文档库 最新最全的文档下载
当前位置:文档库 › 库仑定律的发现

库仑定律的发现

库仑定律的发现
库仑定律的发现

库仑定律的发现和验证

库仑定律是电磁学的基本定律之一。它的建立既是实验经验的总结,也是理论研究的成果。特别是力学中引力理论的发展,为静电学和静磁学提供了理论武器,使电磁学少走了许多弯路,直接形成了严密的定量规律。从库仑定律的发现可以获得许多启示,对阐明物理学发展中

理论和实验的关系,了解物理学的研究方法均会有所裨益。

卡文迪什(Henry Cavendish ,1731~1810)。他在1773年用两个同

心金属壳作实验,如图2-1。外球壳由两个半球装置而成,两半球合起

来正好形成内球的同心球。卡文迪什这样描述他的装置:

“我取一个直径为12.1英寸的球,用一根实心的玻璃棒穿过中心当

作轴,并覆盖以封蜡。……然后把这个球封在两个中空的半球中间.半

球直径为13.3英寸,1/20英寸厚。……然后,我用一根导线将莱顿瓶的正极接到半球,使半球带电。”

卡文迪什通过一根导线将内外球联在一起,外球壳带电后,取走导线,打开外球壳,用木髓球验电器试验内球是否带电。结果发现木髓球验电器没有指示,证明内球没有带电,电荷完全分布在外球上。

卡文迪什将这个实验重复了多次,确定电力服从平方反比定律,指数偏差不超过0.02。

卡文迪什这个实验的设计相当巧妙。他用的是当年最原始的电测仪器,却获得了相当可靠而且精确的结果。他成功的关键在于掌握了牛顿万有引力定律这一理论武器,通过数学处理,将直接测量变为间接测量,并且用上了示零法精确地判断结果,从而得到了电力的平方反比定律。

卡文迪什为什么要做这个实验呢?话还要从牛顿那里说起。

牛顿在研究万有引力的同时,还对自然界其他的力感兴趣。他把当时已知的三种力——重力、磁力和电力放在一起考虑,认为都是在可感觉的距离内作用的力,他称之为长程力(long-range force )。他企图找到另外两种力的规律,但都未能如愿。磁力实验的结果不够精确。他在《原理》的第三篇中写道: “重力与磁力的性质不同。……磁力不与所吸引的物质的量成比例。……就其与距离的关系,并不是随距离的平方而是随其三次方减小。这是我用粗略的试验所测的结果。”

至于电力,他也做过实验,但带电的纸片运动太不规则,很难显示电力的性质。

在长程力之外,他认为还有另一种力,叫短程力(short-range force )。他在做光学实验时,就想找到光和物质之间的作用力(短程力)的规律,没有实现。他甚至认为还有一些其他的短程力,相当于诸如聚合、发酵等现象。

卡文迪什和米切尔的工作

牛顿的思想在卡文迪什和另一位英国科学家米切尔的活动中得到了体现。米切尔是天文学家,也对牛顿的力学感兴趣。在1751年发表的短文《论人工磁铁》中,他写道:

“每一磁极吸引或排斥,在每个方向,在相等距离其吸力或斥力都精确相等……按磁极的距离的平方的增加而减少,”他还说:“这一结论是从我自己做的和我看到别人做的一些实验推出来的。……但我不敢确定就是这样,我还没有做足够的实验,还不足以精确地做出定论。”

既然实验的根据不足,为什么还肯定磁力是按距离的平方成反比地减少呢?甚至这个距离还明确地规定是磁极的距离,可是磁极的位置又是如何确定的呢?显然,是因为米切尔先已有了平方反比的模式。 在米切尔之前确有许多人步牛顿的后尘研究磁力的规律,例如:哈雷(1687年)、豪克斯比、马森布洛克等人都做过这方面的工作,几乎连绵百余年,但都没有取得判决性的结果。

米切尔推断磁力平方反比定律的结论可以说是牛顿长程力思想的胜利,把引力和磁力归于同一形式,促使人们更积极地去思考电力的规律性。

米切尔和卡文迪什都是英国剑桥大学的成员,在他们中间有深厚的友谊和共同的信念。米切尔得知库仑发明扭秤后,曾建议卡文迪什用类似的方法测试万有引力。这项工作使卡文迪什后来成了第一位直接测定引力常数的实验者。正是由于米切尔的鼓励,卡文迪什做了同心球的实验。

但是卡文迪什的同心球实验结果和他自己的许多看法,却没有公开发表。直到19世纪中叶,开尔文(即W .汤姆生)发现卡文迪什的手稿中有圆盘和同半径的圆球所带电荷的正确比值,才注意到这些手稿的价值,经他催促,才于1879年由麦克斯韦整理发表。卡文迪什的许多重要发现竟埋藏了一百年之久。对此,麦克斯韦写道:

“这些关于数学和电学实验的手稿近20捆,”其中“物体上电荷(分布)的实验,卡文迪什早就写好了详细的叙述,并且费了很大气力书写得十分工整(就像要拿出去发表的样子),而且所有这些工作在1774年以前就已完成,但卡文迪什(并不急于发表)仍是兢兢业业地继续做电学实验,直到1810年去世时,手稿仍在他自己身边。”

卡文迪什出生于贵族家庭,家产厚禄,他都没有兴趣,一心倾注在科学研究之中。早年攻化学和热学,发现氢氧化合成水。他后来做的电学实验有:电阻测量,比欧姆早几十年得到欧姆定律;研究电容的性质和介质的介电常数,引出了电位的概念;他发现金属的温度越高,导电能力越弱,等等。他的同心球实验比库仑用扭秤测电力的实验早11年,而且结果比库仑精确。对于卡文迪什把全部心血倾注在科学研究工作上的这种精神,麦克斯韦写道:

“卡文迪什对研究的关心远甚于对发表著作的关心。他宁愿挑起最繁重的研究工作,克服那些除他自己没有别人会重视甚至也没有别人知道的那些困难。我们毋庸怀疑,他所期望的结果一旦获得成功,他会得到多么大的满足,但他并不因此而急于把自己的发现告诉别人,不象一般搞科研的人那样,总是要保证自己的成果得到发表。卡文迪什把自己的研究成果捂得如此严实,以致于电学的历史失去了本来面目。” 卡文迪什性情孤僻,很少与人交往,唯独与米切尔来往密切,他们共同讨论,互相勉励。米切尔当过卡文迪什的老师,为了“称衡”星体的重量,曾从事大量天文观测。他们的共同理想是要把牛顿的引力思想从天体扩展到地球,进而扩展到磁力和电力。米切尔发现了磁力的平方反比定律,但他没能完成测量电力和地球密度的目标。卡文迪什正是为了实现米切尔和他自己的愿望而从事研究。可以说,米切尔和卡文迪什是在牛顿的自然哲学的鼓舞下坚持工作的。他们证实了磁力和电力这些长程力跟引力具有同一类型的规律后,并不认为达到了最终目标,还力图探求牛顿提出的短程力。卡文迪什在他未发表的手稿中多处涉及动力学、热学和气体动力学,都是围绕着这个中心,只是没有明确地表达出来。米切尔则把自己对短程力的普遍想法向普利斯特利透露过,在普利斯特利的著作——1772年发表的《光学史》一书中记述了米切尔的思想。

库仑的扭秤实验

关于库仑发明扭秤,并用扭秤精确地测量电力和磁力的实验,已经在别的地方有详尽描述,这里只想探讨一个问题,就是库仑是不是事先就有平方反比的思想框架?

从史料中可以看到如下几点;

1

如果用平方反比关系表示,其指数偏差可达0.04念,他为什么不用04.21

r F ∝或96.11

r F ∝来表示呢?

2.库仑并没有改变电量进行测量,而是说“假说的前一部分无需证明”万有引力分别与相互作用的两个物体的质量成正比一样。

3.库仑在另一篇论文中还提到磁力的平方反比关系,写道:

“看来,磁流体即使不在本质上,至少也在性质上与电流体相似。基于这种

相似性,可以假定这两种流体遵从若干相同的定律。”

库仑定律是库仑通过扭秤实验总结出来的.库仑扭秤的示意图如图,在细金属丝的下端悬挂一根秤杆,它的一端有一个小球A ,另一端有一平衡体P ,在A 旁放置一个同它一样大小的固定小球B 。为了研究带电体间的作用力,先使A 和B 带一定电量,这时,秤因A 端受力而偏转。扭转悬丝上端的旋钮,使小球A 回到原来的位置。平衡时悬丝的扭力矩等于电力施在A 上的力矩。如果悬丝的扭转力矩同扭角间的关系己知,并测得秤杆的长度,就可以求出在此距离下AB 之间的作用力。

库仑的实验当然是认真的,他如实地发表了实验结果。不过,他在行文中用了如下词汇:“非常接近16∶4∶1,可见,磁力和距离的平方成反比”。

显然,库仑在研究电力和磁力时也是把它们跟万有引力类比,事先建立了平方反比的概念。 类比方法的意义

从库仑定律的发现经过我们可以看到类比在科学研究中所起的作用。如果不是先有万有引力定律的发现,单靠实验具体数据的积累,不知要到何年才能得到严格的库仑定律的表达式。实际上,整个静电学的发展,都是在借鉴和利用引力理论的已有成果的基础上取得的。我们可以从下面的年表中看到概况。

库仑

法国工程师和物理学家。1736年 6月14日生于昂古莱姆。他的最大贡献是在研究静电力和静磁力方面的成就。

库仑在中学时期就爱好数学和物理,后来在梅济耶尔进工程学校,1761年毕业,入法国兵工团任技术军官,三年后又被派往加勒比海法属马提尼克岛担任建造波旁要塞的工程师。1772年回国,从此开始科学研究工作,1781年被选为法国科学院院士。1806年8月 23日在巴黎逝世。

库仑先在应用力学,如结构力学、梁的断裂、砖石建筑、土力学、摩擦理论、扭力等方面做了许多工作,他也是测量人在不同工作条件下做的功(人类工程学)的第一个尝试者。由于这些卓越成

就,他被认为18世纪欧洲伟大工程师之一。

1773年法国科学院悬奖征求改进船用指南针的方案,库仑就在此时开始转而研究静电力和静磁力。他注意到以往把磁针轴托在细小支点上不免要受到摩擦力的影响,就改用头发丝或蚕丝把它悬挂起来以消除摩擦所引起的误差。这一改进使他获得了1777年法国科学院的奖金。他同时还测得作用在细丝上的扭力与磁针偏转的角度成正比,从而能计算磁力的大小。这就使他提出了一种可以精确测量微小力的扭秤。 为了用扭秤测量磁力,库仑还对金属细丝(悬丝)的转矩进行了许多理论和实验研究,并于1784年提出了细丝中转矩的正确公式:l d M θ

μ4=,式中M 为转矩,μ为扭转系数,Θ为扭转角,d 和l 分别为细丝的直

径和长度。1785~1789年间他用扭秤非常精确地测量了静电力和静磁力,并总结出一条现称为库仑定律的著名定律,即静电或磁的吸引或排斥力都与距离二次方成反比。

在对电学和磁学的研究方面,他还提出过带电物体因漏电而损失电量的衰减公式和分子的极化模型等。而极化模型又是以后安培(A .M .Ampere )提出分子电流的重要思想基础。

库仑扭秤实验在电学发展史上有着重要的地位,它是人们对电现象的研究从定性阶段进入定量阶段的转折点。

大约100年以后,麦克斯韦在剑桥完成了一个同卡文迪什实验相类似的实验,得到δ的上限为│δ│≤1/21600。1936年,S.J.普林顿和 W.E.劳顿的实验给出|δ|<2×10-9。最近的一个结果是 E.R.威廉斯、J.E.费勒和H.A.希尔在 1971年提供的,他们求得 δ 的极限值为(2.7±3.1)×10-16。

关于点电荷间相互作用的定律,是静电学的理论基础,也是电磁学的基本定律之一,于1785年为法国物理学家库仑发现。库仑定律的内容是:相对于惯性参照系处在静止状态的两个点电荷(相互之间距离远大于其本身线度的带电体)在空气中(严格讲在无限真空中)的相互作用力的大小同每一个点电荷的电荷量成正比,同两点电荷间的距离的二次方成反比;作用力的方向沿着这两点电荷的连线;当这两点电荷带同号电荷时,它们之间的作用力是排斥力;带异号电荷时,它们之间的作用力是吸引力。

设q 1和q 2分别为两点电荷的电量,r 是由q 1指向q 2的矢量,其量值等于q 1和q 2之间的距离(图1),

则q 1作用于q 2的静电力:f 1→2为 r r

q q K f 321

21=→;在SI 单位制中,901098755179.841?==πεK 米/法,其中ε0称为真空介电常数,ε0=8.85418782×10-12法/米。在CGS 静电系单位制中K 等于1,没有量纲。

1785年至1789年间,库仑在法国皇家科学院备忘录中,发表了四篇关于电学研究的论文。前三篇论文论述了他用两个实验得出的电力作用的平方反比定律。其中一个实验就是人们熟悉的库仑扭秤实验。1785年,库仑利用自己的有关扭转力方面的知识,设计制作了一台精密的扭秤,进行了测定电力作用的实验。如图7-4,他在一个直径和高均为12英寸的玻璃圆缸上端安一银质悬丝,悬丝下挂一横杆,杆的一端为木质小球,另一端贴一小纸片,作配平用。圆缸上有360个刻度,悬丝自由放松时,横杆上的小木球指到0。他先使另一个相同小球带电,然后使它与杆端小球相接触后分开,以便两小球均带同种等量的电荷,互相排斥。当达到平衡时,在这一位置上扭力的大小与电排斥力是相等的。库仑分别使小球相距36个刻度、18个刻度和8.5个刻度,大体上按缩短一半的比例来观测,结果悬丝分别扭转了36个刻度、144个刻度和575.5个刻度。这表明间距为 1∶1/2∶1/4,而转角为l ∶4∶16。最后一个数据由于漏电的缘故而有些偏差。从这样的实验中,库仑得出了“带同类电的两球之间的排斥力,与两球中心之间距离的平方成反比”的结论。

在接着的第二篇论文里,库仑研究了两个异类电荷之间的吸引力。在这种情况下,扭秤方法遇到了麻烦。因为,当活动电荷在扭力为零的位置同固定电荷的位置之间运动时,扭力随与一侧的距离线性变化,而电吸引则随与另一侧的距离的反平方关系变化,两者之间即使能够达到平衡,也是一种不稳定的平衡。库仑写道,即使能达到平衡,最后“两球也往往会相碰,这是因为扭秤十分灵活,多少会出现左右摇摆的缘故。”然而,尽管如此,库仑声称他还是首先使用了扭力同电吸引力平衡的方法进行了测量,并说他由此得到了电吸引力亦满足反平方律的结论。

库仑把电的吸引力同地球对物体的吸引力进行类比,设计了他的电摆实验。库仑记录了三次实验。在这三次实验中,纸片与球心距离之比为3∶6∶8,三次的振动周期之比为20∶41∶60。如果电引力符合平方反比定律,当距离之比为3∶6∶8时,电摆的振动周期应为20∶40∶53,因此,实验测定和理论计算之间存在差异。库仑对实验结果进行了分析,认为漏电是产生误差的主要原因。他发现,在最佳的情况下,实验过程中,每分钟因漏电损失总电量的1/40,而整个实验需时4分钟。经过对漏电原因的修正,实验值和理论计算值基本符合。于是他得出结论:“正电与负电的相互吸引力,也是与距离的平方成反比的”。可见,关于异类电荷吸引力的平方反比定律的确凿实验证据,最早并不是来自扭秤实验,而是来自库仑的电摆实验;而像富兰克林或者普列斯特利做过的那一类实验,则只适用干同类电荷之间的排斥力。

在同篇论文里,库仑还分别通过扭秤法和摆动法来测定磁力,也得出了同距离平方成反比的规律。值得注意的是,在用摆动法测量磁力时,库仑是在扣除了与不加外磁力的自由振动相对应的地磁本底之后,再对数据进行分析的。这种处理方法本来也可以用于有地球重力参加的电吸引力或者电排斥力所引起的摆动,只要照样把重力本底的效应扣除就可以了。所以,库仑本来也是可以用他的摆动法发现电排斥力的平方反比定律的。

库仑还根据对称性利用相同的金属球互相接触的方法,巧妙地获得了各种大小的电荷,得出了电荷间的作用力与它们所带电量的乘积成正比的关系,从而完整地得出:

221r

q q k f = 这就是现在所说电相互作用力的库仑定律。实际上,在库仑的时代,人们还没有掌握规定电量大小的方法。半个世纪之后高斯(C .F .Gauss ,1777~1855)于1839年左右最早提出,应当由库仑定律本身来定义电荷的量度,即两个距离为单位长度的相等电荷之间的作用等于单位(或指定数值的)力时,它们都具有单位电量。

卡文迪许(Henry Cavendish ,1731一1810)

在十几年以前,即 1773年,卡文迪许曾早于库仑做过类似的实验,但是他却发表了两篇只具有次要材料的电学论文,没有引起人们的注意.约在一个世纪以后,即在1879年,麦克斯韦出版了一本题为“尊敬的亨利·卡文迪许的电学研究”的书,才把卡文迪许的工作公布于世.麦克斯韦在书中说:“这些论文证明卡文边许几乎预料到电学.上所有的伟大事实,这些伟大的事实后来通过库仑和法国哲学家们的著作而闻名于科学界”.遗憾的是由于卡文迪许没能及时发表他的研究成果,因此对当时的科学界没有起到应有的作用.

卡文迪许认为:电荷分布在金属球表面是由于电荷之间的作用力和其距

离平方成反比的结果.他设想有一带电导体球面abcd ,用ab 平面把它分为两

半acb 和adb ,考察P 点的电荷既受上半球电荷的作用,也受下半球电荷的作

用,虽然acb 部分的电荷比adb 部分的电荷少,但是上部分离P 点的距离比下

部分要近些,如果无电荷的作用力正比于r -2,则上半球对P 点的作用将准确

地补偿下半球对它的作用,所以P 点的电荷没有移动,在静电平衡时,P 点不

带电.如果电力作用正比于r -n ,而此处n ≠2,就会出现另外的情况.如果n

>2,则下半球的作刚将大于上半球的作用,正电荷要从P 点流向上半球,使P 点带负电;如果n <2,P 点将有负电荷流向上半球,使P 点带正电.因此当研究了球内P 点的电状态后,就能确定公式n r K r f )(中的n 值。 卡文迪许的实验和库仑晚些时候的实验稍有不同,其装置如图7-6,两个同心球壳固定在支架上,外球壳由两个可以开合的半球壳组成.当外球壳合上时,可以通过其上的小孔,用导线连接二球壳,使整个系统带电后,取走导线,移开外一壳,用木髓球作为验电器,检查内外壳带电的情况,发现内球不带电.根据这一实验,卡文迪许得出n =2±1/50,即指数有0.02的偏差.后来麦克斯韦又重复了卡文迪许的实验,经过计算,得出n =2±1/2160,于是库仑定律完全被证实了。

库仑定律是电磁学中的一个基本定律,它的建立使电磁学进入了定量的研究,从而使电磁学真正成为一门科学,并为数学引入电磁学打开了道路,为继续发展电动力学奠定了基础.

高中物理优质课学案-库仑定律

《库仑定律》 学 案 观察现象:同种电荷相互___________,异种电荷相互____________。 提出问题:电荷间的相互作用力遵从什么规律? 大胆猜想:影响电荷间相互作用力的因素有__________________________。 实验探究:定性探究: 表1 定量探究: 表2 电荷间作用力F 与电荷量q 的关系 在误差允许范围内,电荷间作用力F 与___________成正比,即F ∝__________. 表3 电荷间作用力F 与电荷间距离r 的关系 在误差允许范围内,电荷间作用力F 与___________成反比,即F ∝__________. F /9.8×10-3N 1 1 /m r -0.050 0.040 0.030 0.020 0.010 O 30.00 25.00 20.00 15.00 10.00 5.00 35.00 F /9.8×10-3N 2 2 1 /m r -0.050 0.040 0.030 0.020 0.010 O 1200 1000 800 600 400 200 0.060 0.060 0.070 0.070

数理推演: 结合牛顿第三定律,F∝__________. 综合以上结论,F∝__________.改写为等式,F =__________. 形成理论:真空中两个静止点电荷之间的相互作用力,与它们的_______________成正比,与它们的________________成反比,作用力的方向在它们的连线上。这个规律叫做库仑定律,电荷间的相互作用力叫做静电力或库仑力。 公式:F = ,其中k = 方向: 成立条件: 科学方法引导科学发现的典范 ——库仑定律的建立过程i 库仑定律的建立标志着人类对电磁现象从定性研究进入了定量研究的阶段,是电磁学研究的一座里程碑。库仑定律的建立过程是科学方法引导科学发现的典范。 16世纪,英国科学家吉尔伯特(William Gilbert,1544~1603)系统地研究了摩擦起电等静电现象,注意到静电之间的吸引和排斥等现象。但仍受旧的学术传统影响,对现象有解释停留在思辨的层面,没有进一步设计实验进行研究。 1687年,英国物理学家牛顿(Sir Isaac Newton,1643~1727)的《自然哲学的数学原理》发表,提出的三大运动定律和万有引力定律震惊了世界。他用实验检验理论假说,并尝试用简洁明了的公式归纳物理规律的方法给了后人以极大的启示。 1759年,德国科学家爱皮努斯(F.V.T.Aepinus,1724~1802)观察了诸多静电现象后总结出:电荷之间的作用力随带电物体间的距离的减小而增大。 1760年,瑞士物理学家伯努利(Daniel Bernoulli,1700~1782)受万有引力理论启发,猜测电荷间的电力服从平方反比规律。 1767年,英国化学家普利斯特里(Joseph Priestley,1733~1804)指出电荷间作用和万有引力服从同一规律,即平方反比规律。他作出这个推断基于两点:1.牛顿理论上证明了平方反比规律下匀质球壳对壳内物体没有引力作用;2. 美国发明家富兰克林(Benjamin Franklin,1706~1790)发现悬挂于带电金属罐内软木球不受金属罐上电荷的作用力。 成果到1801年才发表。 系。遗憾的是,这个成果也一直没有发表,直到整整100年后的1873年,电磁学理论的集大成者麦克斯韦(James Clerk Maxwell,1831~1879)在整理他留下的个人实验数据时才发现。 电荷间的作用力,得出电荷间作用力定律。 库仑定律自发现以来,科学家不断检验指数2的精度。1971年威廉(E. R. Williams)等人的实验表明库仑定律中指数2的偏差不超过10-16,因此假定为2。到目前为止,理论和实验表明点电荷作用力的平方反比定律是相当精确的。200多年来,电力平方反比律的精度提高了十几个数量级,使它成为当今物理学中最精确的实验定律之一。 i关于文中科学家和相关实验的更多细节,请上网搜索资料或参阅《物理学史》(郭奕玲,沈慧君著.北京:清华大学出版社.2005.8)

库仑定律的发现和验证

库仑定律的发现和验证 库仑定律是电磁学的基本定律之一。它的建立既是实验经验的总结,也是理论研究的成果。特别是力学中引力理论的发展,为静电学和静磁学提供了理论武器,使电磁学少走了许多弯路,直接形成了严密的定量规律。从库仑定律的发现和验证可以获得许多启示,对阐明物理学发展中理论和实验的关系,了解物理学的研究方法均会有所裨益。 一. 库仑定律的发现 1.1 从万有引力得到的启示 18世纪中叶,牛顿力学已经取得辉煌胜利,人们借助于万有引力的规律,对电力和磁力作了种猜测。 德国柏林科学院院士爱皮努斯(F.U.T. Aepinus, 1724-1802)1759年对电力作了研究。他在书中假设电荷之间的斥力和吸力随带电物体的距离的减少而增大,于是对静电感应现象作出了更完善的解释。不过,他并没有实际测量电荷间的作用力,因而只是一种猜测。 1760年,D.伯努利首先猜测电力会不会也跟万有引力一样,服从平方反比定律。他的想法显然有一定的代表性,因为平方反比定律在牛顿的形而上学自然观中是很自然的观念,如果不是平方反比,牛顿力学的空间概念就要重新修改。 富兰克林的空罐实验(也叫冰桶实验)对电力规律有重要启示。1755年,他在给兰宁(John Lining)的信中,提到过这样的实验: “我把一只品脱银罐放在电支架(按:即绝缘支架)上,使它带电,用丝线吊着一个直径约为1英寸的木椭球,放进银罐中,直到触及罐的底部,但是,当取出时,却没有发现接触使它带电,象从外部接触的那样。” 富兰克林的这封信不久跟其他有关天电和尖端放电等问题的信件,被人们整理公开发表流传甚广,很多人都知道这个空罐实验,不过也和富兰克林一样,不知如何解释这一实验现象。 图1 富兰克林像图2 普利斯特列像 富兰克林有一位英国友人,名叫普利斯特利(Joseph Priestley, 1733—1804),是化学家,对电学也很有研究。富兰克林写信告诉他这个实验并向他求教。普利斯特利专门重复了这个实验,在1767年的《电学历史和现状及其原始实验》一书中他写道1: “难道我们就不可以从这个实验得出结论:电的吸引与万有引力服从同一定律,即距离的平方,因为很容易证明,假如地球是一个球壳,在壳内的物体受到一边的吸引作用,决不会大于另一边的吸引。” 普利斯特利的这一结论不是凭空想出来的,因为牛顿早在1687年就证明过,如果万有引力服从平

高一物理电学专题提升专题01全面理解库仑定律掌握库仑力的应用问题

专题01 全面理解库仑定律 掌握库仑力的应用问题 一:专题概述 本专题围绕对库仑定律的理解而展开,涉及到如下内容: 1.适用条件:于真空中静止点电荷间的相互作用. 2.在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式. 3. 当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷. 4.对于两个均匀带电绝缘球体,可将其视为电荷集中在球心的点电荷,r 为球心间的距离. 5.对于两个带电金属球,要考虑表面电荷的重新分布,如图所示. (1)同种电荷:F <k q 1q 2r 2;(2)异种电荷:F >k q 1q 2 r 2 . 6.不能根据公式错误地认为r →0时,库仑力F →∞,因为当r →0时,两个带电体已不能看做点电荷了. 7.库仑力的方向:由相互作用的两个带电体决定,且同种电荷相互排斥,为斥力;异种电荷相互吸引,为引力。 8.电荷的分配规律 (1)两个相同的导体球,一个带电,一个不带电,接触后电荷量平分. (2)两个相同导体球带同种电荷,先接触再分离,则其电荷量平分. (3)两个相同导体球带异种电荷,先接触再分离,则其电荷量先中和再平分. 二:典例精讲 1. 库仑定律内容的理解 典例1:对于库仑定律,下面说法正确的是( ) A. 凡计算真空中两个点电荷间的相互作用力,就可以使用公式F =k 12 2q q r B. 两个带电小球即使相距非常近,也能用库仑定律 C. 相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的静电力大小一定相等 D. 当两个半径为r 的带电金属球中心相距为4r 时,对于它们之间的静电力大小,只取决于它们各自所带的电荷量 【答案】AC 【解析】库仑定律的适用条件是:真空和静止点电荷.如果在研究的问题中,带电体的形状、大小以及电荷分布可以忽略不计,即可将它看作是一个几何点,则这样的带电体就是点电荷.一个实际的带电体能否

2019高考物理一轮练习8.1电荷及其守恒定律、库仑定律导学案

2019高考物理一轮练习8.1电荷及其守恒定律、库仑定律导学 案 第一章 静电场 【课 题】§1.1 电荷及其守恒定律、库仑定律 【学习目标】 1、理解点电荷、元电荷旳概念 2、掌握库仑定律及其适用范围和简单应用 【知识要点】 1.物质旳电结构:构成物质旳原子本身包括: 旳质子和 旳中子构成 ,核外有带 旳电子,整个原子对 外 表现为 . 2.元电荷:最小旳电荷量,其值为e = .其他带电 体旳电荷量皆为元电荷旳 . 3.电荷守恒定律 (1)内容:电荷既不会创生,也不会消灭,它只能从一个物体 到另一个物体,或者从物体旳一部分 到另一部分;在转移过程 中,电荷旳总量 . (2)起电方式: 、 、感应起电. (3)带电实质:物体带电旳实质是 . 4.点电荷:是一种理想化旳物理模型,当带电体本身旳 和 对研究旳问题影响很小时,可以将带电体视为点电 荷. 5.库仑定律 (1)内容:真空中两个静止点电荷之间旳相互作用力,及它们旳 电荷量旳乘积成 ,及它们旳距离旳二次方成 ,作用力 旳方向在它们旳 上. (2)公式:F =k q 1q 2 r 2,其中比例系数k 叫做静电力常量, k =9.0×109 N·m 2/C 2. (3)适用条件:① ;② . 6.三个自由点电荷旳平衡问题

(1)条件:两个点电荷在第三个点电荷处旳合场强为零,或每个 点电荷受到旳两个库仑力必须大小相等,方向相反. (2)规律:“三点共线”——三个点电荷分布在同一直线上; “两同夹异”——正负电荷相互间隔; “两大夹小”——中间电荷旳电荷量最小; “近小远大”——中间电荷靠近电荷量较小旳电荷. 【典型例题】 【例题1】使带电旳金属球靠近不带电旳验电器,验电器旳箔片张 开.下列各图表示验电器上感应电荷旳分布情况,正确旳是 ( ) 【例题2】(2009·江苏高考)两个分别带有电荷量-Q 和+3Q 旳相同 金属小球(均可视为点电荷),固定在相距为r 旳两处,它们间库 仑力旳大小为F .两小球相互接触后将其固定距离变为r 2,则两球间库仑力旳大小为 ( ) A.112F B.34F C.4 3F D .12F 【例题3】(2009·浙江理综)如图4所示,在光滑绝缘水平面上放置 3个电荷量均为q (q >0)旳相同小球,小球之间用劲度系数均为k 0 旳轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧旳 长度为l .已知静电力常量为k ,若不考虑弹簧旳静电感应,则每 根弹簧旳原长为 ( ) A .l +5kq 22k 0l 2 B .l -kq 2 k 0l 2

2020_2021学年高中物理课时作业2库仑定律含解析教科版选修3_1

教科版高中物理选修3_1 课时作业2 库仑定律 时间:45分钟 一、单项选择题 1.关于库仑定律的公式F =k q 1q 2 r 2 ,下列说法中正确的是( D ) A .真空中两个电荷中,大电荷对小电荷的作用力大于小电荷对大电荷的作用力 B .当真空中两个电荷间的距离r →0时,它们之间的静电力F →∞ C .当两个电荷间的距离r →∞时,库仑定律的公式就不适用了 D .当两个电荷间的距离r →0时,电荷不能看成是点电荷,库仑定律的公式就不适用了 解析:由牛顿第三定律可判A 错.当r →0时,库仑定律不再适用B 错D 对.当r →∞时,库仑定律适用,C 错.只有D 选项正确. 2.真空中有两个点电荷Q 和q ,它们之间的库仑力为F ,下面哪些做法可以使它们之间的库仑力变为1.5F ( A ) A .使Q 的电荷量变为2Q ,使q 的电荷量变为3q ,同时使它们的距离变为原来的2倍 B .使每个电荷的电荷量都变为原来的1.5倍,距离也变为原来的1.5倍 C .使其中一个电荷的电荷量变为原来的1.5倍,距离变为原来的1.5倍 D .保持电荷量不变,使距离变为原来的2 3倍 解析:根据库仑定律F =kq 1q 2 r 2 ,设原来两点电荷间距离为r ,则原来两电荷间的库仑力大小为F = kQq r 2.当电荷量或距离变化时,根据库仑定律,对选项A 有F A =k ·2Q ·3q 2r 2=3F 2 ,可见符合要求.对B 有F B =k · 1.5Q 1.5q 1.5r 2 =F ,不合要求.对C 有F C = k · 1.5Q ·q 1.5r 2 =2F 3,不合要求.对D 有F D =k ·Qq 2r /32=9F 4 ,不合要求.综上所述,选项A 是正确的. 3.如图所示,在绝缘的光滑水平面上,相隔一定距离有两个带同种电荷的小球,从静止同时释放,则两个小球的加速度和速度大小随时间变化的情况是( C ) A .速度变大,加速度变大

§1.2 库仑定律 学案

§1.1库伦定律 同步导学案 【自主学习】 一、库仑定律: 1、电荷间的相互作用:同种电荷相_______,异种电荷相________。 a 、如何判断右图中悬挂小球所受的电场力的大小?根据是什么? b 、电荷之间的相互作用力大小与哪些之间的因数有关?如何探究他们之间的关系? C 、结论:电荷之间存在着相互作用力,力的大小与 、 有关,电量越大,距离越近,作用力就越 ;反之电量越小,距离越远,作用力就越 。作用力的方向,可用同种电荷相斥,异种电荷相吸的规律确定。 库仑定律 ①. 内容: ②.电荷间相互作用力叫做 或 。 ③.公式: 静电力常量:k= k 的测量是__________________实验,实验装置库仑力____________ ④.方向:在它们的连线上,同性______,异性_________。 ⑤.适用条件 ⑴ ⑵ a.点电荷: b.点电荷是 ,实际生活中 存在。 【合作探究】库仑定律的基本应用 (1)库仑定律的理解 【例1】下列说法中正确的是( ) A .点电荷是一种理想模型,真正的点电荷是不存在的 B .点电荷就是体积和带电量都很小的带电体 C .根据F=κQ 1Q 2/r 2可知,当r→0时,F→∞ D .一个带电体能否看成点电荷,不是看它的尺寸大小,而是看它的形状和大小对所研究的问 题的影响是否可以忽略不计 【变试训练1-1】两个完全相同的均匀带电小球,分别带电量q 1=2C 正电荷,q 2=4C 负电荷,在真空中相距为r 且静止,相互作用的静电力为F 。 (1)今将q 1、q 2、r 都加倍,相互作用力如何变? (2)只改变q 1电性,相互作用力如何变? (3)只将r 增大4倍,相互作用力如何变? (4)将两个小球接触一下后,仍放回原处,相互作用力如何变? (5)接上题,为使接触后,静电力大小不变应如何放置两球? 【变试训练1-2】两个完全相同的金属小球A 、B ,A 球带电量为+5.0×10- 9C ,B 球带电量为-7.0×10 -9 C ,两球相距1m。问:它们之间的库仑力有多大?若把它们接触后放回原处,它们之间的相互 作用力为多大? 【归纳总结】 库仑力与万有引力比较 【巩固提升】 有三个完全一样的金属小球A 、B 、C ,A 带电荷量为7Q ,B 带电荷量为-Q ,C 球不带电,将

库仑定律理解及应用

库仑定律的理解和应用 一、点电荷及库仑定律的理解 1.点电荷理解 1.关于点电荷的说法,正确的是( D )98 A .只有体积很小的带电体,才能作为点电荷 B .体积很大的带电体一定不能看作点电荷 C .点电荷一定是电量很小的电荷 D .两个带电的金属小球,不一定能将它们作为电荷集中在球心的点电荷处理 2.关于点电荷,以下说法正确的是 ( CD )80 A 点电荷也叫元电荷 B 只有体积很小的带电体,才能看做点电荷 C 真正的点电荷是不存在的 D 电荷量和体积都很大的带电体未必不能看做点电荷 2.库仑定律应用条件判定 3、对库仑定律,下面的说法正确的是(C )60 A .凡计算真空中两个点电荷间的相互作用力,就可以使用公式F =k q1q2 r2 B .两个带电小球即使相距非常近,也能用库仑定律计算库仑力 C .相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等 D .库仑定律中的静电力常量k 只有一个比例常数,只有数值,没有单位 4.如图所示,两个带绝缘底座的金属球A 和B 相距一定距离,A 带+Q 电荷,B 带+q 电荷,它们之间的相互作用力为F ,若保持球A 的带电量不变,而使B 球改为带-q 电荷,则它们之间的相互吸引力为F ′( B )65 [ ] A .F ′=F B .F ′>F C .F ′

高中物理 第一章 第二节 库仑定律学案 新人教版选修

高中物理第一章第二节库仑定律学案新人教 版选修 1、2《库仑定律》学案 【学习目标】 1、知道点电荷的概念、 2、理解库仑定律的含义,理解库仑定律的公式表达,知道静电力常量、 3、知道库仑扭秤的实验原理、 4、会用库仑定律的公式进行有关的计算、 【重点难点】 库仑定律和库仑力;关于库仑定律的理解与应用 【课前预习】 1、电荷间的相互作用力大小与两个因素有关:一是与 有关,二是与 _______________________有关。 2、当带电体之间的距离比它们自身的大小大得多时,带电体的形状和体积对相互作用力的影响可以忽略不计,这时的带电体可以看作 。它类似于力学中的质点,也是一种理想化的物理模型。

3、库仑定律(1)内容:真空中两个静止的之间的作用力,与它们的的乘积成正比,与它们的距离的成反比,作用力的方向在它们的。(2)公式: ,式中k叫做 ,F是指电荷间的相互作用力,又叫做静电力或 。如果公式中的各个物理量都采用国际单位,即电荷量的单位用库仑,力的单位用牛顿,距离的单位用米,则由实验得出 k= 。使用上述公式时,电荷量一般用绝对值代入计算。 4、理解库仑定律应注意的问题(1)库仑定律的适用条件。公式仅适用于中(空气中近似成立)的两个 间的相互作用。如果其它条件不变,两点电荷在介质中,其作用力将比它们在真空中的作用力小。(2)应注意将计算库仑力的大小与判断库仑力的方向二者分别进行,即用公式计算库仑力的大小,不必将表示两个带电体的带电性质的正负号代入公式中,只将其电荷量的绝对值代入,再根据同种电荷相互排斥、异各电荷相互吸引来判断库仑力的方向,这样可以避免不必要的麻烦和可能出现的错误。(3)库仑定律的公式和万有引力的公式在形式上尽管很相似,但仍是性质不同的两种力。在微观带电粒子的相互作用中,库仑力比 强得多。(4)库仑定律虽然只给出了点电荷之间的静电力公式,但是任一带电体都有可以看作是由许许多多

库仑定律(导)学案

学案2 库仑定律 [目标定位] 1.知道点电荷的概念.2.理解库仑定律的内容、公式及其适用条件,会用库仑定律进行有关的计算. 一、库仑定律 [问题设计] 1.O 是一个带正电的物体.把系在丝线上的带正电的小球先后挂在图1中P 1、P 2、P 3等位置,比较小球在不同位置所受带电体的作用力的大小,图中受力由大到小的三个位置的排序为P 1、P 2、P 3. 图1 (1)使小球处于同一位置,增大或减小小球所带的电荷量,小球所受作用力的大小如何变化? 答案 增大小球所带的电荷量,小球受到的作用力增大;减小小球所带的电荷量,小球受到的作用力减小. (2)以上说明,哪些因素影响电荷间的相互作用力?这些因素对作用力的大小有什么影响? 答案 电荷量和电荷间的距离.电荷之间的作用力随着电荷量的增大而增大,随着电荷间距离的增大而减小. 2.库仑研究电荷间相互作用的装置叫库仑扭秤,该装置是利用什么方法显示力的大小?通过库仑的实验,两带电体间的作用力F 与距离r 的关系如何? 答案 该装置通过悬丝扭转的角度来比较力的大小,力越大,悬丝扭转的角度越大.力F 与距离r 的二次方成反比:F ∝1r 2. [要点提炼] 1.库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上. 表达式:F =k q 1q 2 r 2.式中的k 为静电力常量,数值为k =9.0×109_N·m 2/C 2. 2.点电荷:当带电体间的距离比它们自身的大小大得多,以致带电体的形状、大小及电荷分布状况对它们之间的作用力的影响可以忽略时,这样的带电体就可以看做带电的点,叫做

库仑定律的发现

库仑定律的发现 现在物理学思想,与传统物理学思想的最大不同是:前者是解释和预测宇宙的现象,后者是揭示宇宙的“本质”.解释和预测宇宙的现象就是:按人类业已形成的数理逻辑体系,解释和预测宇宙.在现代物理学基础理论中,一般所使用的物理学基本原理,不可能在实验中得到验证,只能验证由这些物理学基本原理,产生的物理学理论所带来的实际效应(在经典物理学中叫物理“现象”). 因此,我们可以用这样或那样的基本原理,建立这样或那样的理论.在“众多”的“正确”理论中,我们可能淘汰一部分,只留下少数几种,甚至只保留一种.淘汰的标准就是理论的扩展性,或叫理论的普适性、广泛性,因为我们力求用尽量少的基本原理,解释尽量多的宇宙现象,这是一个涉及物理学中美学范畴的问题. 这种思想看起来带有浓重的人性化色彩(即主观性),带有强烈的“强人择原理”味道.这不仅有人会问:宇宙为什么要符合我们建立的数理逻辑?这又变成一个哲学问题了,回答只能是:因为他是我们是我们的宇宙,既然她孕育了我们,就应该让我们以自己的方式来了解她.恩格斯说:“只要自然科学在思维着,它的发展形式就是假设.” 【1】 假设电荷是虚数的iQ ±.因为电荷无法直接测量,粒子携带电荷的大小,只能从作用力来推算,所以,不必拒绝虚数单位. 设两个粒子各带电荷21,iQ iQ ,两个粒子之间电力满足库仑公式: 22 1R Q Q k F =,此时应该把库仑定律微调,就是电荷带上虚数符号i. 当1Q 与2Q 都为正电荷,则:2121Q Q iQ iQ -=?,此时电力为负,相斥. 当1Q 与2Q 都为负电荷,则:()()2121Q Q Q i Q i -=-?-,此时电力为负,相斥. 当1Q 与2Q 一正一负,则:()2121Q Q iQ Q i =?-,或者:()2121Q Q Q i iQ =-? 此时电力F 为总为正,相吸. 电力总体规律表现为:同性相斥,异性相吸.这个明显的规律性现代物理并没有给出合理的解释,而一旦把电荷看作是虚数物理量,电作用规律再显然不过. 最早提出电力平方反比定律的是Priestley . Priestley 的好友富兰克林曾观察到放在金属杯中的软木小球完全不受金属杯上电荷的影响, 他把这现象告诉了Priestley, 希望他重做此实验. 1766年, Priestley 做了富兰克林提出的实验, 他使空腔金属容器带电, 发现其内表面没有电荷, 而且金属容器对放于其内部的电荷明显地没有作用力.他立刻想到

《库仑定律》学案

《库仑定律》学案 【课 题】人教版《普通高中课程标准实验教科书物理(选修3-1)》第一章第二节《库仑定律》 【课 时】1学时 【三维目标】 知识与技能: .知道点电荷的概念,理解并掌握库仑定律的含义及其表达式; 2.会用库仑定律进行有关的计算; 3.知道库仑扭称的原理。 过程与方法: .通过学习库仑定律得出的过程,体验从猜想到验证、从定性到定量的科学探究过程,学会通过间接手段测量微小力的方法; 2.通过探究活动培养学生观察现象、分析结果及结合数学知识解决物理问题的研究方法。 情感、态度和价值观: .通过对点电荷的研究,让学生感受物理学研究中建立理想模型的重要意义; 2.通过静电力和万有引力的类比,让学生体会到自然规

律有其统一性和多样性。 【教学重点】 .建立库仑定律的过程; 2.库仑定律的应用。 【教学难点】 库仑定律的实验验证过程。 【教学方法】 实验探究法、交流讨论法。 【教学过程和内容】 <引入新课>同学们,通过前面的学习,我们知道“同种电荷相互排斥,异种电荷相互吸引”,这让我们对电荷间作用力的方向有了一定的认识。我们把电荷间的作用力叫做静电力,那么静电力的大小满足什么规律呢?让我们一起进入本章第二节《库仑定律》的学习。 <库仑定律的发现> 活动一:思考与猜想 同学们,电荷间的作用力是通过带电体间的相互作用来表现的, 因此,我们应该研究带电体间的相互作用。可是,生活中带电体的大小和形状是多种多样的,这就给我们寻找静电力的规律带来了麻烦。 早在300多年以前,伟大的牛顿在研究万有引力的同时,

就曾对带电纸片的运动进行研究,可是由于带电纸片太不规则,牛顿对静电力的研究并未成功。 大家对研究对象的选择有什么好的建议吗? 在静电学的研究中,我们经常使用的带电体是球体。 带电体间的作用力(静电力)的大小与哪些因素有关呢? 请学生根据自己的生活经验大胆猜想。 <定性探究>电荷间的作用力与影响因素的关系 实验表明:电荷间的作用力F随电荷量q的增大而增大;随距离r的增大而减小。 (提示)我们的研究到这里是否可以结束了?为什么? 这只是定性研究,应该进一步深入得到更准确的定量关系。 (问题3)静电力F与r,q之间可能存在什么样的定量关系? 你觉得哪种可能更大?为什么?(引导学生与万有引力类比) 活动二:设计与验证 <实验方法> (问题4)研究F与r、q的定量关系应该采用什么方法? 控制变量法——(1)保持q不变,验证F与r2的反比关系; (2)保持r不变,验证F与q的正比关系。

1.2库仑定律 学案

第2节 库仑定律 学案 . 知识点感知 1.点电荷 点电荷:当带电体间的距离比它们自身的大小大得多,以至带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看作带电的点,叫做点电荷. (1)点电荷是只有电荷量,没有大小、形状的______模型,类似于力学中的质点,实际中并不存在. (2)一个带电体能否看作点电荷,是相对于_____________而言的,不能单凭其大小和形状确定 2. 库仑定律: ____________________ ____________________ ____________________ 1)适用条件:____________________. 真空中的电荷若不是点电荷,如图1-2-2所示.同种电荷时,实际距离会增大,如图(a)所示;异种电荷时,实际距离会减小,如图(b)所示. 图1-2-2 2)对公式122q q F k r =的理解:有人根据公式12 2 q q F k r =,设想当r →0时,得出F →∞的结论.从数学角度这是必然的 结论,但从物理的角度分析,这一结论是错误的,其原因是,当r →0时,两电荷已失去了点电荷的前提条件,何况实 际的电荷都有一定的大小和形状,根本不会出现r =0的情况,也就是说,在r →0时不能再用库仑定律计算两电荷间的相互作用力. 3)计算库仑力的大小与判断库仑力的方向分别进行.即用公式计算库仑力的大小时,不必将电荷q 1、q 2的正、负号代入公式中,而只将电荷量的绝对值代入公式中计算出力的大小,力的方向根据同种电荷相斥、异种电荷相吸加以判断即可. 4)式中各量的单位要统一用国际单位,与k =9.0×109 N·m 2/C 2统一. 5)如果一个点电荷同时受到另外的两个或更多的点电荷的作用力,可由静电力叠加的原理求出合力. 6)两个点电荷间的库仑力为相互作用力,同样满足牛顿第三定律. 3 提醒 (1) 4三个点电荷如何在一条直线上平衡? 当三个共线的点电荷在库仑力作用下均处于平衡状态时. (1)三个电荷的位置关系是“同性在两边,异性在中间”.如果三个电荷只在库仑力的作用下且在同一直线上能够处于平衡状态,则这三个电荷一定有两个是同性电荷,一个是异性电荷,且两个同性电荷分居在异性电荷的两边. (2)三个电荷中,中间电荷的电荷量最小,两边同性电荷谁的电荷量小,中间异性电荷就距离谁近一些. 例题 一、库仑定律的理解 【例1】 对于库仑定律,下面说法正确的是( ) A .库仑定律适用于真空中两个点电荷之间的相互作用力 B .两个带电小球即使相距非常近,也能用库仑定律 C .相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等 D .当两个半径为r 的带电金属球中心相距为4r 时,对于它们之间的静电力大小,只取决于它们各自所带的电荷量 答案 AC 解析 由库仑定律的适用条件知,选项A 正确;两个小球若距离非常近则不能看作点电荷,库仑定律不成立,B 项错误;点电荷之间的库仑力属作用力和反作用力,符合牛顿第三定律,故大小一定相等,C 项正确;D 项中两金属球不能看作点电荷,它们之间的静电力大

库仑定律的发现和验证

§3.3 库仑定律的发现和验证 库仑定律是电磁学的基本定律之一。它的建立既是实验经验的总结,也是理论研究的成果。特别是力学中引力理论的发展,为静电学和静磁学提供了理论武器,使电磁学少走了许多弯路,直接形成了严密的定量规律。从库仑定律的发现可以获得许多启示,对阐明物理学发展中理论和实验的关系,了解物理学的研究方法均会有所裨益。 3.3.1 从万有引力得到的启示 18世纪中叶,牛顿力学已经取得辉煌胜利,人们借助于万有引力的规律,对电力和磁力作了种种猜测。 德国柏林科学院院士爱皮努斯(F.U.T.Aepinus,1724—1802)1759年对电力作了研究。他在书中假设电荷之间的斥力和吸力随带电物体的距离的减少而增大,于是对静电感应现象作出了更完善的解释。不过,他并没有实际测量电荷间的作用力,因而只是一种猜测。 1760年,D.伯努利首先猜测电力会不会也跟万有引力一样,服从平方反比定律。他的想法显然有一定的代表性,因为平方反比定律在牛顿的形而上学自然观中是很自然的观念,如果不是平方反比,牛顿力学的空间概念就要重新修改1。 富兰克林的空罐实验(也叫冰桶实验)对电力规律有重要启示。1755年,他在给兰宁(John Lining)的信中,提到过这样的实验: “我把一只品脱银罐放在电支架(按:即绝缘支架)上,使它带电,用丝线吊着一个直径约为1英寸的木椭球,放进银罐中,直到触及罐的底部,但是,当取出时,却没有发现接触使它带电,像从外部接触的那样。”2 富兰克林的这封信不久跟其他有关天电和尖端放电等问题的信件,被人们整理公开发表流传甚广,很多人都知道这个空罐实验,不过也和富兰克林一样,不知如何解释这一实验现象。富兰克林有一位英国友人,名叫普利斯特利(Joseph Priest-ley,1733—1804),是化学家,对电学也很有研究。富兰克林写信告诉他这个实验并向他求教。普利斯特利专门重复了这个实验,在1767年的《电学历史和现状及其原始实验》一书中他写道:“难道我们就不可以从这个实验得出结论:电的吸引与万有引力服从同一定律,即距离的平方,因为很容易证明,假如地球是一个球壳,在壳内的物体受到一边的吸引作用,决不会大于另一边的吸引。”3 普利斯特利的这一结论不是凭空想出来的,因为牛顿早在1687年就证明过,如果万有引力服从平方反比定律,则均匀的物质球壳对壳内物体应无作用。他在《自然哲学的数学原理》第一篇第十二章《球体的吸力》一开头提出的命题,内容是:“设对球面上每个点都有 1自然现象中许多过程都服从平方反比关系,例如:光的照度、水向四面八方喷洒、均匀固体中热的传导等无不以平方反比变化,这从几何关系就可以得到证明。因为同一光通量、水量、热量等等,通过同样的球面,球面的面积与半径的平方成正比(即S=πr2),所以,强度与半径的平方成正比。如果在传播过程中有干扰的媒质,例如有一透镜置于光路中,就会使光的分布发生畴变,这就出现各向异性。所以,平方反比 定律假定的基础是空间的均匀性和各向同性。 2Goodman,TheIngeniusDr.Franklin,Oxford,1931,p.144. 3转引自:D.M.Turner,Makers of Science:Electricity and Magnetism,Oxford,1927, p.28.

教科版高中物理选修3-1第一章 静电场

第一章静电场 第1、2节◆电荷电荷守恒与库仑定律1.带电微粒所带电量不可能是下列值中的( ) A.2.4×10-19C B.-6.4×10-19C C.-1.6×10-18C D.4.0×10-17C 2.关于摩擦起电和感应起电的实质,下列说法中正确的是( ) A.摩擦起电说明机械能可以转化为电能,也说明通过做功可以创造出电荷 B.摩擦起电说明电荷可以从一个物体转移到另一个物体 C.感应起电说明电荷可以从物体的一部分转移到另一个部分 D.感应起电说明电荷可以从带电的物体转移到原来不带电的物体 3.如图所示,A.B是被绝缘支架分别架起的金属球,并相隔一定距离,其中A带正电,B 不带电,则以下说法中正确的是() A.导体B带负电 B.导体B左端出现负电荷,右端出现正电荷,并且电荷量大小相等 C.若A不动,将B沿图中虚线分开,则左边的电荷量小于右边的电荷量 D.若A、B接触一下,A、B金属体所带总电荷量保持不变。 4.如图所示,原来不带电的绝缘金属导体MN,在其两端下面都悬挂着金属验电箔.若使带负电的绝缘金属球A靠近导体的M端,可能看到的现象是() A.只有M端验电箔张开,且M端带正电 B.只有N端验电箔张开,且N端带负电 C.两端的验电箔都张开,且左端带负电,右端带正电 D.两端的验电箔都张开,且左端带正电,右端带负电 5. A、B两个小球带有同种电荷,放在光滑的绝缘水平面上,A的质量为m,B的质量为2m,相距为d。同时静止释放,当它们距离为2d时,A的加速度为a,速度为v,则()A、此时B的速度为2a; B、此时B的加速度为4a; C、此时B的加速度为a/2; D、此时B的加速度为a/4。 6. 如图所示,两个完全相同的金属小球A、B,其中B固定在绝缘地板上,A在离B高H的正上方由静止释放下落,与B发生碰撞后回跳的高度为h,设碰撞中无机械能损失,空气阻力不计,则()。 A、若A、B带等量同种电荷,则h<H

2019复件库仑定律的应用2.doc

编写人: 孙军班级姓名小组月日 课题 1.2 库仑定律的应用 学习 会用库仑定律进行有关的计算. 目标 1、库仑力与力学中的平衡问题 重点 2、库仑力的叠加及其应用 1、库仑力与力学中的平衡问题 难点 2、库仑力的叠加及其应用 预习案(课前) 【复习旧知】 1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成,与它们的预成反比,作用力的方向在它们的连线上. 2.库仑定律表达式:,其中叫做静电力常量 习 3.适用条件: 4.点电荷 : 自当带电体间的距离比它们自身的大小大得多,以至带电体的、大小及电荷分布状况对它们之间的作用力的影响可以忽略时,这样的带电体就可以看成带电的点,叫做点电荷. 测温馨提示: 点电荷是理想化模型,只有在忽略了带电体的形状、大小对研究的问题没有影响时,即可视为点电荷.点电荷的电量等于带电体的电量 探究案(课堂) 探究点一、库仑力与力学中的平衡问题 【例 1】相距为 L 的点电荷 A 、B 的带电量分别为+4Q 和 -Q,要引入第三个电荷 C 使三个点电荷都能处于平衡状态。求: C 的电荷量和放置的位置。 【巩固练习】如图 2 所示,真空中有两个点电荷A、B,它们固定在一条直线上相距L=0.3m 的两点,它们的电荷量分别为Q A=16 ×10-12C, Q B=4.0× 10-12C,现引入第三个点电荷C, (1)若要使 C 处于平衡状态,试求 C 电荷的电量和放置的位置? (2)若点电荷A、 B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求 C 电荷的电量和放置的位置? 图 2 不在一条直线的平衡

【例 2】如图 3 所示,把质量为0.2 克的带电小球 A 用丝线吊起,若将带电量为4×10-8C 的小球 B 靠近它,当两小球在同一高度时且相距3cm,丝线与坚直方向夹角为45 ,此时小球 B 受到库仑力 F=_____ 。小球 A 带的电量 q A=_______ 。 图 3 【巩固练习】如图所示,一个挂在丝线下端的带正电的小球 B ,静止在图示位置;若固定的带正电的小球A 电荷量为Q,B 球的质量为m,带电荷量q,θ=30°, A 和 B 在同一水平线上,整个装置处于真空中,求 A 、B 两球之间的距离为多少? 探究点二、库仑力的叠加 【例 3】如图 1-2-4 所示,等边三角形ABC,边长为L,在顶点A、B处有等量异种点电荷QA、QB. QA=+Q,QB=- Q,求在顶点 C处的点电荷+ QC所受的静电力. 【巩固练习】如图 7 所示,边长为 L=30cm 的等边三角形ABC 三个顶点分别固定了一个电量为Q=+1× 10-6C 的正电荷,试求顶点 C 处的电荷受到的库仑力大小及方向

库仑定律导学案.doc

四环节导思教学导学案第一章静电场 2 库仑定律 编写:肖阿亮 目标导航课时目标呈现 学习目标: 1.掌握库仑定律,要求知道点电荷的概念,理解库仑定律的含义及其公式表达, 知道静电力常量. 2.会用库仑定律的公式进行有关的计算. 3.知道库仑扭秤的实验原理. 新知导学课前自主预习 知识线索: 1.电荷间的相互作用力大小与两个因素有关:一是与有关,二是与有关。 2.当带电体之间的比它们自身的大小大得多时,带电体的形状和体积对相互作用力的 影响可以忽略不计,这时的带电体可以看作。 3.库仑定律:真空中两个间相互作用的静电力跟它们的成正比,跟它们的成反比,作用力的方向在上。公式:F=,式中 k 叫做。 如果公式中的各个物理量都采用国际单位,即电量的单位用,力的单位用,距离的单位用,则由实验得出k=9×109。 疑难导思课中师生互动 知识建构: 一、探究:电荷之间的相互作用的影响因素。(实验方法:控制变量法) 1,保持两球上的电量不变,改变两球之间的距离r ,从实验得出静电力随 距离的增大而减小。 2,保持两球间的距离不变,改变两球的带电量q,从实验得出静电力随电 量增大而增大。 3.猜想:电荷之间的作用力会不会与万有引力具有相似的形式?

二、库仑定律 1.适用条件:真空中,点电荷 2.点电荷的理解 a.点电荷是只有电荷量,没有大小和形状的理想化模型. b.带电体看成点电荷的条件:当带电体间的距离比它们自身的大小大得多,以至带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略时,这样的带电体就可以看做 点电荷. 3. 库仑定律的表达式: F k q 1 q 2 r 2 应用公式计算库仑力的大小时,不必将表示电荷Q1、 Q2带电性质的正负号代入公式中,只 将其电量的绝对值代入,先计算出力的大小,再根据同种电荷相互排斥、异种电荷相互吸引来 判断库仑力的方向;其次,应注意统一单位,因为静电力常量k=9×109N·m2/c2是国际单位制中 的单位。 4.静电力也是一种“性质力”,同样具有力的共性。不能认为两个电量不同的点电荷相互作用 时,一定是电量大的受静电力大(或小)。实际上,两个点电荷之间的相互作用力遵守牛顿第三定律——大小相等、方向相反,并且在同一条直线上; 5.静电力的叠加,如果一点电荷同时受到另外两个点电荷的作用力,这两个力遵循力的合成 法则,根据平行四边形定则,可求出这个点电荷受到的合力。 典例透析: 例 1 关于点电荷的说法,正确的是() A.只有体积很小的带电体才能看作点电荷 B.体积很大的带电体一定不能看成点电荷 C.当两个带电体的大小及形状对它们之间的相互作用力的影响可忽略时,这两个带电体可看 作点电荷 D.一切带电体都可以看成是点电荷 例 2 两个完全相同的金属小球 A 、B ,A 球带电量为+ 5.0 ×10 -9C, B 球带电量为- 7.0 ×10 - 9C,两球相距 1m。问:它们之间的库仑力有多大?若把它们接触后放回原处,它们之间的相互作用力为多大? 例 3 相距 L 的点电荷 A、B 的带电量分别为 +4Q 和 -Q,要引入第三个点电荷 C,使三个点电荷都处于 平衡状态,求电荷 C 的电量和放置的位置。

相关文档
相关文档 最新文档