文档库 最新最全的文档下载
当前位置:文档库 › 李灿泽:统考复习系列之 三角类型点滴行(0529)

李灿泽:统考复习系列之 三角类型点滴行(0529)

李灿泽:统考复习系列之  三角类型点滴行(0529)
李灿泽:统考复习系列之  三角类型点滴行(0529)

统考复习系列之 三角类型点滴行(0529)

1、三角函数特殊值:

(1)cos 120?= (2)5

sin()6π-=

(3)tan 690°= (4)sin (-163

π)=

自我总结:

2、三角函数的定义:

(1)已知α是第一象限角,那么

2

α是第 象限角 已知α是第三象限角,那么2

α是第 象限角 已知

2

α

是第四象限角,那么

4

α是第 象限角

自我总结: (2)已知a a x --=

432cos ,且x 是第二、三象限角,则a 的取值范围是________ 已知23sin 4a x a

-=

-,且x 是第二象限角,则a 的取值范围是________

自我总结:

(3)已知角α的终边经过点P(5,-12),则ααcos sin +=

(4)已知5

3sin +-=m m θ,)2

(5

24cos πθπ

θ<<+-=

m m ,则θtan =__ __ 自我总结:

(5)已知a =

200sin ,则

160tan =

A 、21a

a --

B 、

2

1a

a - C 、a

a 2

1--

D 、

a

a 2

1-

(6)已知x x f 3cos )(cos =,则)30(sin

f 的值为______ 已知(cos )cos 2f x x =,则(sin 75)f

的值为______ 自我总结:

3、三角函数的性质

3.1周期性:下列函数的周期是:

(1)sin

2

x

y = (2)cos 4y x = (3)tan 2y x = (4) |sin 2|y x =

(5) |cos 4|y x = (6) |tan 2|y x = 自我总结:

3.2 对称轴与对称中心

(1)终边在x 轴上的角可表示为

终边在y 轴上的角可表示为

终边在坐标轴上的角可表示为

(2)函数2sin(2)3

y x π

=-的对称轴是 对称中心是

自我总结:

3.3 奇偶性

(1) 函数sin(4)y x ?=-是奇函数,则?值的集合是 函数sin(5)y x ?=-+是偶函数,则?值的集合是

(2)函数sin(2)(0)y x ??π=+≤≤是R 上的偶函数,则?的值是

3.4 单调性 (1) 3sin(2)6

y x π

=+

的单调递减区间是

3c o s

(2)6

y x π

=-+的单调递增区间

)3

2cos(

π

-

-=x y 的单调递增区间 (2)求函数]2,2[ )3

21sin(

πππ

-∈+

=x x y 的单调递增区间

自我总结:

3.5 定义域与值域(最值) (1

)y =

y =的定义域 tan 2y x =的定义域是

y =

的定义域是

自我总结:

(2)函数2

cos sin y x x =+,x R ∈的值域是

函数2

cos sin y x x =+,[0,

]4

x π

∈的值域是

函数2y cos x 3cosx 2=-+的最小值是 自我总结:

(3)3sin(2)6

y x π

=+

的最大值为 此时x=

3sin(2)6

y x π

=-+

的最小值为 此时x=

自我总结:

(4

cos 23x x a +=+中,a 的取值域范围是

若()2sin (01)f x x ωω=<<在区间[0,]3

π

上的最大值是2,则ω=

(5) 2cos ,[,]4

y x x π

π=∈的值域为

s i n (),

(,)3

2

y x x π

π

π=+

∈的值域为 2c o s

(),

[,]6

4

y x x π

π

π=-∈的值域为

自我总结:

(6)函数()f x =1

tan()26

x π

-

的定义域 值域

奇偶性 单调性 .

3.6 平移问题

(1)为了得到函数R x x y ∈+=),3

2cos(π

的图像,只需把函数x y 2cos =的图像向

平移 个单位。 (2)把函数)3

2sin(π

+=x y 先向右平移

2

π

个单位,然后向下平移2个单位后所得的函数解析式为

_____________

(3)要得到函数2sin 2y x =图像,只需将x x y 2cos 2sin 3-=的图像向 平移 个单位

(4)为得到函数cos()3

y x π

=-

的图像,可以将函数sin y x =的图像( )

A.向左平移3

π

个单位 B.向右平移

3

π

个单位C.向左平移

6

π

个单位 D.向右平移

6

π

个单位

自我总结:

4、关于|sin |y x =:

(1)图像: (2)奇偶性:

(3)周期: (4)单调增区间:

(5)对称轴: (6)值域: 自我总结:sin ||y x =与|cos |y x =呢?

5、诱导公式: (1)

cos(180)sin(360)sin(180)cos(180)

αααα?++?--?-?- =

(2)

)

2

9sin(

)2

11cos(

)sin()2cos(

απαπαπαπ

+---+ (3)

)

4sin()2

3sin()

8cos()2

cos()5sin(πθπθθπθππθ---

---

-=

(4)函数)2

2cos(π

+

=x y 的图像的对称轴方程是

自我总结:

6、化简求值问题

6.1两角和差三角公式:

(1)sin 15cos 75cos15sin 105+

=

(2)sin 163sin 223sin 253sin 313+

= 自我总结:

(3)已知35

sin()cos cos()sin αβααβα---=

,则2cos β=____

已知1cos()5

αβ+=

,3cos()5

αβ-=

,则tan .tan αβ=

设)2

,0(π

α∈,若5

3sin =α,则)4

cos(2π

α+

等于

自我总结:

(4)已知βαtan tan 、是方程04332

=++x x 的两根,且)2

,2(π

πβα-

∈、,则βα+=

在A B C ?中,已知tanA ,tanB 是方程2

3720x x -+=的两个实根,则tan C =

自我总结:

=

(5)tan 751tan 751

-+

=

s i n 15c o s 15

s i n 15c o s 15

-

+

= 自我总结:

6.2倍角公式: (1)

1sin 15cos154

=

2

2

sin 5cos 5+

= 2

12sin 75-

=

2

2

sin 15cos 15-

=

自我总结:

(2)化简f(x)=x x sin 1sin 1++-=

化简

=

化简

?

--

???-170sin 1170sin 10cos 10sin 212

=

已知α是第三角限的角,化简α

αα

αsin 1sin 1sin 1sin 1+--

-+=

自我总结:

(3)已知3cos(

)25

πα-=

,则cos 2α= 若1sin cos 5

θθ+=,则sin 2θ的值是 已知1sin cos 8

αα=

,04

π

α<<

,则cos sin αα-=

已知)0(5

1cos sin π<<-

=+x x x ,求x tan = (4) 已知4

4

5sin cos 9θθ+=,则sin 2θ= cos 2θ= 已知4

4

5sin cos 9

θθ-=,则sin 2θ= cos 2θ=

自我总结:

(5)

110

80

sin sin -

=

(tan10

)sin40°=________

sin 50(110)+

=

自我总结:

(6)

t a n 10

t a n 3t a n 10t a n 50++

=

t a n 70t a n 25

t a n 70t -

-

= =-+0

tan50

tan70

3tan50tan70

已知34

παβ+=,则(1tan )(1tan )αβ--=

自我总结:

6.3 化一公式

(1)sin cos αα+=

s i n

c o s αα-=

2sin αα--=

c o s s i n αα-

=

自我总结: (2)x x y cos sin 3+=

的值域是 x x y cos sin 3+=

,]2

,2[π

π-

∈x 的最大值

sin

2

2

x x y =+的图像对称轴方程

6.4 降幂公式

(1) 2

()sin 22sin f x x x =-,化简得()f x =

(2)()4cos sin()16f x x x π

=+-,化简得()f x =

(3)2

()2cos 22sin f x x x

=+,化简得()f x =

(4)()cos(

)cos(

)3

3

f x x x π

π

=+-,

化简得()f x =

(5)函数22sin sin 23cos y x x x =++的最小正周期 值域是 自我总结:

7、 凑tan α(注意“1”的代换)

(1)若tan 2α=,则 2

2

sin sin cos 3cos αααα+-=

若2)4

tan(=+π

α,则ααα2

cos 2cos sin 31-?+=_______________ (2)若

1tan 2,1tan x x

+=-则sin 2x =

自我总结:

(3)若tan()1α-=,则sin cos sin cos αααα

+-= s i n 2α

= (4)若1

tan 3α=-,则

2

1

cos α

=

(5)若sin sin 20,,2x x x π

π??

+=∈

???

,则tan x 的值为 若sin 3cos ,sin cos x x x x =那么·=

自我总结:

8、凑角

(1)已知tan 2,tan()3ααβ=-=,则tan β= ;tan(2)βα-=

已知3

1)4

tan(,2

1)tan(-

=-

=

αβα,则)4

tan(π

β+

=

(2)βα,都是锐角,且5sin 13

α=,()4cos 5

αβ+=-,则βsin =

(3)已知1sin(

)6

3

π

α+=

,则cos()3

π

α-=

(4)若316sin =???

??-απ

,则??

? ??+απ232cos = (5)设cos (α-2

β)=-

9

1,sin (

2

α-β)=

3

2,且

2

π<α<π,0<β<2

π,

则cos (α+β)=

自我总结:

9、解三角形

(1)在ΔABC 中,35cos ,cos 513

A B ==

,则sicC =

(2)在ΔABC 中,4cos ,tan 25

A B =

=,则 tan()A B += t a n 2C

= (3)设A B C ?

中,tan tan tan A B A B ++=

,sin cos 4

A A =

则此三角形是____ 三角形. (4)若sinA=

5

5,sinB=

10

10,且A,B 均为钝角,则A+B= .

自我总结:

10、弧长公式的应用

(1)已知扇形的周长为20,当它的半径和圆心角各取什么值时,才能使扇形的面积最大,并求最大面积。

11.求解析式问题

(1)已知()sin(3)(0,(,),0f x A x A x ??π=+>∈-∞+∞<<在9

x π

=

时取最大值8

求()f x 的解析式

(2)函数()sin()(0,||)2

f x w x w π

φφ=+><

在同一个周期内,当4

x π

=

时,y 取最大值1,

当712

x π=

时y 取最小值-1,求()f x 的解析式

12.五点法作图

(1)用五点法做出cos

2

y x π

=的图像 (2)用五点法做出sin(2)6

y x π

=-

的图像

(3)用五点法做出sin(2)6

y x π

=-

在[0,]π的图像

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

全等三角形类型题汇总

13. 如图,已知AB=AC,AD=AE,BD=CE. 求证:∠3=∠1+∠2. 5. 一块三角形玻璃样板不慎被小强同学碰破,成了四片完整的碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.下列四个答案中考虑最全面的是( ) A.带其中的任意两块去都可以B.带1、2 或2、3 去就可以了 C.带1、4 或3、4 去就可以了D.带1、4 或2、4 或3、4 去均可16. 将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB =90°,∠A=∠D=30°,点 E 落在 AB 上,DE 所在直线交 AC所在直线于点 F. (1)求证:AF+EF=DE; (2)若将图①中的△DBE 绕点 B 按顺时针方向旋转角α,且 0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图①中的△DBE 绕点 B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程:若不成立,请写出 AF,EF与 DE之间的关系,并说明理由.

板块一、三角形全等的判定与应用 在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于O再连结AO、BC,若1=2, 则图中全等三角形共有哪几对?并简单说明理由. 【巩固】如图所示,AB = AD,BC = DC,E、F在AC上,AC与BD相交于P.图中有几对全等三角形?请一一找出来,并简述全等的理由. 板块二、三角形全等的判定与应用 (2008年巴中市高中阶段教育学校招生考试)如图,AC∥DE,BC∥EF,AC = DE.求证:AF =BD. C

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

最新全等三角形专题分类复习讲义

第三章全等三角形专题分类复习 一.考点整理 1.三角形的边角关系 2.三角形全等 3.三角形当中的三线(角平分线、中线和高线的性质) 在三角形中,三角形的三线分别交于一点。 注:三角形内角平分线与外角平分线模型归纳: (1) (2) __________D ∠= ___________D ∠= (3) __________D ∠= 3.尺规作图 (1)作满足题意的三角形 (2)作最短距离(送水、供电、修渠道等最短路径问题) 角:内角和180度,余角和90度 边:构成三角形三边的条件 (1)证三角形全等(SSS/ASA/AAS/SAS/HL ) (2)证边等或角等(证三角形全等、等量代换、证等腰三角形) (3)证“AE=BD+CE ”等(证线段之间的等量关系)类似问题(三角形全等证边等代换、截长补短) (4)证线段之间的位置关系(垂直或平行 方法:证明角等代换) A D B C A B C D A B C D

考点1:证明三角形全等 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。求证: ACF BDE ???。 练习:已知,如图,△ABC 是等边三角形,过AC 边上的点D 作DG ∥BC ,交AB 于点G ,在GD 的延长线上取点E ,使DE =DC ,连接AE 、BD. (1)求证:△AGE ≌△DAB (2)过点E 作EF ∥DB ,交BC 于点F ,连结AF ,求∠AFE 的度数. 考点2:求证线段之间的数量关系(截长补短) 例1:如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD . D A B C G E F

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

(完整版)高中数学必修五解三角形测试题及答案

(数学5必修)第一章:解三角形 [基础训练A 组] 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-= AB 030C =,则AC BC +的最大值是________。 三、解答题 1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?

全等三角形几种类型

全等三角形的认识与性质 全等图形: 能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形. 相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等. 如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形 ''''' A B C D E . 这里符号“≌”表示全等,读作“全等于”. A' B' C' D' E' E D C B A 全等三角形: 能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等; 反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等. 全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”. 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. 中考要求 第一讲 全等三角形与角平分线 知识点睛

(4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 判定三角形全等的基本思路: SAS HL SSS →?? →??→? 找夹角已知两边 找直角 找另一边 ASA AAS SAS AAS ?? ?? ?? ?? ?? ?? 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA AAS →??→? 找两角的夹边已知两角 找任意一边 全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型 ⑵ 对称全等型 ⑶ 旋转全等型

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

最新解三角形测试题(附答案)

解三角形单元测试题 一、选择题: 1、在△ABC 中,a =3,b =7,c =2,那么B 等于( ) A . 30° B .45° C .60° D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .( ) 1310 - C .13+ D .310 3、在△ABC 中,a =32,b =22,B =45°,则A 等于( ) A .30° B .60° C .30°或120° D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( ) A .无解 B .一解 C . 二解 D .不能确定 5、在△ABC 中,已知bc c b a ++=2 2 2 ,则角A 为( ) A . 3 π B . 6 π C .32π D . 3π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .()10,8 B . ( ) 10,8 C . ( ) 10,8 D . ()8,10 8、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 9、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( ) A .2>x B .2

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

解三角形专题高考题练习附答案

解三角形专题 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值.

6、在ABC ?中,cos A = ,cos B =. (Ⅰ)求角C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r , (sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。 9、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知1 1tan ,tan 2 3 A B ==,且最长边的边长为l.求: (I )角C 的大小; (II )△ABC 最短边的长.

全等三角形几种类型总结(供参考)

全等三角形与角平分线 全等图形:能够完全重合的两个图形就是全等图形. 全等多边形:能够完全重合的多边形就是全等多边形. 相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角? 全等多边形的对应边、对应角分别相等? 如下图,两个全等的五边形,记作:五边形ABCQE里五边形A'B'C'D'E' . 这里符号徑"表示全等,读作"全等于"? 全等三角形:能够完全重合的三角形就是全等三角形? 全等三角形的对应边相等,对应角分别相等; 反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等? 全等三角形对应的中线、高线、角平分线及周长面积均相等. 全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形?能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角?全等符号为“空‘ ? 全尊三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等? 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角? (5)有对顶角的,对顶角常是对应角? 全等三角形的判定方法: (1)边角边走理(SAS):两边和它们的夹角对应相等的两个三角形全等? ⑵角边角走理(ASA):两角和它们的夹边对应相等的两个三角形全等? (3)边边边走理(SSS):三边对应相等的两个三角形全等? (4)角角边走理(MS):两个角和其中一个角的对边对应相等的两个三角形全等? (5)斜边、直角边定理(HD :斜边和一条直角边对应相等的两个直角三角形全等. 判定三角形全等的基本思路: 找夹角TSAS 已知两边找直角THL 找另一边TSSS 边为角的对边一找任意一角一A4S 找这条边上的另一角一ASA 找这条边上的对角一AAS 找该角的另一边一 SAS 全等三角形的图形归纳起来有以下几种典型形式: 已知一边一角《 边就是角的一条边 已知两角< 找两角的夹边T ASA 找 任意一边T AAS

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

解三角形练习题及答案

解三角形练习题及答案 解三角形习题及答案 、选择题(每题5分,共40分) 1、己知三角形三边之比为5 : 7 : 8,则最大角与最小角的和为(). A. 90° B. 120° C. 135° D. 150° 2、在厶ABC中,下列等式正确的是(). A. a : b=Z A :Z B B . a : b= sin A : sin B C. a : b= sin B : sin A D . asin A= bsin B 1 : 2 : 3,则它们所对的边长之比为( 3、若三角形的三个内角之比为 A. 1 : 2 : 3 B . 1 : 3 : 2 C . 1 : 4 : 9 D . 1 :;』2 : 3 4、在厶ABC中,a= V5 , b= 尿,/ A= 30 °贝卩c等于(). A. 2 5 B. --:5C . 2 ;5或■、5 D. . 10或■,5 5、已知△ ABC中,/ A= 60° a=76 , b= 4,那么满足条件的厶ABC的形 状大小(). A .有一种情形B.有两种情形

C .不可求出 D .有三种以上情形 6、在厶ABC 中,若a2+ b2—c2v 0,则4 ABC 是(). A .锐角三角形B.直角三角形 C .钝角三角形 D .形状不能确定 7、sin7cos37 -sin 83 sin 37 的值为( ) A.—一 2 B. 1 2 C. 1 2 n 3 D.— — 8、化简1 T:等于( ) A. 3 B.二 C. 3 D. 1 2 二、填空题(每题5分,共20分) 9、已知cos a —cos B 二丄,sin a —sin 3 =丄,贝S cos (a —B )= . 2 3 10、在厶ABC 中,/ A= 105° / B= 45° c=忑,贝S b= _____________ . a + b + c 你在厶ABC 中,/ A= 60° a= 3,则sinA + sinB + sinC = --------- ? 12、在厶ABC中,若sin A : sin B : sin C = 2 : 3 : 4,则最大角的余弦值等于__ . 班别:__________ 姓名: _____________ 序号:_______ 得分: _______ 9、______ 10、_______ 11、 ________ 12、__________

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

高二数学解三角形测试题附答案

解三角形测试题 一、选择题: 1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于() A.60°B.60°或120°C.30°或150°D.120° 2、符合下列条件的三角形有且只有一个的是()A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1, ∠B=45° 3、在锐角三角形ABC中,有() A.cosA>sinB且cosB>sinA B.cosAsinB且cosBsinA 4、若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形 5、设A、B、C为三角形的三内角,且方程(sinB-sinA)x2+(sinA-sinC)x +(sinC-sinB)=0有等根, 那么角B ()A.B>60°B.B≥60°C.B<60°D.B ≤60° 6、满足A=45,c=6,a=2的△ABC的个数记为m,则a m的值为() A.4 B.2 C.1 D.不定 7、如图:D,C,B三点在地面同一直线上,DC=a,从C,D两点测得A点仰角分别是β, α(α<β),则A点离地面的高度AB等于() A B

A . )sin(sin sin αββα-a B .)cos(sin sin βαβ α-?a C . )sin(cos sin αββα-a D .) cos(sin cos βαβ α-a 8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南 偏东60°,则A,B 之间的相距 ( ) A .a (km) B .3a(km) C .2a(km) D .2a (km) 二、填空题: 9、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____. 11、在ΔABC 中,若S ΔABC = 4 1 (a 2+b 2-c 2 ),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=32 31 ,则cosC=_______. 三、解答题: 13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B). 14、已知ΔABC 三个内角A 、B 、C 满足A+C=2B, A cos 1+ C cos 1 =- B cos 2 , 求2 cos C A -的值. 15、二次方程ax 2-2bx+c=0,其中a 、b 、c 是一钝角三角形的三边,且以b 为最长. D C

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2- C .32 D .23 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=,

高三第一轮复习解三角形题型总结

2018高三第一轮复习解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则 =++++C B A c b a sin sin sin

7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______ 8.(2017全国卷2文16)ABC ?的内角C B A ,,的对边分别为c b a ,,,若 A c C a B b cos cos cos 2+=,则=B ________. 9.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 题型二:三角形解的个数的判断 1. 在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C === B 、60,48,60a c B === C 、7,5,80a b A === D 、14,16,45a b A === 2. 在ABC ?中,若30,4A a b ∠===,则满足条件的ABC ? A .不存在 B .有一个 C .有两个 D 不能确定 3.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 4.符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30°

相关文档
相关文档 最新文档