文档库 最新最全的文档下载
当前位置:文档库 › Distant future of the Sun and Earth revisited

Distant future of the Sun and Earth revisited

Distant future of the Sun and Earth revisited
Distant future of the Sun and Earth revisited

a r X i v :0801.4031v 1 [a s t r o -p h ] 25 J a n 2008

Mon.Not.R.Astron.Soc.000,1–10(2008)Printed 3February 2008

(MN L A T E X style ?le v2.2)

Distant future of the Sun and Earth revisited

K.-P.Schr¨o der 1?and Robert Connon Smith 2

?1

Departamento de Astronom′?a,Universidad de Guanajuato,A.P.144,Guanajuato,C.P.36000,GTO,M′e xico

2Astronomy

Centre,Department of Physics and Astronomy,University of Sussex,Falmer,Brighton BN19QH,UK

Accepted 2008....;Received 200....;in original form 2007September 25

ABSTRACT

We revisit the distant future of the Sun and the solar system,based on stellar models computed with a thoroughly tested evolution code.For the solar giant stages,mass-loss by the cool (but not dust-driven)wind is considered in https://www.wendangku.net/doc/002837242.html,ing the new and well-calibrated mass-loss formula of Schr¨o der &Cuntz (2005,2007),we ?nd that the mass lost by the Sun as an RGB giant (0.332M ⊙,7.59Gy from now)potentially gives planet Earth a signi?cant orbital expansion,inversely proportional to the remaining solar mass.

According to these solar evolution models,the closest encounter of planet Earth with the solar cool giant photosphere will occur during the tip-RGB phase.During this critical episode,for each time-step of the evolution model,we consider the loss of orbital angular momentum su?ered by planet Earth from tidal interaction with the giant Sun,as well as dynamical drag in the lower chromosphere.As a result of this,we ?nd that planet Earth will not be able to escape engulfment,despite the positive e?ect of solar mass-loss.In order to survive the solar tip-RGB phase,any hypothetical planet would require a present-day minimum orbital radius of about 1.15AU.The latter result may help to estimate the chances of ?nding planets around White Dwarfs.

Furthermore,our solar evolution models with detailed mass-loss description pre-dict that the resulting tip-AGB giant will not reach its tip-RGB https://www.wendangku.net/doc/002837242.html,pared to other solar evolution models,the main reason is the more signi?cant amount of mass lost already in the RGB phase of the Sun.Hence,the tip-AGB luminosity will come short of driving a ?nal,dust-driven superwind,and there will be no regular solar plan-etary nebula (PN).The tip-AGB is marked by a last thermal pulse and the ?nal mass loss of the giant may produce a circumstellar (CS)shell similar to,but rather smaller than,that of the peculiar PN IC 2149with an estimated total CS shell mass of just a few hundredths of a solar mass.

Key words:Sun:evolution –Sun:solar-terrestrial relations –stars:supergiants –stars:mass loss –stars:evolution –stars:white dwarfs

1INTRODUCTION

Climate change and global warming may have drastic e?ects on the human race in the near future,over human time-scales of decades or centuries.However,it is also of interest,and of relevance to the far future of all living species,to consider the much longer-term e?ects of the gradual heating of the Earth by a more luminous Sun as it evolves towards its ?nal stage as a white dwarf star.This topic has been explored on several occasions (e.g.Sackmann,Boothroyd &Kraemer 1993,Rybicki &Denis 2001,Schr¨o der,Smith &

?

E-mail:kps@astro.ugto.mx (KPS)

?E-mail:R.C.Smith@https://www.wendangku.net/doc/002837242.html, (RCS)

Apps 2001(hereafter SSA)),and has been discussed very

recently by Laughlin (2007).

Theoretical models of solar evolution tell us that the Sun started on the zero-age main sequence (ZAMS)with a luminosity only about 70%of its current value,and it has been a long-standing puzzle that the Earth seems none the less to have maintained a roughly constant temperature over its life-time,in contrast to what an atmosphere-free model of irradiation would predict.Part of the explanation may be that the early atmosphere,rich in CO 2that was subsequently locked up in carbonates,kept the temperature up by a greenhouse e?ect which decreased in e?ectiveness at just the right rate to compensate for the increasing solar ?ux.The r?o le of clouds,and their interaction with galactic cosmic rays (CR),may also be important:there is now some

2K.-P.Schr¨o der and R.C.Smith

evidence(Svensmark2007;but see Harrison et al.2007and Priest et al.2007)that cosmic rays encourage cloud cover at low altitudes,so that a higher CR?ux would lead to a higher albedo and lower surface temperature.The stronger solar wind from the young Sun would have excluded galactic cosmic rays,so cloud cover on the early Earth may have been less than now,allowing the full e?ect of the solar?ux to be felt.

What of the future?Although the Earth’s atmosphere may not be able to respond adequately on a short time-scale to the increased greenhouse e?ect of carbon dioxide and methane released into the atmosphere by human activ-ity,there is still the possibility,represented by James Love-lock’s Gaia hypothesis(Lovelock1979,1988,2006),that the biosphere may on a longer time-scale be able to adjust it-self to maintain life.Some doubt has been cast on that view by recent calculations(Scaife,private communication,2007; for details,see e.g.Cox et al.2004,Betts et al.2004)which suggest that,on the century timescale,the inclusion of bio-spheric processes in climate models actually leads to an in-crease in carbon dioxide emissions,partly through a feed-back that starts to dominate as vegetation dies back.In any case,it is clear that the time will come when the increasing solar?ux will raise the mean temperature of the Earth to a level that not even biological or other feedback mechanisms can prevent.There will certainly be a point at which life is no longer sustainable,and we shall discuss this further in Section3.

After that,the fate of the Earth is of interest mainly insofar as it tells us what we might expect to see in systems that we observe now at a more advanced stage of evolution. We expect the Sun to end up as a white dwarf–do we expect there to be any planets around it,and in particular do we expect any small rocky planets like the Earth?

The question of whether the Earth survives has proved somewhat tricky to determine,with some authors arguing that the Earth survives(e.g.SSA)and others(e.g.Sack-mann et al.1993)claiming that even Venus survives,while general textbooks(e.g.Prialnik2000,p.10)tend to say that the Earth is engulfed.A simple model(e.g.SSA),ignoring mass loss from the Sun,shows clearly that all the planets out to and including Mars are engulfed,either at the red giant branch(RGB)phase–Mercury and Venus–or at the later asymptotic giant branch(AGB)phase–the Earth and Mars.However,the Sun loses a signi?cant amount of mass during its giant branch evolution,and that has the e?ect that the planetary orbits expand,and some of them keep ahead of the advancing solar photosphere.The e?ect is en-hanced by the fact(SSA)that when mass loss is included the solar radius at the tip of the AGB is comparable to that at the tip of the RGB,instead of being much larger;Mars certainly survives,and it appears(SSA)that the Earth does also.

The crucial question here is:what is the rate of mass loss in real stars?Ultimately this must be determined from observations,but in practice these must be represented by some empirical formula.Most people use the classical Reimers’formula(Reimers1975,1977),but there is consid-erable uncertainty in the value to be used for his parameter η,and di?erent values are needed to reproduce the observa-tions in di?erent parameter regimes.In our own calculations (SSA)we used a modi?cation of the Reimers’formula,which has since been further improved and calibrated rather care-fully against observation,so that we believe that it is cur-rently the best available representation of mass loss from stars with non-dusty winds(Schr¨o der&Cuntz2005,2007–see Section2,where we explore the consequences of this improved mass-loss formulation).

However,although we have considerably reduced the uncertainties in the mass-loss rate,there is another factor that works against the favourable e?ects of mass loss:tidal interactions.Expansion of the Sun will cause it to slow its rotation,and even simple conservation of angular momen-tum predicts that by the time the radius has reached some 250times its present value(cf.Table1)the rotation period of the Sun will have increased to several thousand years in-stead of its present value of under a month;e?ects of mag-netic braking will lengthen this period even more.This is so much longer than the orbital period of the Earth,even in its expanded orbit,that the tidal bulge raised on the Sun’s surface by the Earth will pull the Earth back in its orbit, causing it to spiral inwards.

This e?ect was considered by Rybicki&Denis(2001), who argued that Venus was probably engulfed,but that the Earth might survive.An earlier paper by Rasio et al.(1996) also considered tidal e?ects and concluded on the contrary that the Earth would probably be engulfed.However,the Rybicki&Denis calculations were based on combining an-alytic representations of evolution models(of Hurley,Pols &Tout2000)with the original Reimers’mass-loss formula rather than on full solar evolution calculations with a well-calibrated mass-loss formulation.The Rasio et al.paper also employed the original Reimers’formula,and both papers use somewhat di?erent treatments of tidal drag.We have there-fore re-considered this problem in detail,with our own evolu-tionary calculations and an improved mass-loss description as the basis;full details are given in Sections2and4.

2SOLAR EVOLUTION MODEL WITH MASS LOSS

In order to describe the long-term solar evolution,we use the Eggleton evolution code(Eggleton1971,1972,1973)in the version described by Pols et al.(1995,1998),which has up-dated opacities and an improved equation of state.Among other desirable characteristics,his code uses a self-adapting mesh and a?-based prescription of“overshooting”,which has been well-tested and calibrated with giant stars in eclips-ing binaries(for details,see Schr¨o der et al.1997,Pols et al. 1997,Schr¨o der1998).Because of the low mass and a non-convective core,solar evolution models are,however,not subject to any MS(main sequence)core-overshooting.In use,the code is very fast,and mass-loss is accepted simply as an outer boundary condition.

As already pointed out by VandenBerg(1991),evolu-tion codes have the tendency to produce,with their most evolved models,e?ective temperatures that are slightly higher than the empirically determined values.The reason lies,probably,in an inadequacy of both low-temperature opacities and mixing-length theory at low gravity.With the latter,we should expect a reduced e?ciency of the con-vective energy transport for very low gravity,because the largest eddies are cut out once the ratio of eddy-size to stellar

Distant future of Sun and Earth3

radius has increased too much with g?1.Hence,as described by Schr¨o der,Winters&Sedlmayr(1999),our mixing-length parameter,normallyα=2.0for log g<1.94,receives a small adjustment in the form of a gradual reduction for su-pergiant models,reachingα=1.67at log g=0.0.With this economical adjustment,our evolution models now give a better match to empirically determined e?ective tempera-tures of very evolved late-type giants and supergiants,such asα1Her(see Schr¨o der&Cuntz2007,Fig.4in particular), and even later stages of stellar evolution(Dyck et al.1996, and van Belle et al.1996,1997).

The evolution model of the Sun presented here uses an opacity grid that matches the empirical solar metallicity of Anders&Grevesse(1989),Z=0.0188,derived from atmo-spheric models with simple1D radiative transfer–an ap-proach consistent with our evolution models.Together with X=0.700and Y=0.2812,there is a good match with present-day solar properties derived in the same way(see Pols et al.1995).We note that the use of3D-hydrodynamic modelling of stellar atmospheres and their radiative transfer may lead to a signi?cantly lower solar abundance scale(e.g., Asplund,Grevesse&Sauval2005,who quote Z=0.0122), but these lower values are still being debated,and create some problems with helioseismology.Of course,using lower metallicities with an evolution code always results in more compact and hotter stellar models.Hence,if we used a lower Z our code would plainly fail to reproduce the present-day Sun,and the reliability of more evolved models with lower Z must therefore also be seriously doubted.

The resulting solar evolution model suggests an age of the present-day MS Sun of4.58Gy(±0.05Gy),counted from its zero-age MS start model,which is well within the range of commonly accepted values for the real age of the Sun and the solar system(e.g.Sackmann et al.1993).Our model also con?rms some well-established facts:(1)The MS-Sun has already undergone signi?cant changes,i.e.,the present solar luminosity L exceeds the zero-age value by0.30L⊙,and the zero-age solar radius R was11%smaller than the present value.(2)There was an increase of e?ective temperature T e?from,according to our model,5596K to5774K(±5K).(3) The present Sun is increasing its average luminosity at a rate of1%in every110million years,or10%over the next billion years.All this is completely consistent with established solar models like the one of Gough(1981).

Certainly,the solar MS-changes and their consequences for Earth are extremely slow,compared to the current cli-mate change driven by human factors.Nevertheless,solar evolution will force global warming upon Earth already in the“near”MS future of the Sun,long before the Sun starts its evolution as a giant star(see our discussion of the hab-itable zone in Section3).

At an age of7.13Gy,the Sun will have reached its high-est T e?of5820K,at a luminosity of1.26L⊙.From then on, the evolving MS Sun will gradually become cooler,but its luminosity will continue to increase.At an age of10.0Gy, the solar e?ective temperature will be back at T e?=5751K, while L=1.84L⊙,and the solar radius then will be37% larger than today.Around that age,the evolution of the Sun will speed up,since the solar core will change from cen-tral hydrogen-burning to hydrogen shell-burning and start to contract.In response,the outer layers will expand,and the Sun will start climbing up the RGB(the“red”or“?rst Table1.Main physical properties of characteristic solar models ZAMS0.000.7055960.89 1.000 present 4.58 1.005774 1.00 1.000 MS:hottest7.13 1.265820 1.11 1.000 MS:?nal10.00 1.845751 1.37 1.000 RGB:tip12.172730.2602256.0.668 ZA-He12.1753.7466711.20.668 AGB:tip12.302090.3200149.0.546 AGB:tip-TP12.304170.3467179.0.544

M? T e?4300g?

(1)

withη=8×10?14M⊙y?1,g⊙=solar surface gravitational acceleration,and L?,R?,and M?in solar units.

This relation was initially calibrated by Schr¨o der& Cuntz(2005)with the total mass loss on the RGB,using the blue-end(i.e.,the least massive)horizontal-branch(HB) stars of globular clusters with di?erent metallicities.This method avoids the interfering problem of temporal mass-loss variations found with individual giant stars and leaves an uncertainty of the newη-value of only15%,just under the individual spread of RGB mass-loss required to explain the width of HBs.

Later,Schr¨o der&Cuntz(2007)tested their improved mass-loss relation with six nearby galactic giants and su-pergiants,in comparison with four other,frequently quoted mass-loss relations.All but one of the tested giants are AGB stars,which have(very di?erent)well-established physical properties and empirical mass-loss rates,all by cool winds not driven by radiation-pressure on dust.Despite the afore-mentioned problem with the inherent time-variability of this individual-star-approach,the new relation(equation(1)) was con?rmed to give the best representation of the cool, but not“dust-driven”stellar mass-loss:it was the only one that agreed within the uncertainties(i.e.,within a factor of 1.5to2)with the empirical mass-loss rates of all giants. Hence,since the future Sun will not reach the critical lu-minosity required by a“dust-driven”wind(see Section5), we here apply equation(1)to describe its AGB mass-loss as well as its RGB mass-loss.

The exact mass-loss su?ered by the future giant Sun has,of course,a general impact on the radius of the solar giant,since the reduced gravity allows for an even larger (and cooler)supergiant.The luminosity,however,is hardly a?ected because it is mostly set by the conditions in the con-tracting core and the hydrogen-burning shell.In total,our

4K.-P.Schr¨o der and R.C.Smith

solar evolution model yields a loss of0.332M⊙by the time

the tip-RGB is reached(forη=8×10?14M⊙y?1).This is

a little more than the0.275M⊙obtained by Sackmann et

al.(1993),who used a mass-loss prescription based on the

original,simple Reimers’relation.Furthermore,our evolu-

tion model predicts that at the very tip of the RGB,the

Sun should reach R=256R⊙=1.2AU(see Fig.1),with

L=2730L⊙and T e?=2602K.More details are given in

Table1.

By comparison,a prescription of the(average)RGB

mass-loss rate withη=7×10?14M⊙y?1,near the lower

error limit of the mass-loss calibration with HB stars,yields

a solar model at the very tip of the RGB with R=249R⊙,

L=2742L⊙,T e?=2650K,and a total mass lost on the

RGB of0.268M⊙.Withη=9×10?14M⊙y?1,on the other

hand,the Sun would reach the very tip of the RGB with

R=256R⊙,L=2714L⊙,T e?=2605K,and will have lost

a total of0.388M⊙.While these slightly di?erent possible

outcomes of solar tip-RGB evolution–within the uncer-

tainty of the mass-loss prescription–require further discus-

sion,which we give in Section4.3,the di?erences are too

small to be obvious on the scale of Fig.1.

With the reduced solar mass and,consequently,lower

gravitational attraction,all planetary orbits–that of the

Earth included–are bound to expand.This is simply

a consequence of the conservation of angular momentum

ΛE=M E v E r E,while the orbital radius(i.e.r E)adjusts

to a new balance between centrifugal force and the reduced

gravitational force of the Sun,caused by the reduced so-

lar mass M Sun(t).Substituting v E=

2D 1/2T e?

=0.0682(1?A)1/4 R2D 1/2T e?(2)

where D is the distance of the body from the centre of the

Sun,R is the radius of the Sun,A is the Bond albedo of the

Earth and T e?is the e?ective temperature of the Sun.On

that basis,taking T

e?=5774K and R=R⊙(Table1),and

A=0.3(Kandel&Viollier2005),we?nd T(1AU)=255K.

Distant future of Sun and Earth5 But the actual mean temperature of the Earth at present is

33K warmer,at T=288K.This demonstrates the warming

e?ect of our atmosphere,which becomes signi?cantly more

important with higher temperature(see below).

In fact,there are various complex,partly antagonistic

atmospheric feedback mechanisms(for example,the green-

house e?ect,the variation of planetary albedo with the pres-

ence of clouds,snow and ice,and the carbonate-silicate cycle

which determines the amount of carbon dioxide in the at-

mosphere)that act to change the surface temperature from

what it would be in the absence of an atmosphere.These

mechanisms have been carefully discussed by Kasting,Whit-

mire&Reynolds(1993),who conclude that a conservative

estimate of the current habitable zone(HZ)stretches from

0.95AU to1.37AU.We shall adopt their result for the lim-

ited purposes of this paper.It can be adjusted in a simple-

minded way to allow for the evolution of the Sun by scaling

the inner and outer HZ radii r HZ,i,r HZ,o with the changing

solar luminosity L Sun(t):r HZ∝

M2

E G M Sun(t)

.(3)

Hence,the terrestrial orbit reacts quite sensitively to any loss of angular momentum,by shrinking.

The retardation of the tidal bulges of the solar photo-sphere will be caused by tidal friction in the outer convec-tive envelope of the RGB Sun.This physical process was analyzed,solved and applied by J.-P.Zahn(1977,1989,and other work referred to therein),and successfully tested with the synchronization and circularization of binary star orbits by Verbunt&Phinney(1995).In a convective envelope,the

6K.-P.Schr¨o der and R.C.Smith

main contribution to tidal friction comes from the retarda-tion of the equilibrium tide by interaction with convective motions.For a circular orbit,the resulting torqueΓexerted on planet Earth by the retarded solar tidal bulges is given by(Zahn1977;Zahn1989,Eq.11):

Γ=6λ2

r E 6(??ω).(4)

Here,the angular velocity of the solar rotation is sup-posed to be?=0,while that of the orbiting Earth,ω(t)=2π/P E(t)=Λ?3(t)M3E(GM Sun(t))2,will vary both with the decreasing angular momentumΛ(t)(=2.67×1040kg m2s?1at present)and with the solar mass in the ?nal solar RGB stages.The exerted torque scales with the square of the(slowly increasing)mass ratio q(t)= M E/M Sun(t)(=3.005×10?6at present),because q determines the magnitude of the tidal bulges.t f(t)= (M Sun(t)R2Sun(t)/L Sun(t))1/3≈O(1y)is the convective fric-tion time(Zahn1989,Eq.7),and the coe?cientλ2depends on the properties of the convective envelope.For a fully con-vective envelope(Zahn1989,Eq.15),with a tidal period≈O(1y),comparable to2t f,we may useλ2≈0.019α4/3≈0.038(with a convection parameter of our tip-RGB solar model ofα≈1.7).This coe?cient appears to be the main source of uncertainty(see Section4.3),because it is related to the simpli?cations of the mixing length theory(MLT).

With the properties of the tip-RGB Sun,a typical value of the tidal drag acting on planet Earth isΓ=dΛ/dt=?3.3×1026kg m2s?2,which gives a typical orbital angular momentum decay time ofτ=|Λ/Γ|=2.6×106y.This is comparable to the time spent by the Sun near the tip-RGB; since a loss of only≈10%of the angular momentum will be su?cient to reduce the orbital radius(by20%)to lower it into the solar giant photosphere,this order-of-magnitude calculation illustrates clearly that tidal interaction is crucial. Its full consideration requires a timestep-by-timestep com-putation of the loss of orbital angular momentum;at each time-step of the solar evolution calculation,we use equa-tion(4),together with the radii and masses of our solar evolution model,to compute the change in angular momen-tum,and then use equation(3)to compute the change in the orbital radius,and hence the new orbital period of the Earth.Section4.3presents the result,which also takes into account the relatively small additional angular momentum losses by dynamical drag,as discussed in the next section.

4.2Dynamical friction in the lower chromosphere

A further source of angular momentum loss by drag is dy-namical friction,from which any object su?ers in a fairly close orbit,by its supersonic motion through the gas of the then very extended,cool solar giant chromosphere.In a di?erent context,dynamical drag exerted by a giant atmo-sphere has already been considered by Livio&Soker(1984). But the speci?c problem here is to?nd an adequate de-scription of the density structure of the future cool solar gi-ant.Fortunately,as it turns out(see below),dynamical drag will play only a minor r?o le,very near the solar giant photo-sphere,and the total angular momentum loss is dominated by the tidal interaction described above.An approximate treatment of the drag is therefore adequate,and we use the recent study by Ostriker(1999).

In the case of supersonic motion(with a Mach num-ber1of the order of2to3)in a gaseous medium,dynamical friction consists in about equal shares of the collisionless, gravitational interaction with its wake and of the friction it-self.In her study,Ostriker(1999,Fig.3)?nds that the drag force exerted on the object in motion is

F d=λd4πρ(GM E/c s)2(5) whereλd is of the order of1to3.The numerical simulations made by S′a nchez-Salcedo&Brandenburg(2001)are in gen-eral agreement with the results of Ostriker(1999).Here c s is the speed of sound,which in a stellar chromosphere is about8km s?1,andρis the gas density(SI units).The lat-ter quantity is the largest source of uncertainty,as we can only make guesses(see below)as to what the gas density in the lower giant solar chromosphere will be.The angular momentum loss resulting from this drag is simply

dΛ/dt=?F d r E,(6) and the corresponding life-time of the orbital angular mo-mentum isτ=Λ/|dΛ/dt|,as above.

For the lower chromosphere of the K supergiantζAur, employing an analysis of the additional line absorption in the spectrum of a hot companion in chromospheric eclipse, Schr¨o der,Gri?n&Gri?n(1990)found an average hydrogen particle density of7×1011cm?3at a height of2×106km. Alternatively,we may simply assume that the density of the lower solar chromosphere scales with gravity g,which will be lower by4.7orders of magnitude on the tip-RGB,while the density scale-height scales with g?1(as observations of cool giant chromospheres seem to indicate,see Schr¨o der1990). The chromospheric models of both Lemaire et al.(1981)and Maltby et al.(1986)suggest particle densities of the order of 1017cm?3at a height of100km,and a scale height of that order for the present,low solar chromosphere.Scaled to tip-RGB gravity,that would correspond to a particle density of2×1012cm?3,orρ≈4×10?9kg m?3,at a height of 5×106km(0.03AU),and a density scale height of that same value.

For the computation of the orbital angular momentum loss of the Earth,presented below(see Figures2and3),we apply the latter,rather higher values of the future chromo-spheric gas density,together with the(also more pessimistic) assumption ofλd=3(using c s=8km s?1).The typical an-gular momentum decay-time by dynamical friction in the low(h≈0.03AU)chromosphere of the tip-RGB solar giant is14million years–signi?cantly longer than that for tidal interaction.Hence,this illustrates that dynamical friction is of interest only in the lowest chromospheric layers,adding there just a little to the drag exerted by tidal interaction. None the less,we include it,using equations(5)and(6)to calculate the additional angular momentum change to be included in equation(3).

1Note that v E∝M Sun(t),and so the Mach number is somewhat lower than would be expected from the present orbital velocity of the Earth of about30km s?1.

Distant future of Sun and Earth

7

Figure 2.The ?nal 4million years of solar evolution before the tip-RGB,showing the radii of the Sun and of the orbit of planet Earth (dashed curve)–taking account of angular momentum losses by tidal interaction and supersonic drag.The labels on the solar radius track give values of M Sun (t )/M ⊙,as in Figure 1.

4.3“Doomsday”con?rmed

As explained in the previous two sections,we use equations (3)to (6)to compute,at each time-step of our evolutionary calculation,a detailed description of the orbital evolution for planet Earth in the critical tip-RGB phase of the Sun under the in?uence of tidal interaction and dynamical drag.The resulting evolution both of the orbital radius of the Earth and of the radius of the solar giant is shown in Fig.2.This shows that,despite the reduced gravity from a less massive tip-RGB Sun,the orbit of the Earth will hardly ever come to exceed 1AU by a signi?cant amount.The potential orbital growth given by the reduced solar mass is mostly balanced and,eventually,overcome by the e?ects of tidal interaction.Near the very end,supersonic drag also becomes a signi?cant source of angular momentum loss.

As shown by Fig.2,engulfment and loss of planet Earth will take place just before the Sun reaches the tip of the RGB,7.59Gy (±0.05Gy)from now.According to our calcu-lation,it occurs when the RGB Sun has still another 0.25AU to grow,about 500,000years before the tip-RGB.Of course,Mercury and Venus will already have su?ered the same fate as Earth some time before –respectively,3.8and 1.0million years earlier.

As mentioned in the introduction,a similar calculation was already carried out in the context of extra-solar plan-ets by Rasio et al.(1996),who basically came to the same conclusions;their ?g.2is reminiscent of ours.They also em-ployed the orbital decay rate predicted by Zahn’s theory,but their solar evolution model used the old Reimers mass-loss relation,and they did not make any adjustments to match the e?ective temperatures found empirically at the tip of the giant branches (see Section 2).

Do the remaining uncertainties allow the possibility for Earth to escape the “doomsday”scenario?As far as the mass-loss alone is concerned,this seems unlikely:according to the study of HB stars in globular clusters by Schr¨o der &Cuntz (2005),ηis remarkably well constrained and can-not exceed 9×10?14M ⊙y ?1,or the total RGB mass-loss would become so large that the tip-RGB star would miss He-

ignition and not reach the horizontal branch at all.And the full width of the HB towards lower T e?is achieved already with an ηof 7×10?14M ⊙y ?1.Furthermore,the bene?t of larger orbits with a reduced solar mass is to some extent compensated for by a larger solar giant.

Dynamical drag does not become important until the planet is already very near the photosphere,i.e.,after tidal drag has already lowered the orbit.Hence,the most signif-icant uncertainty here comes from the scaling of the tidal friction coe?cient λ2(of Zahn,1989).For this reason,we computed several alternative cases,and from these we ?nd:

(1)With the mass-loss rate unchanged,the value of λ2would have to be signi?cantly smaller for an escape from the “doomsday”scenario,i.e.,less than 0.013,instead of our adopted value of 0.038.But Zahn’s scaling of λ2has been empirically con?rmed within a factor of 2,if not bet-ter (see Verbunt &Phinney,1995).Very recently,realistic 3D simulations of the solar convection have also resulted in an e?ective viscosity which matches that of Zahn’s prescrip-tion surprisingly well (Penev et al.2007).And Rybicki &Denis (2001),by comparison,used a value (K 2=0.05in the notation of their very similar calculation of tidal angu-lar momentum loss)which is entirely consistent with Zahn’s scaling of λ2for a convection parameter of α=2.

(2)We then considered solar evolution models with a reasonably larger mass-loss rate (η=9×10?14M ⊙y ?1)in combination with tidal friction coe?cients of 1/1,2/3and 1/2of the one given by Zahn.In each of these cases,planet Earth would not be able to escape doomsday but would face a delayed engulfment by the supergiant Sun –470,000,230,000and 80,000years before the tip-RGB is reached,respectively.

(3)Finally,we checked the outcome for a reasonably lower mass-loss rate (η=7×10?14M ⊙y ?1)in combination with the same tidal friction coe?cients as above.The en-gulfment would then happen rather earlier than with more mass-loss –540,000,380,000and 270,000years before the tip-AGB is reached.

These computations con?rm that reducing the solar mass enlarges the planetary orbit more than the tip-RGB solar radius,so that the best way to avoid the doomsday scenario would be to have as high a mass-loss rate as possi-ble.However,we believe that the value of ηin case (2)above already is as high as it can be without violating agreement of evolved models with observations,and that the smallest value used there for the tidal friction coe?cient is also at the limits of what is allowed by observational constraints.The only possible escape would be if our solar giant models were too cool (by over 100K in case 2),and therefore larger than the real Sun will be.Hence,to avoid engulfment by the tip-RGB Sun would require that all three parameters (η,λ2and T e?)were at one edge of their uncertainty range,which seems improbable.Rather,our computations con?rm,with reasonable certainty,the classical “doomsday”scenario.4.4

“Doomsday”avoidable?

Even though this is an academic question,given the hos-tile conditions on the surface of a planet just missing this “doomsday”scenario,we may ask:what is the minimum ini-tial orbital radius of a planet in order for it to “survive”?Fig.3shows,by the same computation as carried out for Fig.

8K.-P.Schr¨o der and R.C.

Smith Figure3.As

Fig.2,but for a planet with a present orbital radius of1.15AU.

2,that an initial orbital radius of1.15AU is su?cient for any planet to pass the tip-RGB of a star with M i=1.0M⊙. Since,as shown in Section5,the tip-AGB Sun will not reach any similarly large extent again,such a planet will eventu-ally be orbiting a White Dwarf.

A more general discussion of planetary survival during post-main-sequence evolution has been given by Villaver& Livio(2007),who suggest that an initial distance of at least 3AU is needed for the survival of a terrestrial-size planet when one also takes into account the possible evaporation of the planet by stellar heating.However,they use stellar models and mass-loss rates that have the maximum radius and mass loss occurring on the AGB.That has been the expected result for many years,but is quite di?erent from what we?nd(Section5and Table1)with the improved mass-loss formulation of Schr¨o der&Cuntz(2005,2007). Hence,Villaver&Livio’s results may be unduly pessimistic.

In any case,it is clear that terrestrial planets can survive if su?ciently far from their parent star.If it were possible to increase the orbital radius from its initial value,then an increase of only8%of angular momentum should yield the pre-RGB orbital size required by planet Earth to escape engulfment.Is that conceivable?

An ingenious scheme for doing so which,in the?rst place,could increase the time-scale for habitation by in-telligent life for the whole of the Sun’s MS life-time,was proposed by Korycansky,Laughlin&Adams(2001).They pointed out that a suitable encounter of the Earth every 6000years or so with a body of large asteroidal mass could be arranged to move the orbit of the Earth outwards;Kuiper Belt objects might be the most suitable.The energy require-ments could be reduced by incorporating additional encoun-ters with Jupiter and/or Saturn.Although still very large by today’s standards,the energy requirements remain small compared to those for interstellar travel.

On the face of it,this scheme seems far-fetched,but Korycansky et al.(2001)show that it is in principle pos-sible,both technically and energetically,although currently somewhat beyond our technical capabilities;however,there is no immediate hurry to implement the scheme,which could await the development of the relevant technology.It would have the advantage of improving conditions for the whole biosphere,whereas any scheme for interplanetary‘life rafts’Figure4.Solar mass loss during the?nal1million years on the AGB will remain mainly of the order of2×10?7M⊙y?1and not provide su?cient CS shell mass to form a regular PN.Only the last two TP’s(tip-AGB and post-AGB,see text)are resolved. that could move slowly outwards to maintain habitable con-ditions would,on cost and energy grounds,necessarily be con?ned to a small fraction of the human population–with all the political problems that that would produce–plus perhaps a tiny proportion of other species.None the less, the asteroidal?y-by scheme has its own problems,not least the danger of a benign close approach turning into a catas-trophic accidental collision,and possibly also triggering or-bital instability–cf.also Debes&Sigurdsson(2002).

5TIP-AGB SOLAR EVOLUTION

The loss of1/3of the solar mass during the rise to the tip of the RGB will make a signi?cant impact on the further evolu-tion as an AGB star.There is very little shell mass left,into which the two burning shells(H,followed by He)can ad-vance(on a radial mass scale).Hence,the C/O core cannot grow as much as with a conservative model without mass loss,and the whole core region will not contract as much, either.Consequently,the AGB luminosity,determined by the density and temperature in the H-burning shell,will not reach as high levels as in a conservative AGB model,and nei-ther will the AGB radius of the late future Sun(see Table 1).

According to our evolution model,the regular tip-AGB evolution will be ended with a luminosity of only2090L⊙, T e?=3200K,and R=149R⊙.The AGB mass-loss rate, according to the relation of Schr¨o der&Cuntz(2005),will reach only2.0×10?7M⊙y?1(see Fig.4),since the lumi-nosity will not be su?cient to drive a dust-driven wind(see Schr¨o der et al.1999).Also,even if it did:only a little shell mass will have been left to lose after the RGB phase,only 0.116M⊙.

Hence,for this non-dust-driven AGB solar mass-loss, we have adopted the same mass-loss description as above (equation(1)).This mass-loss,in combination with our solar evolution model,yields the following prediction:during the ?nal30,000y on the very tip-AGB,which are crucial for any build-up of su?cient CS(circumstellar)material to form a PN,the solar giant will lose only0.006M⊙.A further

Distant future of Sun and Earth9

0.0015M⊙will be lost in just1300years right after a?nal thermal pulse(TP)on the tip-AGB.That marks the very end of AGB evolution,and it allows the solar supergiant brie?y to reach a luminosity of4170L⊙and R=179R⊙, with a mass-loss rate of10?6M⊙y?1,but with T e?already increased to3467K.Again,there will be no involvement of a dust-driven wind.Since common PNe and their dusty CS envelopes reveal a dust-driven mass-loss history of more like10?5to10?4M⊙y?1during the?nal30,000years of tip-AGB evolution,we must conclude that the Sun will not form such a PN.

Since a circumstellar shell of nearly0.01M⊙will,nev-ertheless,be produced by the tip-AGB solar giant,a rather peculiar PN may be created by the emerging hot stellar core –it might be similar to IC2149.Although most of the pe-culiar,strongly bi-polar PNe appear to stem from massive stars,this particular object has only a slim total mass of 0.01to0.03M⊙,lacking a massive envelope–see V′a zquez et al.2002.Hence,these authors argue that this PN appears to be the product of a low-mass star with M i close to1M⊙.

A?nal mass of0.0036M⊙is lost by the post-AGB star,which on its way to become a hot subdwarf undergoes at least one more TP.For the resulting solar WD(white dwarf),our evolution model yields a?nal mass of0.5405M⊙.

6CONCLUSIONS

We have applied an improved and well-tested mass-loss re-lation to RGB and AGB solar evolution models,using a well-tested evolution code.While the habitable zone in the inner solar system will already move outwards considerably in the next5billion years of solar MS evolution,marking the end of life on Earth,the most critical and fatal phase for the inner planetary system is bound to come with the?nal ascent of the Sun to the tip of the RGB.

Considering in detail the loss of angular momentum by tidal interaction and dynamical drag in the lower chromo-sphere of the solar giant,we have been able to compare the evolution of the RGB solar radius with that of the orbit of planet Earth.Our computations reveal that planet Earth will be engulfed by the tip-RGB Sun,just half a million years before the Sun will have reached its largest radius of 1.2AU,and1.0(3.8)million years after Venus(and Mer-cury)have su?ered the same fate.While solar mass loss alone would allow the orbital radius of planet Earth to grow su?ciently to avoid this“doomsday”scenario,it is mainly tidal interaction of the giant convective envelope with the closely orbiting planet which will lead to a fatal decrease of its orbital size.

The loss of about1/3of the solar mass already on the RGB has signi?cant consequences for the solar AGB evo-lution.The tip-AGB Sun will not qualify for an intense, dust-driven wind and,hence,will not produce a regular PN. Instead,an insubstantial circumstellar shell of just under 1/100M⊙will result,and perhaps a peculiar PN similar to IC2149.ACKNOWLEDGMENTS

KPS is grateful for travel support received from the As-tronomy Centre at Sussex through a PPARC grant,which enabled the authors to initiate this research project in the summer of2006.We further wish to thank Jean-Paul Zahn for very helpful comments on his treatment of tidal friction and Adam Scaife of the Met O?ce’s Hadley Centre for sug-gesting changes to Sections1and3.

REFERENCES

Anders E.,Grevesse N.,1989,Geochim.Cosmochim.Acta,53, 197

Asplund M.,Grevesse N.,Sauval A.J.,2005,in Barnes III T.G., Bash F.N.,eds,Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis,ASP Conf.Ser.336,Astron.

Soc.Paci?c,San Francisco,p.25(2004,astro-ph/0410214) Betts R.A.,Cox P.M.,Collins M.,Harris P.P.,Huntingford C., Jones C.D.,2004,Theoretical and Applied Climatology,78, 157

Cox P.M.,Betts R.A.,Collins M.,Harris P.P.,Huntingford C., Jones C.D.,2004,Theoretical and Applied Climatology,78, 137

Debes J.H.,Sigurdsson S.,2002,ApJ,572,556

Dyck H.M.,Benson J.A.,van Belle G.T.,Ridgway S.T.,1996, AJ,111,1705

Eggleton P.P.,1971,MNRAS,151,351

Eggleton P.P.,1972,MNRAS,156,361

Eggleton P.P.,1973,MNRAS,163,179

Franck S.,von Bloh W.,Bounama C.,Ste?en M.,Sch¨o nberner

D.,Schellnhuber H.-J.,2002,in Horneck G.,Baumstark-Khan

C.,eds,Astrobiology:The Quest for the Conditions of Life,

Springer-Verlag,Berlin,p.47

Gough D.O.,1981,Solar Phys.,74,21

Harrison G.,Bingham R.,Aplin K.,Kellett B.,Carslaw K.,Haigh J.,2007,A&G,48,2.7

Hurley J.R.,Pols O.R.,Tout C.A.,2000,MNRAS,315,543 Kandel R.,Viollier M.,2005,Sp.Sci.Rev.,120,1

Kasting J.F.,1988,Icarus,74,472

Kasting J.F.,Whitmire D.P.,Reynolds R.T.,1993,Icarus,101, 108

Korycansky D.G.,Laughlin G.,Adams F.C.,2001,Ap&SS,275, 349

Laughlin G.P.,2007,Sky&Telescope,June issue,32

Lemaire P.,Gouttebroze P.,Vial J.C.,Artzner G.E.,1981,A&A, 103,160

Livio M.,Soker N.,1984,MNRAS,208,763

Lopez B.,Schneider J.,Danchi W.C.,2005,ApJ,627,974 Lovelock J.,1979,GAIA–A New Look at Life on Earth.Oxford Univ.Press,Oxford

Lovelock J.,1988,The Ages of GAIA.W.W.Norton,New York Lovelock J.,2006,The Revenge of GAIA.Basic Books,New York Maeder A.,Meynet G.,1988,A&AS,76,411

Maltby P.,Avrett E.H.,Carlsson M.,Kjeldseth-Moe O.,Kurucz R.L.,Loeser R.,1986,ApJ,306,284

Meynet G.,Mermilliod J.-C.,Maeder A.,1993,ApJ Suppl.,98, 477

Ostriker E.C.,1999,ApJ,513,252

Penev K.,Sasselov D.,Robinson F.,Demarque P.,2007,ApJ, 655,1166

Pols O.R.,Tout C.A.,Eggleton P.P.,Han Z.,1995,MNRAS, 274,964

Pols O.R.,Tout C.A.,Schr¨o der K.-P.,Eggleton P.P.,Manners, J.,1997,MNRAS,289,869

Pols O.R.,Schr¨o der K.-P.,Hurley J.R.,Tout C.A.,Eggleton P.

P.,1998,MNRAS,298,525

10K.-P.Schr¨o der and R.C.Smith

Prialnik D.,2000,An Introduction to the Theory of Stellar Struc-ture and Evolution.Cambridge Univ.Press,Cambridge Priest E.,Lockwood M.,Solanki S.,Wolfendale A.,2007,A&G, 48,3.7

Rasio F.A.,Tout C.A.,Lubow S.H.,Livio M.,1996,ApJ,470, 1187

Reimers D.,1975,Mem.Soc.Roy.Sci.Li`e ge,6eme S′e rie,8,369 Reimers D.,1977,A&A,61,217

Rybicki K.R.,Denis C.,2001,Icarus,151,130

Sackmann I.-J.,Boothroyd A.I.,Kraemer K.E.,1993,ApJ,418, 457

S′a nchez-Salcedo F.J.,Brandenburg A.,2001,MNRAS,322,67 Schr¨o der K.-P.,1990,A&A,236,165

Schr¨o der K.-P.,1998,A&A,334,901

Schr¨o der K.-P.,Cuntz M.,2005,ApJL,630,L73

Schr¨o der K.-P.,Cuntz M.,2007,A&A,465,593

Schr¨o der K.-P.,Gri?n R.E.M.,Gri?n R.F.,1990,A&A,234, 299

Schr¨o der K.-P.,Pols O.R.,Eggleton P.P.,1997,MNRAS,285, 696

Schr¨o der K.-P.,Winters J.M.,Sedlmayr E.,1999,A&A,349,898 Schr¨o der K.-P.,Smith R.C.,Apps K.,2001,A&G,42,6.26 Svensmark H.,2007,A&G,48,1.18

Van Belle G.T.,Dyck H.M.,Benson J.A.,Lacasse M.G.,1996, AJ,112,2147

Van Belle G.T.,Dyck H.M.,Thompson R.R.,Benson J.A., Kannappan S.J.,1997,AJ,114,2150

VandenBerg D.A.,1991,in James K.,ed.,The formation and evolution of star clusters,ASP Conf.Ser.13,Astron.Soc.

Paci?c,San Francisco,p.183

V′a zquez R.,Miranda L.F.,Torrelles J.M.,Olgu′?n L.,Ben′?tez

G.,Rodr′?guez L.F.,L′o pez J.A.,2002,ApJ,576,860 Verbunt F.,Phinney E.S.,1995,A&A296,709

Villaver E.,Livio M.,2007,ApJ,661,1192

Zahn J.-P.,1977,A&A,57,383

Zahn J.-P.,1989,A&A,220,112

太阳能辐射量分类

太阳能资源分四类(最新): 我国太阳能资源分布是不均衡的,按辐射强度划分,大致可以划分为四类地区,其中: 一类地区大于6700MJ/m2,>159.5千卡/cm2 二类地区是5400-6700MJ/m2, 128.6-159.5千卡/cm2 三类地区4200-5400MJ/m2, 100-128.6千卡/cm2 四类地区小于4200MJ/ m2。 <100千卡/cm2 我国主要城市年平均日照时数,也可以划分成四类地区。 一类地区平均日照时数在2500小时以上,一类地区有乌鲁木齐、拉萨、西宁、银川、呼和浩特、沈阳等, 二类地区平均日照时数在2000-2500小时之间,二类地区有北京、天津、石家庄、济南、南昌、太原、长春、哈尔滨、兰州等, 三类地区平均日照时数在1000-2000小时,三类地区有上海、南京、杭州、合肥、福州、郑州、长沙、南宁、广州、昆明、海口, 四类地区平均日照时数1000小时以下,四类地区有重庆、成都、贵阳。 【我国太阳能资源】旧版本 在我国,西藏西部太阳能资源最丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。 一类地区 为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 二类地区 为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

高中地理人教版必修一第一章第三节3 地球的运动之昼夜长短和正午太阳高度角的变化

第一章行星地球 第5课昼夜长短和正午太阳高度角的变化四季更替和五带 教学目标 1、理解昼夜长短、正午太阳高度角的纬度变化及季节变化规律。 2、了解四季更替的现象,解释四季形成的原因。 重点:地球公转的地理意义。 难点:四季和五带的形成。 教学过程 一、地球公转的地理意义 (一)引起正午太阳高度的变化 ①太阳光线对于的交角,叫做太阳高度角,简称(用H表示)。同一时 刻正午太阳高度由向递减。因此,太阳直射点的位置决定着一个地方的正午太阳高度的大小。在太阳直射点上,太阳高度为,在晨昏线上,太阳高度是。 ②正午太阳高度变化的原因:由于的存在, 太阳直射点的南北移动,引起正午太阳高度的变化。 ③正午太阳高度的变化规律:太阳高度就是一日内最大的太阳高度,它的大小随纬 度不同和季节变化而有规律地变化。 合作探究: 极昼的南北极为何冰雪不融呢? Ⅱ随季节变化:夏至日——达一年中最大值,达一年中最小值。冬至日——达一年中最大值,达一年中最小值。 ④计算公式:H=

(二)昼夜长短随纬度和季节变化 ①地球昼半球和夜半球的分界线叫线(圈) 。晨昏线把所经过的纬线分割成弧和弧。由于黄赤交角的存在,除日时晨昏线通过两极并平分所有纬线圈外,其它时间,每一纬线圈都被分割成不等长的昼弧和夜弧两部分(赤道除外)。地球自转一周,如果所经历的昼弧长,则白天长;夜弧长,则白昼短。 昼夜长短随纬度和季节变化的规律见下表: 3月21日—9月23日9月23日—3月21日 太阳直射北半球太阳直射南半球北半球夏半年南半球冬半年北半球冬半年南半球夏半年 各纬度昼弧>夜弧, 昼长夜短。纬度越高, 昼越长,夜越短,6月22日夏至日,昼最长,夜最短。在北极圈及其以北地区,出 现极昼。与北半球夏半年相 反,冬半年相同。 各纬度夜弧>昼弧, 昼短夜长。纬度越高, 昼越短,夜越长,12 月22日冬至日,昼最 短,夜最长。在北极 圈及其以北地区,出 现极夜。 与北半球冬半年相 反,夏半年相同。 春分日、秋分日,全球各地昼夜等长,各12小时。 赤道上:全年昼夜等长。(两天一地昼夜等长) 规律总结:根据直射点所处的南北半球的位置判断,直射点所在的半球,该半球各地昼长夜短,纬度越高昼越长,另一半球反之。纬度越高,一年中昼夜长短变化的幅度最 大。 合作探究: 1、劳动节我们海口昼夜长短情况如何? 3、教师节我们海口地区昼夜长短情况和昼夜长短的变化情况如何? ③昼夜长短的动态变化判断 规律总结:根据直射点移动的方向判断,如下图所示:直射点向北移动,北半球各地区(除极昼地区)昼渐长夜渐短,南半球反之;直射点向南移动,南半球各地区(除极昼地区)昼渐长夜渐短,北半球反之; ④昼夜长短的定量计算 (昼夜长短与日出日落时间的关系规律总结:昼长 = 日落时间—日出时间)

1太阳系和地球系统元素的丰度详解

第一章 太阳系和地球系统的元素丰度 元素丰度是每一个地球化学体系的基本数据,可在同一或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素动态情况,从而建立起元素集中、分散、迁移活动等一系列地球化学概念。从某种意义上来说,也就是在探索和了解丰度这一课题的过程中,逐渐建立起近代地球化学。 研究元素丰度是研究地球化学基础理论问题的重要素材之一。宇宙天 体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和规律。 1.1 基本概念 1.地球化学体系 按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系。每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C 、T 、P 等),并且有一定的时间连续。 这个体系可大可小。某个矿物包裹体,某矿物、某岩石可看作一个地球化学体系,某个地层、岩体、矿床(某个流域、某个城市)也是一个地球化学体系,从更大范围来讲,某一个区域、地壳、地球直至太阳系、整个宇宙都可看作为一

地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中元素“量”的研究。 2.分布与丰度 所谓元素在体系中的分布,一般认为是元素在这个体系中的相对含量(以元素的平均含量表示),即元素的“丰度”。其实“分布”比“丰度”具有更广泛的涵义: 体系中元素的丰度值实际上只是对这个体系里元素真实含量的一种估计,它只反映了元素分布特征的一个方面,即元素在一个体系中分布的一种集中(平均)倾向。但是,元素在一个体系中,特别是在较大体系中的分布决不是均一的,还包含着元素在体系中的离散(不均一)特征,因此,元素的分布包括: ①元素的相对含量(平均含量=元素的“丰度”);②元素含量的不均一性(分布离散特征数、分布所服从的统计模型)。 需要指出的是,从目前的情况来看,地球化学对元素特征所积累的资料(包括太阳系、地球、地壳)都仅限于丰度的资料,关于元素分布的离散程度及元素分布统计特征研究,仅限于在少量范围不大的地球化学体系内做了一些工作。 3.分布与分配 元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区等)的整体总含量; 元素的分配指的是元素在各地球化学体系内各个区域或区段中的含量; 分布是整体,分配是局部,两者是一个相对的概念,既有联系又有区别。 例如,地球作为整体,元素在地壳中的分布,也就是元素在地球中分配的表现,把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现。 4.绝对含量和相对含量 各地球体系中常用的含量单位有两类,绝对含量和相对含量。 1.2太阳系的组成和元素丰度

太阳辐射对地球的影响

太阳辐射对地球的影响 根据多年来对某地区各朝向建筑墙面上接受太阳辐射热量的实测值,计算出最冷月(一月)和最热月(七月)日辐射总量,并绘出太阳辐射热量日总量变化图,读图判断下列小题。 【小题1】该地区一月和七月建筑墙面上接受太阳辐射热量的日总量小于4186千焦/平米·日的墙面() A.分别朝北、朝东B.分别朝南、朝西 C.分别朝西、朝南D.均朝北 【小题2】经研究发现该地区一天中日出、日落时墙面接受的太阳辐射热量最小,其原因是() ①太阳高度角最小②气温最低③经过大气层的路径最长④反射作用最强 A.①②B.①③C.②③D.①④ 【答案】 【小题1】D 【小题2】B 【解析】 试题分析: 【小题1】从图中的等值线可以看出,无论是一月还是七月,该地朝北的建筑墙面上接受到的太阳辐射量都小于4186千焦/平米·日,D正确。 【小题2】日出、日落时,该地墙面接受到的太阳辐射量最小,这是因为此时的太阳位于地平面上,太阳高度小,且太阳辐射穿过的大气层路径长,被大气削弱得也较多,B正确。考点:影响太阳辐射的因素 下图是M、N两地太阳辐射的年变化示意图,回答4~6题。

4.M地最可能位于() A.赤道B.回归线C.极圈D.极点 5.N地五月一日时昼夜状况是() A.昼长夜短B.昼短夜长C.极昼D.极夜 6.5~7月间,N地获得的太阳辐射较M地为多,最主要影响因素是() A.太阳高度角B.昼夜长短C.天气状况D.地面状况 【小题1】A【小题2】C【小题3】B 解析: 【小题1】影响太阳辐射的年变化的最主要因素是太阳高度角。M地一年之中太阳辐射变化不大,且分别于3月和9月达到一年中最高值,而6月和12月最低,因此M地最可能位于赤道。 【小题2】由上题可推断图中四条虚线对应二分二至点,N地夏至时达到最高值,而春分和秋分后没有太阳辐射说明出现极夜,由此可判断该地位于北极圈,因此五月一日时出现极昼现象。 【小题3】由上两题的分析可以看出,N地纬度高于M地,但5~7月间太阳直射北半球,越往北昼越长,因此此段时间N地获得的太阳辐射较M地为多。 下图是某区域太阳辐射总量等值线(单位:百万焦耳/平米·年)图。据此回答以下2题。20.①、②两地太阳年辐射总量的最大差值R可能是 A.2900

全国太阳辐射量资料

具体分部情况见下图 资源带号名称指标 Ⅰ资源丰富带≥6700MJ/(m2·a) Ⅱ资源较富带5400~6700MJ/(m2·a)Ⅲ资源一般带4200~5400MJ/(m2·a)Ⅳ资源贫乏带<4200MJ/(m2·a)

附表1我国主要城市的辐射参数表 城市纬度Φ日辐射量 Ht 最佳倾角 Φop 斜面日 辐射量 修正系数 Kop 哈尔滨45.68 12703 Φ+3 15838 1.1400 长春43.90 13572 Φ+1 17127 1.1548 沈阳41.77 13793 Φ+1 16563 1.0671 北京39.80 15261 Φ+4 18035 1.0976 天津39.10 14356 Φ+5 16722 1.0692 呼和浩特40.78 16574 Φ+3 20075 1.1468 太原37.78 15061 Φ+5 17394 1.1005 乌鲁木齐43.78 14464 Φ+12 16594 1.0092 西宁36.75 16777 Φ+1 19617 1.1360 兰州36.05 14966 Φ+8 15842 0.9489 银川38.48 16553 Φ+2 19615 1.1559 西安34.30 12781 Φ+14 12952 0.9275 上海31.17 12760 Φ+3 13691 0.9900 南京32.00 13099 Φ+5 14207 1.0249 合肥31.85 12525 Φ+9 13299 0.9988 杭州30.23 11668 Φ+3 12372 0.9362 南昌28.67 13094 Φ+2 13714 0.8640 福州26.08 12001 Φ+4 12451 0.8978 济南36.68 14043 Φ+6 15994 1.0630 郑州34.72 13332 Φ+7 14558 1.0476 武汉30.63 13201 Φ+7 13707 0.9036 长沙28.20 11377 Φ+6 11589 0.8028 广州23.13 12110 Φ-7 12702 0.8850 海口20.03 13835 Φ+12 13510 0.8761 南宁22.82 12515 Φ+5 12734 0.8231 成都30.67 10392 Φ+2 10304 0.7553 贵阳26.58 10327 Φ+8 10235 0.8135 昆明25.02 14194 Φ-8 15333 0.9216 拉萨29.70 21301 Φ-8 24151 1.0964

专题1地球在宇宙中的位置教学设计

专题1 地球在宇宙中的位置 一、教材分析:该专题内容作为高二地理第一篇《宇宙与地球》的第一个专题,对学生高中阶段的地理学习影响很大。教材包括天体系统、太阳系、太阳和只有一个地球四部分以及五个“专栏” 、七个“思考与实践”题,教学内容相当丰富和开放。本专题的学习对了解地球的宇宙环境有重要意义,亦可激发学生学习地理的兴趣,为下面的专题学习做好铺垫。 二、学生分析 作为普通中学的学生,课前课后的任务完成质量较差,教学任务的完成主要立足于课堂。从学生的心理上来看:刚开始的地理课学生好奇心强、情感单纯而热烈,高中阶段正处于形象思维强而抽象思维正在形成的阶段。学生们受到多种传媒的影响,有着较广的知识面,对教学的内容有一定的知识储备。 所以作为教师要根据现状和学生的特征,找到学生们的兴趣点切入教学,再展开形式多样、内容丰富的活动,调动他们的积极性,就一定能达到教学效果的最优化。 三、教学目标的确定 知识与技能 ①能说出天体系统的层次并用图表表示,知道主要天体类型及特点 ②知道太阳系的组成,太阳的基本概况(日地距离、能量源泉),太阳大气的分层和特点,理解太阳活动对地球的主要影响。 ③能列表说出八大行星分类及特征,能在“太阳系模式图”中熟练判读地球在太阳系中的位置,根据材料归纳地球上存在生命的条件。 过程与方法 ①尝试运用所学的知识与技能对相关图、表进行比较分析,并且归纳总结; ②学会从相关资料中获取所需的知识,最后启发自己的思维,形成自己的观点和认识; ③运用适当的方法和手段表达自己学习的体会、看法和成果,并与他人交流。 情感态度与价值观 ①树立正确的宇宙观,激发对大自然的好奇心和敬畏心,唤起对浩瀚宇宙的求知欲和不断探索的科学精神。 ②在探究地球生命物质存在条件和地外文明的过程中,逐步形成关心和爱护地球环境的意识,培养珍惜生命、关爱生命、尊重生命的意识。 四.重点与难点 1、重点: ①天体系统的层次;太阳对地球的影响 ②八大行星的分类及特征,地球上有生命存在的条件 2、难点:如何在“润物细无声”的教学中初步达成正确宇宙观和科学精神的培养。 五、教法与学法 1、教法 ①引导启发式 ②探究式教学 ③多媒体辅助教学 2、学法 发现学习 六、课时安排 2课时 七、教学过程 引入:06年8月国际天文联合会决议将冥王星赶出九大行星之列! (以热点引入容易激发学生的兴趣,直接进入主题) 专题1 地球在宇宙中的地位(第一课时) 一、人类认识宇宙的过程 教师简单介绍人类认识宇宙的历程:盖天说→浑天说→地心说→日心说(伟大的哥白尼)其中突出日心说的科学家,使学生领悟科学家追求真理,为真理献身的精神。 通过浏览第4页“专栏”使学生简单了解宇宙大爆炸

600亿年以后,地球脱离太阳系

孙四周的推算公式 注:t:时间 H:哈勃常数 RO:太阳半径 ln:自然对数 M:太阳质量 G:牛顿万有引力常数 好莱坞灾难大片《2012》、玛雅的2012世界末日预言,让很多人对未来充满恐慌。2012真的是世界末日吗?昨日,江苏教育学院附属高级中学孙四周老师,用数学公式向记者演绎了宇宙的未来,按照他的计算,在5000年后,太阳和现在相比几乎没有变化。 这些成果出现在孙四周新近出版的专著《空间相对论膨胀宇宙的数学原理》一书中。在孙四周老师的身上,数学几乎是个“万能工具”。此前,他曾用几何方法证明了周正龙拍摄的华南虎为假,并因此而名声大噪。 有人说世界末日是2012 霍金说大约在200年后 孙四周说,都错了! 近年来,世界末日论一直是热门话题。随着好莱坞灾难大片《2012》的热映和持续传播,2012更是被确切地指认为“世界末日”。这一论断和神秘的玛雅预言不谋而合,因而在世界范围内,不少公众因此恐慌莫名。 世界各国的不少科学家都投入到“世界末日”这一问题的研究中。据媒体报道,有着“自爱因斯坦以来最伟大的物理学家”之称的英国传奇人物霍金,也曾就此焦点问题发表看法,他出面辟谣说:2012不是世界的末日,我们不必惊慌。宇宙的末日会在大约200年以后到来,因此我们这一辈人是安全的。 “此言一出,无异于火上浇油。把宇宙的寿命向后推延200年,仍然没有卸去人们心头的重压。霍金的良苦用心显然没有起到预想的结果。”孙四周老师表示。 近日,孙四周出版了《空间相对论膨胀宇宙的数学原理》个人专著。在这本书中,他用5个公理和1个定义,揭示宇宙演化的数学原理。“由此得到的太阳系寿命等的计算结果,符合美国、德国等国科学家的最新预测。”孙四周表示。 根据孙四周的计算,他对本报记者说:“我们的太阳系现在正处于演化成熟期,相当于人类的30多岁。它仍然在膨胀,但是它很平稳。” “太阳系的消亡肯定不是在2012年,也不是在这以后200年左右。撇开电影的夸张和艺术化不说,科学大师霍金这次是错定了。”孙四周笃定地说。 究竟怎样计算宇宙的寿命? 究竟怎样计算宇宙的寿命?孙四周介绍,科学研究表明,宇宙在空间上是有限的,在时间上是有起点和终点的。我们的宇宙是从很小的一个点开始,扩大而成现在这个规模。最初的宇宙,可以想象成比原子还小。经过膨胀,才有今天的太阳系、银河系、河外星云、星际空间等等。 孙四周介绍说,根据爱因斯坦的相对论可推得,宇宙从最初的膨胀到现在,大约用了137亿年。但是,实际的观测资料不断刷新,现在已经有观测到200亿年以外的星云的记录。尽管如此,科学界还是普遍认为时间总有一个起点,就是以宇宙从一个点开始膨胀那一刻为0时刻。 宇宙的膨胀,到现在也没有停止,而且有证据表明膨胀在加速。在孙四周的著作《空间相对论膨胀宇宙的数学原理》中,有一个公式可以计算宇宙在任意时刻的膨胀速度。孙四周介绍,这个公式是他根据相关的公理和定义推证出来的,通过这个公式,可以计算任意一个星系从小到大的膨胀过程,从而轻易地计算出星系解体的时间表。 “这样的公式在世界上是第一个,我感到很幸运”,孙四周自豪是自己发现

(完整版)影响太阳辐射强弱的因素分析分析

影响太阳辐射强弱的因素分析 JGSLJZ 【知识归纳】 太阳辐射强度是指到达地面的太阳辐射的强弱。大气对太阳辐射的吸收、反射、散射作用,大大削弱了到达地面的太阳辐射。但尚有诸多因素影响太阳辐射的强弱,使到达不同地区的太阳辐射的多少不同。影响太阳辐射强弱的因素主要有以下四个因素。 1.纬度位置 纬度低则正午太阳高度角大,太阳辐射经过大气的路程短,被大气削弱得少,到达地面的太阳辐射就多;反之,则少。这是太阳辐射从低纬向高纬递减的主要原因。 2.天气状况 晴朗的天气,由于云层少且薄,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射就强;阴雨的天气,由于云层厚且多,大气对太阳辐射的削弱作用强,到达地面的太阳辐射就弱。如赤道地区被赤道低压带控制,多对流雨,而副热带地区被副高控制,多晴朗天气,所以赤道地区的太阳辐射要弱于副热带地区。 3.海拔高低 海拔高,空气稀薄,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射就强;反之,则弱。如青藏高原成为我国太阳辐射最强的地区,主要就是这个原因。如青藏高原成为我国太阳辐射最强的地区,主要就是这个原因。 4.日照长短 日照时间长,获得太阳辐射强;日照时间短,获得太阳辐射弱。如我国夏季南北普遍高温,温差不大,是因为纬度越高的地区,白昼时间长,弥补了因太阳高度角低损失的能量。 【典例精析】 1.读“太阳辐射光谱示意图”,下列因素中与A区(大气上界太阳辐射与地球表面太阳辐射差值)多少无关的是() A.云层的厚薄B.大气污染程度C.大气密度D.气温 【解析】云层的厚薄、大气污染程度以及大气密度都会影响大气透明度进而影响到达地面的太阳辐射的多少。 【答案】D 2.辐射差额是指在某一段时间内物体能量收支的差值。读“不同纬度辐射差额的变化示意图”,若只考虑纬度因素,则a、b、c三地纬度由高到低的排列顺序为()

华师大版-科学-七年级上册-《昼夜与四季》教案

《昼夜与四季》教案 教学目标 1.了解天体的东升西落现象与地球自转的关系。 2.了解昼夜的成因。 3.了解地球公转运动的方向,周期,地轴倾斜等基本特征。 4.了解地球公转运动与四季形成的关系。 教学重点与难点 1.地球自转,昼夜现象的成因与昼夜交替现象的成因。 2.地球公转特点与四季形成的关系。 教学过程 一、昼夜的形成 1.播放幻灯片。 问题:地球上不同的地方在同一时间里有白昼与黑夜之分,这是为什么? 问题:是不是白昼永远都是白昼,黑夜永远都是黑夜? 问题:那昼夜的关系是怎样的? 问题:为什么昼夜是不断的交替? 2.师生共同探究地球的自转。 (1)学生实验探究地球自转方向:四个同学围成一个地球,一个同学是太阳。通过太阳的东升西落得出地球自转方向是自西向东。 (2)学生通过转动手中的地球仪领会地球自西向东的自转,同时去发现地球自转的其他特征:从南极上空看:顺时针转;从北极上空看:逆时针转;地球以地轴为中心自转。 3.议一议。 (1)假如地球不自转,会有什么样的现象呢? (2)如果地球的自转方向是自东向西,会有什么特殊现象? (3)地球的自转会产生那些现象? 讲述:同学们说了地球自转会产生昼夜交替现象,那昼夜交替现象产生的原因是什么?(地球自转)。

昼夜交替的成因:地球是个不透明不发光球体(太阳光照)昼夜现象(地球不停的自转)昼夜交替。 问题:同学们,你们知道昼夜交替一次的时间是多少吗?(约24小时,也即地球自转一周的时间,一日)。 地球自转的周期:约24小时,1日=24小时。 讲述:我们古代祖先就注意到了昼夜交替现象,他们就以地球自转为计时基准,以“日”为单位,发明了许多计时仪器:(圭表,日晷,漏刻)。 讲述古代计时仪器的工作原理:可以说我们的祖先非常的聪明,他们不仅发明了这么多计时工具,也通过他们的不懈努力使我国的天文学取得辉煌的成就,他们中有许多杰出的代表。你能说说他们是谁吗? 二、四季的形成 1.学生模拟地球绕日公转特点。 (1)让地球仪绕日公转时,使北极始终朝向事先确定的某个遥远的方向。(北极星附近)(2)过地球仪球心,与桌面平行的面为公转轨道面。要求地轴与平面之间有66.5°的夹角,是自西向东绕日旋转。 2.得出结论。 (1)太阳直射点到北半球最北的纬度上即北回归线(北半球的日期)。 (2)太阳直射点到南半球最南的纬度上即南回归线。 (3)一年中,太阳直射点在南北回归线之间往返移动。 3.四季的形成:我国所在温带地区,太阳直射点到北回归线附近时,太阳高度大,光照时间长,气温高,白昼长黑夜短,为夏季。把太阳最高,白昼最长(杆影最短),其中直射到北回归线上时为夏至日。太阳直射点到南回归线附近时,太阳高度小,光照时间短,为冬季。把太阳最低,白昼最短(杆影最长),其中直射点到南回归线时为冬至日。太阳直射点到赤道附近时,太阳高度适中,白昼黑夜差不多,天气不冷不热的时候,就进入了春季或秋季。因为公转一周直射点经过赤道两次,一次叫春分,一次叫秋分。这两天中白昼和黑夜长度相等。因此四季的形成最终是由于地球的公转引起的 三、二十四节气 1. 二十四节气是我国民间传统沿用的与农时相结合的计时方法,即农历。 2. 二十四节气在公历中的位置是固定的,而二十四节气就是农历的组成部分,农历属于阴阳历。

高中地理知识点复习:地球在宇宙中的位置

高中地理知识点复习:地球在宇宙中的位置 一、单选题 近日,美国国家航空航天局官网宣布:美国于1977年9月5日发射的“旅行者”1号已经飞出了太阳系。这是第一个进入星际空间的人造天体。据此完成1~2题 1.“旅行者”1号在发射后的飞行过程中 A.先后穿越了地月系、银河系、太阳系 B.先后穿越了类地行星、远日行星、巨行星这些行星轨道 C.穿越了密集的小行星带 D.观测到太阳系八大行星的自转方向全部相同 2.若“旅行者”1号在今后的飞行过程中发现一颗适合生命存在的行星,可推断该行星 A.自转周期与地球相同B.可能存在液态的水 C.大气成分以氮、氧为主D.表面有肥沃的土壤 西昌卫星发射中心于12月2日凌晨1:30成功发射长征三号乙型运载火箭,随后把“嫦娥三号”运送至近地点200公里、远地点38万公里的地月转移轨道,“嫦娥”与“玉兔”相拥直奔“广寒”,她们将实现中国航天器首次地外天体软着陆和月面巡视探测。继俄美之后,月球将喜迎中国访客。请回答3~4题 3.有关月球的叙述,据你的常识及所学知识判断,错误的是 A.月球是一颗卫星B.月球表面有很多月坑 C.月球表面昼夜温差极大D.月球上的流星雨现象比地球壮观4.比地月系高一级的天体系统是 A.河外星系B.太阳系C.银河系D.总星系 地球是一颗普通而特殊的行星。据此完成5~6题 5.地球具有生命生存的温度条件,并不是因为 A.地球的宇宙环境稳定,日地距离适中 B.地球自转周期适宜,昼夜温差较小 C.各大行星各行其道,互不干扰 D.地球体积、质量适中,有适合生物生存的大气 6.读地球所处天体系统简易层次图,正确的判断是

A.①是总星系B.②是太阳系C.③是河外星系D.⑤是地月系 下图为2009年10月16日黎明时分出现的水星、金星、土星“三星伴月”图,据此回答7~8题 7.图中的天体系统级别有 A.1级B.2级C.3级D.4级 8.当“三星伴月”出现时,太阳直射点的位置和移动方向分别是 A.北半球,向南移动B.北半球,向北移动 C.南半球,向南移动D.南半球,向北移动 9.比银河系低一级的天体系统是 A.地月系B.太阳系C.河外星系D.总星系 2018年8月,嫦娥四号探测器在西昌卫星发射中心由长征三号乙运载火箭发射升空。2019年1月3日10时26分,“嫦娥四号”探测器成功着陆在月球背面南极-艾特肯盆地冯·卡门撞击坑的着陆区,实现了人类历史上首次对月球背面的软着陆就位探测(下图)。据此完成10~11题 10.下列关于“嫦娥四号”探测器是否为天体的叙述,正确的是 A.西昌卫星发射中心待发射的“嫦娥四号”探测器是天体 B.2018年12月20日的“嫦娥四号”探测器是天体 C.着陆在月球背面的“嫦娥四号”探测器是天体 D.“嫦娥四号”探测器就是天体

太阳系形成与地球诞生

南日中学师生共用导学稿 班级姓名 年级:初三年级学科:科学整理:钱敏达审核: 内容:§1.2太阳系的形成与地球的诞生课型:新授时间: 学习目标 1、知道托勒密与“地心说”;哥白尼与“日心说”。 2、了解关于太阳系形成的主要学说——星云说。 3、知道地球是随太阳系的形成而诞生的。 学习重点难点 1、重点:地心说、日心说、星云说。 2、难点:星云说。 课后作业 1.提出黑洞理论和无边界设想的科学家是( ) A、哈勃 B、霍金 C、伽利略 D、哥白尼 2. 目前被人们广为接受的一种宇宙起源学说是(勒梅特于1931年创建)。 其主要观点——大约年前,我们所处的宇宙全部以粒子的形式、极高的温度和密度,被挤压在一个“”中。 拓展与提高 1.英国人提出的理论和的设想成了现代宇宙学的重要基石。他的宇宙无边界设想是这样的:第一,; 第二,宇宙不是的一般系统。 新课预习 一、太阳系的形式与地球的诞生 1.“地心说”:公元2世纪,希腊科学家在总结前人学说的基础上,创立了“”宇宙体系学说。 2.“日心说”:16世纪,波兰天文学家依据大量精确的观测资料,建立了 “”宇宙体系学说。 3. 太阳系:太阳系的九大行星,由内向外,有水星、、、、木 星、、、和冥王星,它们都在接近同一平面的近圆轨道上,朝同一方向绕太阳公转。

二、太阳系的形成 1. “康德——拉普拉斯星云说”:太阳系是由一块收缩形成的,先形成的是, 然后,剩余的进一步收缩演化,形成地球等。理论依据:太阳系的行星绕日运行的特征:同向性—公转方向与自转相同;共面性—公转轨道平面大多接近于;轨道的近圆性—公转轨道是。 三、其它学说: (1)灾变说:也叫撞击说,认为慧星等其它天体和太阳相撞后,它们的残骸渐成行星。(2)遭遇说:其他天体经过太阳附近,吸引出太阳内部物质形成行星。 课堂练习 1.当代英国最伟大的科学家霍金的黑洞理论和宇宙无边界设想已成了现代宇宙学说最重要的基石,关于黑洞,下列说法得不到支持的是…………………………………( )。 A、是质量为太阳的l、44到2倍的恒星在晚年爆发形成超红巨星后塌缩而成 B、是质量比太阳大得多的恒星在晚年爆发形成超红巨星后塌缩而成 C、黑洞直径仅几千米,但密度大得难以想像,它能把靠近它的一切东西永久吞没 D、人们看不见黑洞,但天文学家能测出它的存在 2.下列说法不是太阳系中行星运动的共同特点的是() A、八大行星绕日公转的方向和自转的方向一致 B、八大行星绕日公转的轨道平面大多接近同一平面 C.除了水星和金星,其他行星都有卫星绕转,而且绕转的方向一致 D.八大行星绕日公转的轨道是在以太阳为中心的一个球面上 3.下列说法不正确的是() A、宇宙是原始火球大爆炸形成的 B.星云是指由气体和尘埃组成的巨大云雾状天体,星云很庞大C.太阳系是由受太阳引力约束的天体组成的系统 D.八大行星都是主要由石质和铁质构成的 4.“地心说”的集大成者是希腊科学家___。“地心说”的核心是地球是宇宙的___,太阳和其他天体都是_________。 5.16世纪,波兰天文学家____,建立了____宇宙体系学说,核心是:太阳是宇

太阳对地球的影响大纲阐述太阳辐射和太阳活动对地球的影响

[大纲] 阐述太阳辐射和太阳活动对地球的影响 1、太阳能量的来源: ◇来源:太阳内部的核聚变反应;反应式:4H --高温高压--> He+能量 ◇太阳概况:巨大炽热的气体球、主要成分:氢、氦,表面温度6000K 2、太阳辐射对地球的影响: ◇太阳辐射能:太阳源源不断地以电磁波的形式向宇宙空间放射能量,就是太阳辐射。太阳辐射是电磁波,根据波长不同,太阳辐射可划分为:紫外线、可见光、红外线三部分。能量可以通过不同转换方式,转化为电能、热能等。 ◇太阳辐射对地球的影响: 1、向地球输送能量,维持地表温度:[占太阳辐射量的1/22亿、万物生长靠太阳、作用大] 2、促进地球环境的形成和变化:[大气圈风的动力、生物圈呼吸作用、水圈水循环、岩石圈风化] 3、太阳辐射能是人类生活、生产的能源:[煤炭石油天然气生物能水能风能沼气,归根到底是太阳能] 3、太阳[大气]活动对地球的影响: ◇太阳[大气]活动概念:太阳表面大气的变化 ◇主要类型:黑子(太阳活动强弱的标志),耀斑(太阳活动最激烈的显示);平均周期:都是11年 ◇太阳的大气层的结构:光球(肉眼,地球上接收的光基本来自这里,黑子)、色球(日全食时、望远镜可以看到,耀斑)、日冕(日冕仪,太阳风) ◇太阳活动对地球影响: 1、对地球气候的影响:影响到气候中的降水因子[降水以11年或11年的倍数为周期减少或增加] 2、对地球磁场的影响:太阳大气抛出的高能带电粒子会扰乱地球磁场、“磁暴”现象、指南针、极光 ·太阳活动强烈时,光8分钟到达地球[紫外线增强等,但夜半球不受影响],但带电的粒子几天后才到 达[粒子影响不分昼夜,但看到极光的出现必需在高纬度的夜晚] 3、对地球电离层的影响:干扰电离层,影响无线电通讯[电离层能够反射无线电] [拓展] ■太阳辐射强度及其影响因素: 1、纬度:纬度越低,一般正午太阳高度越大,太阳辐射能越大。 2、地形:海拔越高,空气越稀薄,对太阳辐射的削弱越弱,如青藏高原是我国太阳辐射能最大的地区。 3、气候:降水多,云量大,削弱强,太阳辐射能少。如贵州和四川盆地[蜀犬吠日、多雾]多阴雨天气,是我 国获得太阳辐射能量较少的地区;撒哈拉地区气候干旱,获得的太阳辐射能量世界最多。 4、昼长:白昼时间越长,获得太阳辐射时越多。 ■中国年太阳辐射总量分布及原因: 1、我国太阳能资源高值的中心在青藏高原,低值的中心在四川盆地。 2、分布规律:西部非季风区多于东部季风区,地势高的地区多于地势低的地区。 3、青藏高原最多:地势高峻、气候干旱、大陆性强,晴天多,雨天少。 四川盆地最少:盆地地形,雾日多,大气能见度低。 ■光照与温度的关系 1、太阳辐射是通过电磁波的形式向外界传送能量;热量是在热传递过程中出现的 2、一个地方温度高不高,要看当地对太阳辐射能转换的能力强不强[如大气密度的大小] 3、光照少的地方,温度一定低,太阳辐射能少,谈不上更多地转换。如:两极

太阳系中的有趣科学2019尔雅答案

…………………………………………………^_^………………………………………………… 太阳系天体概览 1【单选题】以太阳为中心,从内到外地球的位置在太阳系中排第几位? 答案:3 A、5 B、4 C、3 D、2 2 【单选题】下列哪一颗行星是太阳系中体积最大的行星?答案:D A、金星 B、火星 C、地球 D、木星 3 【判断题】夏季大三角包括织女星、牛郎星和天津四。答案:√ 4 【判断题】在地球上,人类无法通过肉眼直接观测到人造卫星。答案:错误 行星的运动 1 【单选题】“知七政谓日月与五星也”这句话出自于哪一本着作? 答案:《尚书》 A、《尚书》 B、《春秋》 C、《论语》 D、《孟子》 2

【单选题】在古代中国,火星在哪个星之间徘徊被认为是大凶的天象? 答案:帝星 A、木星 B、水星 C、帝星 D、谷神星 3 【判断题】行星的逆行使得地球中心说收到了很大的挑战。答案:正确 日心说的提出 1 【单选题】创立日心说的是下列哪一位人物? 答案:尼古拉·哥白尼 A、尼古拉哥白尼 B、伽利略 C、牛顿 D、达尔文 2 【多选题】下列哪些关于开普勒定律的内容描述是正确的? 答案:行星沿着椭圆轨道运行相等时间内,行星运动扫过的面积是相等的 A、行星沿着正圆轨道运行 B、行星沿着椭圆轨道运行 C、相等时间内,行星运动扫过的面积是不相等的 D、相等时间内,行星运动扫过的面积是相等的 3 【判断题】伽利略是利用望远镜观察天体取得大量成果的第一人。答案:正确 太阳系各大行星运行规律 1 【多选题】下列哪几个定律成功解释了开普勒定律? 答案:万有引力定律牛顿运动定律 A、牛顿运动定律 B、万有引力定律

地球公转与季节

第一章地球的运动 地球公转与季节 三维目标: 知识与技能: 1.理解地球自转与公转的关系,掌握黄赤交角的概念。 2.理解太阳直射点回归运动的过程及其原因,并能画出示意图。 3.理解昼夜长短的季节变化和纬度变化规律。 过程与方法: 1.通过计算机动画演示,学生掌握黄赤交角的“一轴两面三角度”。 2.通过计算机动画演示并结合教材P20活动,归纳太阳直射点的移动规律。 3.通过自制教具的演示,分析昼夜长短的变化规律。 4.创设虚拟的逆向思维的情景,让学生运用所学知识分析问题。 情感、态度、价值观: 1.树立科学的宇宙观。 2.培养学生树立辨证唯物主义的思想观,理解事物之间是联系的,发展变化的。 3.培养学生的探究精神。 教学重点: 1.黄赤交角的产生及其引起的太阳直射点的回归运动。 2.昼夜长短的变化规律。 教学难点: 太阳直射点的位置与昼夜长短变化的关系 教学方法: 多媒体演示法自制教具演示法问题教学法启发式教学法合作探究法 教学过程: (引入新课):以问题的形式复习地球自转所产生的地理现象,引出地球公转会产生哪些地理现象的教学。 (推进新课):第三节地球的运动 四:地球公转与季节(板书) (师):计算机动画演示地球的自转与公转引出黄赤交角的概念,设计问题让学生观察回答。 (板书)1.黄赤交角 (学生活动): 读右图,完成下列问题。

(1)请在图中标出地轴、赤道面、黄道面、黄赤交角及度数。 (2)在图中画出太阳平行光线,标出太阳平行光线,进一步找出太阳光线在地表的直射点。 (学生通过动手,对知识的印象更深) (探究活动): (思考):若黄赤交角变大或变小,地球上五带的范围如何变化? (师):若地轴是竖直的,黄赤交角还存在吗?地球表面接受太阳垂直照射的点始终在哪里? 教师讲述:地球在自转的同时还在绕日公转。由于地球自 转倾斜的角度是不变的(一定时期内),所以赤道平面与黄道平面之间的夹角即黄赤交角也是不变的(一定时期内)。目前黄赤交角的大小为23。26′。 过渡:黄赤交角的存在及地轴倾斜方向不变,在公转过程中给太阳直射点也就是地表接受太阳垂直照射的点的位置带来什么变化? (板书):2.太阳直射点的回归运动 师用自制教具演示:地球仪演示地球公转运动。教师手持地球仪,保持地轴始终指向同一方向,在行间按逆时针方向走动,以中间四个红色箭头(延长线过地心)为太阳直射光线,要求学生注意观察地球在不同位置时,太阳直射点的位置有何变化。 教师讲述:由于黄赤交角的存在,导致太阳直射点的南北移动。从夏至日到冬至日太阳直射点自23°26′N 向南移动,经过赤道(秋分时)到达23~26’S 即南回归线。从冬至日到第二年夏至日,太阳直射点自23°2′S 向北移动,经过赤道(春分时)到达23°26′N 即北回归线。太阳直射点就在南北回归线之间作周期性的往返运动,我们称为太阳直射点的回归运动。太阳直射点回归运动的周期为365日5时48分46秒,叫一个回归年。在太阳直射点上,单位面积获得的太阳辐射能量最多。太阳直射点的回归运动,使太阳辐射能在地球表面的分配具有回归年变化。 课堂活动:学生按要求完成活动题。 按如下步骤画示意图,表示太阳直射点的移动轨迹。 (1)按等间距绘图,画三条直线分别表示赤道和太阳直射点所能到达的最北和最南 纬线。 (2)在三条直线的适当位置标注四个点,分别表示北半球二分二至日太阳的直射点。 (3)结合课本关于太阳直射点回归运动的描述,画一条曲线表示太阳直射点的移动 轨迹。

1太阳系和地球系统元素的丰度

第一章太阳系和地 球系统的元素丰度 元素丰度是每一个地球化学体系的基本 数据,可在同一或不同体系中用元素的含量 值来进行比较,通过纵向(时间)、横向 (空间)上的比较,了解元素动态情况,从 而建立起元素集中、分散、迁移活动等一系 列地球化学概念。从某种意义上来说,也就 是在探索和了解丰度这一课题的过程中,逐 渐建立起近代地球化学。 研究元素丰度是研究地球化学 基础理论问题的重要素材之一。宇宙天 体是怎样起源的?地球又是如何形成的?地 壳中主要元素为什么与地幔中的不一样?生 命是怎么产生和演化的?这些研究都离不开 基础概念太阳系的组成及元素丰度地球的结构和化学成分 地球化学体系中元素丰度分布特征和规律。 1.1基本概念 地壳元素的丰度区域中元素分布的研究 1. 地球化学体系 按照地球化学的观点,我们把所要研究 的对象看作是一个地球化学体系。每个地球 化学体系都有一定的空间,都处于特定的物 理化学状态(C T、P等),并且有一定的 时间连续。 这个体系可大可小。某个矿物包裹体, 某矿物、某岩石可看作一个地球化学体系, 某个地层、岩体、矿床(某个流域、某个城 市)也是一个地球化学体系,从更大范围来 讲,某一个区域、地壳、地球直至太阳系、 整个宇宙都可看作为一个地球化学体系。

地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、 分配问题,也就是地球化学体系中元素“量”的研究。 2. 分布与丰度 所谓元素在体系中的分布,一般认为是元素在这个体系中的相对含量(以元素的平均含量表示),即元素的“丰度”。其实“分布”比“丰度”具有更广泛的涵义:体系中元素的丰度值实际上只是对这个体系里元素真实含量的一种估计,它只反映了元素分布特征的一个方面,即元素在一个体系中分布的一种集中(平均)倾向。但是,元素在一个体系中,特别是在较大体系中的分布决不是均一的,还包含着元素在体系中的离散(不均一)特征,因此,元素的分布包括:①元素的 相对含量(平均含量=元素的“丰度”);② 元素含量的不均一性(分布离散特征数、分布所服从的统计模型)。 需要指出的是,从目前的情况来看,地球化学对元素特征所积累的资料(包括太阳系、地球、地壳)都仅限于丰度的资料,关于元素分布的离散程度及元素分布统计特征研究,仅限于在少量范围不大的地球化学体系内做了一些工作。 3. 分布与分配 元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区等)的整体总含量; 元素的分配指的是元素在各地球化学体系内各个区域或区段中的含量; 分布是整体,分配是局部,两者是一个相对的概念,既有联系又有区别。 例如,地球作为整体,元素在地壳中的分布,也就是元素在地球中分配的表现,把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现。 4. 绝对含量和相对含量 各地球体系中常用的含量单位有两类,绝对含量和相对含量 1.2太阳系的组成和元素丰度

太阳对地球的影响知识点总结

考点名称:太阳辐射对地球的影响 ?太阳辐射: 太阳以电磁波的形式向宇宙空间放射的能量。 太阳辐射的能量来源: 太阳中心的核聚变反应(4个氢原子核聚变成氦原子核,并放出大量能量) ?太阳辐射的特点: 太阳辐射是短波辐射,能量主要集中在波长较短的可见光部分。 太阳辐射的意义: 维持地表温度,地球上大气运动、水循环和生命活动等运动的主要动力,人类产和生活的主要能源。 (1)来自太阳辐射的能源:煤、石油、天然气、水能等和风能、太阳能等常规能源。 水能:是势位较高的水释放其势能转化成的动能。水分子向高处蒸发上升,来源于太阳给予的能量。 风能:是地表大气受热不均产生的运动,其能量直接来于太阳辐射。 煤、石油:是地质历史时期,地球生物体内固定的太阳能。 太阳能:核聚变反应。 (2)太阳常数:日地平均距离条件下,在地球大气上界,垂直于太阳光线的1平方厘米面

积上,1分钟内接受到太阳辐射能量。春分、秋分时测太阳常数最佳。 (3)我国年太阳能的地区分布及影响因素 ①太阳能最丰富地区:青藏高原。原因:海拔高,空气稀薄,空气中水气少,尘埃少,透明度好,太阳辐射强,日照时间长。 ②太阳能贫乏地区:四川盆地、云贵高原等。原因:阴雨天多,云雾大,较多地削弱了太阳辐射。 太阳辐射对地球的影响: ①太阳直接为地球提供了光、热资源,地球上生物的的生长发育离不开太阳。 ②太阳辐射能维持着地表温度,是促进地球J-水、大气运动和生物活动的主要动力。 ③作为工业主要能源的煤、石油等矿物燃料,是地质历史时期生物固定、积累下来的太阳能。 ④太阳辐射能是我们日常生活和生产所用的能源,是太阳灶、太阳能热水器、太阳能电站的能量来源。 ? ?太阳年辐射总量的影响因素及空间分布: 1.影响太阳辐射分布的因素:

全国各地太阳能总辐射量与年平均日照当量

全国各地太阳能总辐射量与年平均日照当量 地区类别地区 太阳能年辐射量 年日照时数 标准光照下 年平均日照 时间(时)MJ/m2·年kWh/m2·年 一宁夏北部、甘肃北部、 新疆南部、青海西部、 西藏西部 6680-8400 1855-2333 3200-3300 5.08-6.3 二河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、 青海东部、西藏东南 部、新疆南部 5852-6680 1625-1855 3000-3200 4.45-5.08 三山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 5016-5852 1393-1625 2200-3000 3.8-4.45 四湖南、湖北、广西、 江西、浙江、福建北 部、广东北部、陕西 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 4190-5016 1163-1393 1400-2200 3.1-3.8 五四川、贵州3344-4190 928-1163 1000-1400 2.5-3.1

附录B 江苏省部分地区的?、δ、ω、αs、γs值 城市名地理纬度 ?(o) 太阳赤纬 δ(o) 太阳时角 ω(o) 太阳高度 角 αs(o) 太阳方位 角 γs(o) 南京市南京32.04 -23.43 0 34.53 0 江宁31.95 -23.43 0 34.62 0 六合32.36 -23.43 0 34.21 0 江浦32.07 -23.43 0 34.5 0 溧水31.65 -23.43 0 34.92 0 高淳31.32 -23.43 0 35.25 0 苏州市 苏州31.32 -23.43 0 35.25 0 张家港31.86 -23.43 0 34.71 0 常熟31.64 -23.43 0 34.93 0 太仓31.45 -23.43 0 35.12 0 昆山31.39 -23.43 0 35.18 0 吴县31.32 -23.43 0 35.25 0 吴江31.16 -23.43 0 35.41 0 无锡市无锡31.59 -23.43 0 34.98 0 江阴31.91 -23.43 0 34.66 0 宜兴31.36 -23.43 0 35.21 0 常州市常州31.79 -23.43 0 34.78 0 武进31.78 -23.43 0 34.79 0 金坛31.74 -23.43 0 34.83 0 溧阳31.43 -23.43 0 35.14 0 镇江市镇江32.2 -23.43 0 34.37 0 丹徒32.2 -23.43 0 34.37 0 扬中32.24 -23.43 0 34.33 0 丹阳32 -23.43 0 34.57 0 句容31.95 -23.43 0 34.62 0 扬州市扬州32.39 -23.43 0 34.18 0 江都32.43 -23.43 0 34.14 0 刑江32.39 -23.43 0 34.18 0 仪征32.27 -23.43 0 34.3 0 高邮32.78 -23.43 0 33.79 0 宝应33.23 -23.43 0 33.34 0 泰州市泰州32.49 -23.43 0 34.08 0 晋江32.03 -23.43 0 34.54 0 泰兴32.16 -23.43 0 34.41 0 姜堰32.51 -23.43 0 34.06 0 兴32.93 -23.43 0 33.64 0

相关文档
相关文档 最新文档