小). 剪切变稀:大多数高聚物熔体和浓溶液属假塑性流体,其粘度随剪切速率的增加而减小,即所谓~。 剪切变稠:膨胀性流体与假塑性流体相反,随着剪切速率的增大,粘度升高,即发生~。 宾汉流体:或称塑性流体,具有名符其实的塑性行为,即在受到的剪切应力小于某一临界值Y σ是不发生流动,相当于虎克固体,而超过Y σ后,则可像牛顿液体一样流动。 触变(摇溶)液体:在恒定剪切速率下粘度随时间增加而降低的液体。 摇凝液体:在恒定剪切速率下粘度随时间而增加的液体。 5.2高聚物粘性流动的主要特点 1. 高分子流动是通过链段的位移运动来实现的,粘流活化能与相对分子质量无关. 2. 一般不符合物顿液体定律,即不是牛顿流体,而是非牛顿流体,常是假塑性流体.这是由于流动时链段沿流动方向取向,取向的结果使粘度降低. 3. 粘流时伴有高弹形变。高弹形变的恢复也是一个松驰过程,恢复的快慢一方面与高分子链本身的柔顺性有关,柔性好,恢复得快,另一方面也与高聚物所处的温度有关,温度高,恢复快。

流变学在聚合物研究中的应用

流变学在聚合物研究中的应用 概述 高分子熔体的流变行为是由其长链分子的拓扑结构决定的。当高分子主链上引入一定数量和长度的支链后,其粘弹性质与线形高分子会有明显不同。长链支化聚合物剪切条件下会表现出与线形高分子类似的应变软化,但由于支链的限制将有更长的末端松弛时间,并在拉伸条件下表现出与线形高分子完全不同的应变硬化松弛过程。支化对聚合物粘弹性质的影响,无论对工业界还是科学研究都是一个十分重要和基础的课题。近年来的一系列研究表明:一方面通过引入相同或相似结构单元的长支链可以明显提高聚合物的熔体强度(这对于熔融纺丝、吹膜等熔体拉伸加工过程是十分有利的);另一方面也可以通过含有特征官能团支链的引入对聚合物进行改性,提高其光学、热学和力学性能。目前,随着控制聚合反应和机理研究的进一步深入,人们已能够直接得到各种具有明确拓扑结构的支化聚合物,如梳形[1]、星形、H形聚合物[2]等,这对支化聚合物流变学的深入研究与探索起了极大的推动作用。 与线形高分子不同,支化高分子熔体是热流变复杂的,其流变学特性主要表现在: (1)支化减小了高分子的流体力学体积,降低了零切粘度,支链松弛过程的加入使得整个高分子的末端松弛时间延长; (2)长链支化聚合物在拉伸过程中会表现出明显的应变硬化,并使得时- 温叠加原理不再有效; (3)支化高分子的拓扑结构对其整个松弛过程有显著的影响,支化密度和支链长度存在临界值,超过此临界值,支链松弛过程将会清晰地反映在动态粘弹谱上; (4)支化聚合物流变行为的温度依赖性是复杂的,多数支化聚合物的流变行为比相应线形聚合物有更强的温度依赖性,但也有一些支化聚合物和其相应线形高分子具有同样的温度依赖性,如聚异丁烯。 本文简介流变学在不同聚合物研究中的应用,并对流变学的发展方向做了展望。 1、流变学在聚乙烯研究中的应用 聚乙烯基本分为三大类,即低密度聚乙烯(LDPE)!高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE),三种聚乙烯分子结构见图如下

聚合物溶液流变性

聚合物溶液的流变模式 聚合物流变性是指其在流动过程中发生变形的性质,主要体现在有外力场作用时,溶液粘度与流速或压差之间的变化关系。高分子的形态变化导致了聚合物溶液宏观性质的变化。聚合物溶液是非牛顿流体,其流动行为可用Ostwald-Dewael幂律方程[56]来描述: 根据流体力学对液体流型的分类,驱油用的部分水解聚丙烯酰胺溶液属于假塑性流型,即表观粘度呈现剪切稀化现象。在低剪切速率下,溶液的流变曲线斜率n=1,符合牛顿流动定律,称为第一牛顿流动区,该区的粘度通常称为零切粘度η0,即γ&→0的粘度。随着剪切速率的增大,流动曲线的斜率n<1,称假塑性区,该区的粘度为表观粘度ηa;剪切速率的增大,表观粘度ηa值变小,其表观粘度与剪切速率呈幂指数关系。在假塑性区,剪切速率与表观粘度的关系可用Ostwald-Dewael幂律模型来描述。 HPAM水溶液的完整的流变曲线如图2-1所示。流变曲线包括牛顿段、假塑段、极限牛顿段、粘弹段和降解段。粘度随剪切速率的变化与高分子在溶液中的形态结构有关。在很小的剪切速率下,大分子构象分布不改变,流动对结构没有影响,聚合物溶液的粘度不随剪切速率的变化而变化,此即牛顿段;当剪切速率较大时,在切应力的作用下高分子构象发生了变化,长链分子偏离平衡态构象,而沿流动方向取向,使聚合物解缠和分子链彼此分离,从而降低了相互运动阻力,这时表观粘度随剪切速率的增加而降低。当剪切速率增加到一定程度以后,大分子取向达到极限状态,取向程度不再随剪切速率而变化,聚合物溶液遵守牛顿流动定律,表观粘度又成为常数,此即所谓的极限牛顿段。当剪切速率再增加时,主链的相邻键偏离了正常的键角,从而产生了弹性恢复力,而表现出粘弹性,使表观粘度增加。当剪切速率增加到足以使高分子链断裂时,发生能了聚合物降解,使聚合物粘度降低。 另外,随着剪切速率的增加,ηa下降,开始时ηa下降很快,随后变得缓慢,逐渐趋于平缓,进一步说明了HPAM属于假塑性流体。Mooney方程可解释这一现象,体系的表观粘度ηa与粒子的内相体积Vi、堆积系数υ和形态常数ke有如下关系:

7.高聚物熔体的流变性质

第一章 高聚物熔体的流变性质 主要内容:(1)液体的流动类型 (2)高分子熔体的流动特征 (3)影响高聚物熔体粘度的因素 (4)高聚物熔体弹性效应的表现 (5)高聚物熔体粘度的测量方法 难点内容:弹性效应的理解 掌握内容:(1)牛顿流体和非牛顿流体的流动特征 (2)高聚物熔体的流动特征及影响流动温度的因素 (3)影响切粘度的结构因素及外在因素 理解内容:(1)高聚物熔体的流动机理 (2)高聚物熔体弹性效应的机理、现象及影响因素 了解内容:(1)高聚物熔体粘度的测量方法 (2)拉伸粘度的基本情况 §8 高聚物的基本流变性质 §8、1流变学的基本概念简介 一、流动的方式 1、速度方向 2、速度梯度方向 剪切流动 a 库爱特(拖流动) b 泊肃叶(压力流) 拉伸流动 速度方向平行速度梯度方向 二.流体的基本类型 γγ ? ==?=?=dt d dt dy dx dy dt dx dY dv 11 (1) 牛顿流体 στ=η·γ (η为常数) 熔体结构不变 (2) 非牛顿流体 表观粘度ηa = γ τ σ?

a. 胀塑流体 n k a γ γηστ? ? ==? γ↑ ηa b. 假塑性流体 στ=ηa γn (n<1) γ↑.ηa ↓ (剪切变稀) c. στ=σb + k γn 三.假塑性流体的基本特性 习题 1.名词解释 牛顿流体 非牛顿流体 假塑性流体 胀塑性流体 Bingham 流体 零切粘度 表观粘度 熔融指数 第一法向应力差 挤出胀大 真实粘度 2.大分子流动是如何实现的? 3.大分子流动的基本特征是什么? 4.流体流动的基本类型有哪些?分别用τ-γ、η-γ、lg τ-lg γ、lg η-lg γ曲线示意图。 5.分析假塑性流体流动的η-γ曲线,并从分子运动论的角度给予解释。

由结晶动力学评价含结晶聚合物共混物相容性的研究进展

基金项目:教育部留学回国人员科研启动基金; 作者简介:张公正(1956-),男,工学博士,现为北京理工大学化工与环境学院教授,主要进行结晶聚合物共混物结晶动力学及相容性评价研究;E -mail :zg ongz99@https://www.wendangku.net/doc/072655573.html,. 由结晶动力学评价含结晶聚合物共混物相容性的研究进展 张公正 (北京理工大学化工与环境学院,北京100081) 摘要:介绍了用结晶动力学分析的方法评价含结晶聚合物共混物的混合状态的基本理论和解析原理,综述 了最新研究进展。 关键词:结晶动力学;聚合物共混物;相容性;DSC 聚合物共混物的特点是由于高分子链长的原因,混合熵小,而导致相容性差。共混物两组分之间存在特殊的相互作用(如氢键作用、偶极子作用)为相容性提供了原动力。因此,共混物两组分之间相互作用的微小差别都影响共混物的相容性。通过改变共混物的组分配比,来调节分子间相互作用力的大小,使共混物的混合状态发生改变。根据聚合物-聚合物二元体系相图,聚合物共混物有相容、部分相容和不相容三种混合状态。尽管可以借助许多方法评价聚合物共混物的混合状态,目前还缺乏一种手段既可以评价相容的聚合物共混体系又可判断不相容的聚合物共混物。 图1 结晶聚合物共混物的相图与熔融温度曲线示意图(a )相容体系-LCST 型共存曲线(实线)远离熔融解温度曲线(点线);(b )相分离体系-LCST 型共存曲线(实线)与熔融温度曲线(点线)相交 Figure 1 Schematic phase diagram for polymer blend including crystalline polymer (a )miscible system [the separation of LCST binodal curve (s olid line )with melting tem perature (dotted line )];(b )immiscible system [the overlap of LCST binodal curve (s olid line )with melting tem perature (dotted line )] 有一种称为“结晶动力学分析的方法”[1,2],显示出它 特有的优越性。这种方法使用差示扫描量热法(DSC ),通 过对共混物等温结晶测定,解析成核和结晶过程,从结晶 前后化学势的变化(Δ μ)和结晶表面自由能(σ)与共混物中某种成分质量百分数(<)的相关性,来评价聚合物共混 物的相容性和相互作用的大小。本文就这种方法的基本 理论、解析方法和最新研究结果加以阐述。 1 聚合物共混物的结晶 含有结晶的聚合物共混物,从熔融状态到冷却结晶 时,结晶与相分离兼顾发生,可能得到复杂的聚合物-聚合 物二元体系相图。图1为结晶聚合物共混体系的相图与 熔融温度曲线示意图。在图1a 中,共存曲线远离结晶温度线,随着温度的降低,结晶在均相的共混体系中生成。而在图1b 中,共存曲线与熔融温度曲线T max 交叉,当温度 降低时,结晶与相分离相互竞争,结晶在相分离的状态下 生成。对于后面一种情况,不管是在旋节分离曲线的哪 侧温度领域,也就是说不管相分离发生在相图中的双节 线上还是旋节线上,获得的真实相图都是极其复杂的。2 考虑方法 结晶聚合物共混物从熔融到冷却结晶时,足够长的聚合物分子链,使得晶体的生长过程受聚合物分

聚合物的流变性

第9章聚合物的流变性 流变学是研究材料流动和变形规律的一门科学。聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。 9.1牛顿流体与非牛顿流体 9.1.1非牛顿流体 描述液体层流行为最简单的定律是牛顿流动定律。凡流动行为符合牛顿流动定律的流体,称为牛顿流体。牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。 式中:——剪切应力,单位:牛顿/米2(N/㎡); ——剪切速率,单位:s-1; ——剪切粘度,单位:牛顿?秒/米2(N?s/㎡),即帕斯卡?秒(Pa?s)。 非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。包括: 1、假塑性流体(切力变稀体) η随的↗而↙例:大多数聚合物熔体 2、膨胀性流体(切力变稠体) η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。 3、宾汉流体。τ<τy,不流动;τ>τy,发生流动。 按η与时间的关系,非牛顿流体还可分为: (1)触变体:维持恒定应变速率所需的应力随时间延长而减小。 (2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。 牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述: 式中:K为稠度系数 n:流动指数或非牛顿指数

n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。 定义表观粘度 9.2聚合物的粘性流动 9.2.1聚合物流动曲线 聚合物的流动曲线可分为三个主要区域: 图9-1 聚合物流动曲线 1、第一牛顿区 低切变速率,曲线的斜率n=1,符合牛顿流动定律。 该区的粘度通常称为零切粘度,即的粘度。 2、假塑性区(非牛顿区) 流动曲线的斜率n<1,该区的粘度为表观粘度ηa,随着切变速率的增加,ηa值变小。 通常聚合物流体加工成型时所经受的切变速率正在这一范围内。 3、第二牛顿区 在高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。该区的粘度称为无穷切粘度或极限粘度η∞。 从聚合物流动曲线,可求得ηo、η∞和ηa。 聚合物流体假塑性行为通常可作下列解释: 1、从大分子构象发生变化解释; 2、从柔性长链分子之间的缠结解释; 9.2.2聚合物流体流变性质的测定方法 测定粘度主要方法:落球粘度计法、毛细管粘度计法、同轴圆筒转动粘度计法和锥板转动粘度计法。

2.金属结晶的热力学条件

第二节金属结晶的热力学条件 为什么液态金属在理论结晶温度下不能结晶,而必须在一定的过冷度条件下才能进行呢 这是由热力学条件决定的。 热力学第二定律指出: 在等温等压条件下,物质系统总是自发地从自由能较高的状态向自由能较低的状态转变。 这就说明对于结晶过程而言,结晶能否发生即看液相和固相的自由能孰髙轨低 1. 如果液相的自由能比固相的自由能低,那么金属将自发地从固相转变为液 相,即金属发生熔化。 2. 如果液相的自由能高于固相的自由能,那么液相将自发地转变为固相,即金 属发生结晶,从而使系统的自由能降低,处于更为稳定的状态。 结晶过程的驱动力: 液相金属和固相金属的自由能之差,就是促进这种转变的却动力 低值温度自由能: 熵的物理意义是表征系统中原子排列混乱程度的参数。温度升髙,原子的活动能力提高,因而原子排列的混乱程度増加,即熵值增加,系统的自由能也就随着温度的升高而降低。 纯金属液,固两相自由能随温度变化的示意图: ● 由图可见,液相和面相的自由能都随着温度的升高而降低。 ● 由于液态金属原子排列的混乱程度比固态金属的大,即S L S S ,也就是液相 自由能曲线的斜率较固相的大,所以液相自由能降低得更快些。

理论结晶温度及其意义: 1. 既然两条曲线的斜率不同,因而两条曲线必然在某一温度相交,此时的液、 固两相自由能相等,即S L G G = 2. 它表示两相可以同时共存,具有同样的稳定性,既不熔化,也不结晶,处于 热力学平衡状态,这一温度就是理论结晶温度m T 。 从图2.5还可以看出 ● 只有当温度低于m T 时,固态金属的自由能才低于液态金属的自由能,液态金 属可以自发地转变为固态金属。 ● 如果温度高于m T ,液态金属的自由能低于固态金属的自由能,此时不但液态 金属不能转变为固态,相反他固态金属还要熔化成液态,因为只有这样自由能才能降低,过程才可以自动进行。 当液相向固相转变时单位体积自由能的变化与过冷度的关系 1. 当液相向固相转变时单位体积自由能的变化与过冷度的关系: 0<-=?L S V G G G 2. 当液相向固相转变时单位体积自由能的变化与过冷度的关系: 0>-=?S L f H H H 3. 当液相向固相转变时单位体积自由能的变化与过冷度的关系: 0

聚合物流变学复习题参考答案2

聚合物流变学复习题参考答 案2 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高分子流变学复习题参考答案 一、名词解释: 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。 4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 胀塑性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 9、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。 或拉伸流动:质点速度仅沿流动方向发生变化的流动。 剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化的流动。 10、法向分量:作用力的方向与作用面垂直即称为应力的法向分量。

热力学 知识点总结

热处理总结 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大, 临界形核功(2 1 T G ?∝ ?)也为无穷大。临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以 液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c – p + 1其中,f 为 自由度数,c 为 组元数,p 为 相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金

聚合物流变性能测试

聚合物流变性能测试 一、实验目的 1、熟悉和了解RHEOGRAPH25 型流变仪的工作原理及操作方法。 2、掌握将计算机输出流动曲线((T - Y曲线)转换为其他形式流动曲线(lg (T -lg Y)' (lg n -lg Y)的方法。 3、掌握非牛顿指数n 的计算方法。 4、掌握利用Arrhenius 方程计算粘流活化能E n 的方法。 二、RHEOGRAPH25 型流变仪工作原理 毛细管流变仪是目前发展得最成熟、应用最广的流变测量仪之一,其主要优点在于操作简单,测量准确,测量范围宽(剪切速率丫:10-2?105S-1 )。 毛细管流变仪测试聚合物流变性能基本原理:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可收缩的粘性流体的稳定层流流动,毛细管两端分压力差为△P,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理推导,可得到毛细管管壁处的剪切应力T 和剪切速率Y 与压力、熔体流率的关系。仪器通过自身软件计算出高聚物的表观粘度,并得到相应的剪切速率和剪切应力,表观粘度的关系曲线图。 三、实验仪器及材料 仪器:德国高特福RH25 型毛细管流变仪、毛细管口模,长径比30:1,5:0.5,5:0.3;、活塞、转矩扳手、耐温润滑油、耐温手套、纯棉清洁布。 原料:PE、PP 四、实验内容 测定聚乙烯、聚丙烯树脂不同温度下流变性能,具体如下 第一组:PE,170C,175C,180 C,185 C。 第二组:PE,185C,190C,195 C,200 C。 第三组:PP,190 C,195 C,200 C,205 C。 第四组:PP,205 C,210 C,215 C,220 C。 五、操作步骤 1 、开机打开仪器,电脑,等候约一分钟,待初始化结束后,显示屏出现“ Reference drive;”2)点击“ Referenee drive进入操作界面。 2、程序设定包括测试温度、熔融时间、活塞速度、毛细管的尺寸选择等参数的设置, 3、测试膛升温 编辑测试程序后,点击“ parameter send,'开始升温,待温度达到测试温度并恒温10-15分钟; 4、毛细管安装 安装毛细管过程中, 毛细管上的销钉必须在上方, 安装时四个固定螺丝加抗磨糊后拧紧, 再退回2圈,等候5-10分钟后再用扭矩扳手拧紧,扭矩扳手扭矩值设定为60N?m, PVT测试时设定为80 N.m ; 5、压力传感器安装 选择合适的压力传感器,涂抹抗磨糊后小心插入压力传感器孔,用扳手拧紧后再退回2圈, 等候5-10分钟待温度均匀后再拧紧,插上连接线; 6、校准零点 当插接上力传感器连接线时, 仪器显示屏会自动弹出校准界面, 进行传感器零点校准, 或者点击“service ”一" calibrate行校准; 7、加料

聚合物流变学复习题参考答案2

高分子流变学复习题参考答案 一、名词解释: 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子a T将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。 4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 胀塑性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近空穴”所需的最小能量。 8、极限粘度二:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 9、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。 或拉伸流动:质点速度仅沿流动方向发生变化的流动。 剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化的流动。 10、法向分量:作用力的方向与作用面垂直即称为应力的法向分量。 剪切分量:作用力的方向与作用面平行即称为应力的剪切分量。 11、粘流态:是指高分子材料处于流动温度(T f)和分解温度(T d)之间的一种凝聚态。 12、宾汉流体:在流动前存在一个剪切屈服应力(T y。只有当外界施加的应力超过屈服应力才开始流动的流体。 13、稳定流动:流动状态不随时间而变化的流动。 14、零切黏度一一剪切速率趋向于零时的熔体黏度,即流动曲线的初始斜率。 15、非牛顿性指数:幕律公式n中的n是表征流体偏离牛顿流动的程度的指数,

聚合物流变行为

聚合物的流变行为 一、实验目的 1.了解测定聚合物流变性能的原理 2.掌握毛细管流变仪和旋转式粘度计测定流变性能的方法 二、实验原理 高分子材料所具有的优越性能,使其在许多领域都得到了广泛的应用。绝大多数高分子材料的加工成型都要经过流动和变形过程。由于高分子本身所具有的特点,其流变行为要比小分子复杂得多,不仅取决于温度,压力,海域剪切速率,摩尔质量,分子结构和各种添加剂的浓度有关,此外还表现弹性,法向力和明显的拉伸粘度。 测定高分子材料流变行为的仪器称为硫变仪。有些一起只能简单的测定年度等参数,故又称粘度计。高聚物流体粘度的测定常使用旋转式年度及进行。其原理是通过测量仪没入液体中转子的旋转扭矩来得出年度的素具。转自通过降准弹簧有动力驱动系统来转动;弹簧的挠度通过指针和刻度盘来确定。该仪器的最主要的部件就是校准弹簧,一段与中央轴相连,另一端与表盘相连,表盘通过传递方式有动力同驱动,反过来通过校准弹簧来驱动中扬轴。指针域中央周洋连,产生旋转角度,对应一定的刻度。 对既定的年度粘性阻力火抗流动的性质,它与转子的转速成一定比率,而且与转子的大小及形状有关,阻力会随着转子的尺寸或转速提高而提高。对于给径大小的转子和速度,黏度会随着弹簧的挠度升高而升高。同一转子在不同转速下主要用于测量和检测液体的流变性质。 三、实验步骤 高聚物流体粘度的测定 1.把准备测试液体放在仪器下,把防护支架没入液体中少许。 2.安装转子。 3.调整转子在液体中的高度,使液面在转子轴中部。

4.选定旋转速度,然后打开动力开关,等待片刻指直到度数稳定。在粘度计的背面有一个离合杆,压住杆便可以抬起表盘,压住指针,然后记下指针的度数。放松离合杆,则表盘放低,指针慢慢回零。 四、数据处理 本实验使用的是转子1号,转速30r/min,因子为2. 所测液体粘度=读数*因子 读数 1 2 3 4 5 平均数 单位/厘 28.0 28.2 28.6 28.6 28.7 28.4 泊 粘度=28.4×2=56.8厘泊 五、思考题 1、为什么要进行“非牛顿校正”?怎样进行校正? 答:因为大多数聚合物熔体都属于非牛顿流体,它们在管中流动时具有弹性效应、管壁滑梯和入口处流动过程的压力降等特征。而且,在实验中毛细管的长度都是有限的。在温度和毛细管长径比l/D一定的条件下,测定在不同的压力下高聚物熔体通过毛细管的流量qv,由流动速率和毛细管两端的压力差p,可计算出相应的τw和уw在双对数坐标纸上绘制流动曲线图,即可求得非牛顿指数n和熔体的表观粘度η。 2.剪切应力与剪切速率是否呈线性关系?为什么? 答:不成线性关系,因为是非牛顿流体,分散相粒子不自由,粒子位置被固定,称它为形成关系,当流体高速流动时,结构被破坏,故剪切应力与剪切速率不成线性关系。 参考资料: [1]邵毓芳,嵇根定。高分子物理实验。南京:南京大学出版社,1998:54~56. [2]何曼君,陈维孝,董西侠编。高分子物理。上海:复旦大学出版社,1991:38~39.

影响聚合物流变行为的主要因素

浅谈影响聚合物流变行为的主要因素 侯健高分子102班 5701110054 摘要:聚合物熔体在一定剪切速率下的黏度,反映了它在该剪切速率时的流变行为。因此,研究影响聚合物流变行为的主要因素即影响聚合物熔体黏度的因素。这可以从聚合物本身和工艺条件两方面来考虑。 关键词:聚合物;流变行为;黏度;主要因素 1、聚合物结构因素和其他组成成分对黏度的影响 聚合物的结构因素包括链结构和链的极性、分子量、分子量分布以及聚合物的组成等.对聚合物的黏度有明显的影响。 聚合物的分子结构对黏度的影响较为复杂。一般来说,聚合物的链结构的极性使分子间的作用力增大,例如结晶聚合物和极性聚合物。分子间作用力大,黏度就高,反之则低。聚碳酸酯、聚氯乙烯、聚甲基丙烯酸甲酯等的熔体年度要比聚乙烯、聚内烯大得多。此外.聚合物分子结构不同,熔体黏度对温度的敏感性也不同。刚性分子链对温度比对柔性分子链敏感,因此提高其成型温度有利于增加聚合物熔体的流动性。支链结构对黏度也有影响,又以长支链对黏度的影响最大。聚合物分子量越大,流动时所受阻力也就越大,熔体黏度必然也就高。不同的成型方法对聚合物熔体黏度的要求不一样,因此对分子量的要求也不同。通常注射成型要求聚合物的分子量较低,挤出成型则可吹塑成型所要求的分子量介于挤出成型和注射成

型之间。 聚合物分子量分布对熔体黏度的影响,在不同剪切应力和不同剪切速率下表现不同,当分子量相同时,随着剪切应力或剪切速率的增加,分子量分布宽的要比分子量分布窄的黏度下降快。实际生产中,塑料成型通常都在较高的剪切作用下进行,因此,分子量分布宽的聚合物熔体黏度小,容易流动,但会使制品的使用性能降低。为了提高产品质量,要减少聚合物中的低分子量部分,尽量使用分子量分布较窄的聚合物。 2、温度对黏度的影响 温度升高,链段活动能力强,分子间距增大,分子间作用力下降,流动性增加,即粘度下降。不同聚合物其熔体黏度对温度变化的敏感性不完全相同。一般来说,聚合物熔体黏度对温度的敏感性要比剪切作用的敏感性强,虽然升高温度使黏度降低.但过高的温度却会使聚合物降解,同时增加能量的消耗。熔体黏度对温度变化非常敏感的聚合物,在生产中只要出现温度变化,就会引起黏度较大的变化,使操作不稳定,影响产品质量,因此,控制适宜成型的温度是十分重要的。在较高的温度下,当T>Tg+100℃时,有 Andrade公式(类似阿氏公式) Inη=InA+E/RT E---粘流活化能 可以用作图的方法可得一直线,其斜率E/R,E大,斜率大,说明粘度对温度敏感。一般分子间作用力大,刚性大,则E大,例

聚乙烯醇结晶动力学

52《维纶通讯》201年3月 聚乙烯醇结晶动力学 [摘要]通过在142七~192咒的温度下长达18min的等温结晶过程,研究了无溶剂聚乙烯醇的结晶动力学。通过Avrami理论分析结晶等温线。指数n在142七~182七的范围内几乎不变(0.67-0.71),但在192t下结晶时将增加至1.53。基于等温线和微晶生长速率的热力学分析,有明显迹象表明PVA是一维结 晶。在不存在水或其他溶胀剂的情况下,由于径基的相互作用,动力学障碍占主导地位。因此,结晶PVA的最大可达的重量分数,显著低于水合PVA样品(的重量分数)。本文讨论了影响结晶生长速率的其他参数,包括通过交联控制的过冷度和平均链长。 1介绍 聚乙烯醇(以下简称PVA)的结晶机理和动力学已有许多研究人员在各种实验条件下如有/无溶剂的情况下进行了研究。由于形成这些聚合物中有序大分子结构动力学障碍较大,因此含有轻基的聚合物(如PVA)的结晶是一个特别有趣的研究课题。 人们认为:在PVA拉伸过程中,氢键结合阻碍了结晶进程,从稀释或浓缩的PVA溶液中结晶,也因超分子结构的形成而变得复杂,这已解释为球状凝胶状结构或假晶结构区域。弗伦克尔和他的同事对这种行为进行了相当完整的描述。 有报道认为:对于半结晶PVA样品,根据制备方法和水解条件以及平均分子量和热处理条件的不同,熔点介于202T至240七之间。无规PVA通常为20%-35%的结晶度,但在高于玻璃化温度的条件下进行拉伸或整理时,其结晶度可提髙至55%,尤其是在稀释剂如水、乙二醇存在的情况下。 Mochizuki和他的同事,首先通过从稀水溶液中等温结晶,以及Monobe和Fujiwara通过从三乙二醇和相关多元醇的稀溶液中结晶,实现了PVA 的单晶生长。晶体属于单斜晶系,晶胞由两个单体单元组成。根据电子显微照片的阴影长度估计,微晶薄片的厚度约为100A~125Ao从高于180咒的水溶液中结晶PVA,可获得平行薄片,而在多元醇溶液中结晶的PVA形成球晶结构,如在130七~175咒的乙二醇中结晶。当用浓的多元醇溶液进行结晶形成PVA膜时,Packter和Ne-rurkar观察到有球晶生长。随着蒸发温度从120七升至180r,球晶£的最终尺寸增大。 即使不存在稀释剂,许多资料证明了PVA的可结晶性。Bessonov和Rudakov的研究表明:PVA 从熔体中冷却时会结晶,并表现出明确的双折射模式。Bunn首次证明PVA大分子链的侧羟基较小,因此它们可以与晶格中的氢互换。因此,有规立构性对PVA的结晶过程及其X射线图案几乎无影响。因此,无规立构PVA的结晶度高达65%。Kenney和Willcockson的实验研究表明,间同立构规整度的增加,似乎不会导致结晶度增加,尽管在流动诱导的结晶条件下其生长,富含间同立构PVA的微晶生长速率似乎更快。 如Sakurada及其同事、Peppas和Merrill、Packter和Nerurkar等人的研究所示,PVA膜和纤维在稀释剂(如水)的存在下结晶更快。 尽管有以前进行的研究工作,但关于有水或无水情况下的PVA结晶机理仍有诸多问题尚无答案。最近对未交联和交联的PVA在水合膜的结晶行为进行研究,以确定其结晶机理。研究观察到了Avrami型微晶生长的依赖性,与其他更易结晶的聚合物的类似等温结晶行为一致。而在未

相关文档
相关文档 最新文档