文档库 最新最全的文档下载
当前位置:文档库 › 高考理科数学专题七 不等式 第二十讲 二元一次不等式(组)与简单的线性规划问题

高考理科数学专题七 不等式 第二十讲 二元一次不等式(组)与简单的线性规划问题

高考理科数学专题七 不等式  第二十讲 二元一次不等式(组)与简单的线性规划问题
高考理科数学专题七 不等式  第二十讲 二元一次不等式(组)与简单的线性规划问题

专题七 不等式

第二十讲 二元一次不等式(组)与简单的线性规划问题

一、选择题

1.(2018天津)设变量x ,y 满足约束条件5,24,1,0,

x y x y x y y +??-?

?-+???≤≤≤≥ 则目标函数35z x y =+的最大值为

A . 6

B .19

C .21

D .45

2.(2017新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-??

-+??+?

≤≥≥,则2z x y =+的最小值是

A .

B .

C .

D .

3.(2017天津)设变量,x y 满足约束条件20,220,0,3,

x y x y x y +??+-?

????≥≥≤≤则目标函数z x y =+的最大值为

A .

23 B .1 C .3

2

D .3 4.(2017山东)已知x ,y 满足30

35030x y x y x -+??

++??+?

≤≤≥,则2z x y =+的最大值是

A .0

B .2

C .5

D .6

5.(2017北京)若x ,y 满足32x x y y x ??

+???

≤≥≤ 则2x y +的最大值为

A .1

B .3

C .5

D .9

6.(2017浙江)若x ,y 满足约束条件03020x x y x y ??

+-??-?

≥≥≤,则2z x y =+的取值范围是

A .[0,6]

B . [0,4]

C .[6,)+∞

D .[4,)+∞ 7.(2016年山东)若变量x ,y 满足2,239,0,

x y x y x ì+????

?-?í??锍??则22x y +的最大值是

A .4

B .9

C .10

D .12

8.(2016浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤??

+≥??-+≥?

中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB = A .2 B .4 C .2 D .6

9.(2016天津)设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥??

+-≥??+-≤?

,则目标函数25z x y =+的最小值为

A .4-

B .6

C .10

D .17

10.(2015陕西)某企业生产甲、乙两种产品均需用,A B 两种原料,已知生产1吨每种产品需原料及每天原

料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为

甲 乙 原料限额 A (吨) 3 2 12 B (吨)

1

2

8

A .12万元

B .16万元

C .17万元

D .18万元

11.(2015天津)设变量,x y 满足约束条件20

30230x x y x y +≥??

-+≥??+-≤?

,则目标函数6z x y =+的最大值为

A .3

B .4

C .18

D .40

12.(2015福建)若变量,x y 满足约束条件20,0,220,x y x y x y +??

-??-+?

≥≤≥ 则2z x y =-的最小值等于

A .52-

B .2-

C .3

2

- D .2 13.(2015山东)已知,x y 满足约束条件0

20x y x y y -??

+???

≥≤≥,若z ax y =+的最大值为4,则a =

A .3

B .2

C .-2

D .-3 14.(2014新课标Ⅰ)不等式组1

24

x y x y +≥??

-≤?的解集记为D .有下面四个命题:

1p :(,),22x y D x y ?∈+≥-,2p :(,),22x y D x y ?∈+≥,

3p :(,),23x y D x y ?∈+≤, 4p :(,),21x y D x y ?∈+≤-.

其中真命题是

A .2p ,3p

B .1p ,4p

C .1p ,2p

D .1p ,3p

15.(2014安徽)y x ,满足约束条件??

?

??≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一...

,则实数a 的值为( ) A .

1

21-或

B .21

2或 C .2或1 D .12-或 16.(2014福建)已知圆()()

2

2

:1C x a y b -+-=,设平面区域70,

70,0x y x y y +-≤??

Ω=-+≥??≥?

,若圆心C ∈Ω,且圆

C 与x 轴相切,则22

a b +的最大值为 A .5 B .29 C .37 D .49

17.(2014北京)若,x y 满足20200x y kx y y +-≥??

-+≥??≥?

且z y x =-的最小值为-4,则k 的值为

A .2

B .-2

C .

12 D .1

2

- 18.(2013新课标Ⅱ)设,x y 满足约束条件10,

10,3,x y x y x -+≥??

+-≥??≤?

,则23z x y =-的最小值是

A .7-

B .6-

C .5-

D .3-

19.(2013陕西)若点(,)x y 位于曲线y = |x |与y = 2所围成的封闭区域,则2x -y 的最小值为

A .-6

B .-2

C .0

D .2

20.(2013四川)若变量,x y 满足约束条件8,

24,0,0,

x y y x x y +≤??-≤?

?≥??≥?且5z y x =-的最大值为a ,最小值为b ,则a b -的

值是

A .48

B .30

C .24

D .16

21.(2012广东)已知变量,x y 满足约束条件211y x y x y ??

+??-?

………,则3z x y =+的最大值为

A .12

B .11

C .3

D .-1

22.(2012广东)已知变量,x y 满足约束条件1101x y x x y +≤??

+≥??-≤?

,则2z x y =+的最小值为

A .3

B .1

C .5-

D .6-

23.(2012山东)设变量y x ,满足约束条件222441x y x y x y +??

+??--?

………,则目标函数y x z -=3的取值范围是

A .??????-

6,23 B .??????--1,23 C .[]6,1- D .?????

?

-23,6

24.(2012福建)若直线2y x =上存在点(,)x y 满足约束条件30,

230,,x y x y x m +-≤??

--≤??≥?

则实数m 的最大值为

A .1-

B .1

C .

32

D .2

25.(2012天津)设变量,x y 满足约束条件22024010x y x y x +-??

-+??-?

………,则目标函数32z x y =-的最小值为

A .?5

B .?4

C .?2

D .3

26.(2012辽宁)设变量,x y 满足-100+20015x y x y y ≤??

≤≤??≤≤?

,则2+3x y 的最大值为

A .20

B .35

C .45

D .55

27.(2011广东)已知平面直角坐标系xOy 上的区域D 由不等式0222x y x ?≤≤?

≤??

≤?给定,若(,)M x y 为D 上的动点,

点A 的坐标为2,1),则z =OM u u u u r ·

OA u u u r

的最大值为 A .3 B .4 C .2 D .2

28.(2011安徽)设变量y x y x y x 2,1||||,+≤+则满足的最大值和最小值分别为

A .1,-1

B .2,-2

C .1,-2

D .2,-1

29.(2011湖南)设m >1,在约束条件1y x y mx x y ≥??

≤??+≤?

下,目标函数z x my =+的最大值小于2,则m 的取值范

围为

A .(1,12+

B .(12++∞)

C .(1,3 )

D .(3,+∞)

30.(2010新课标)已知ABCD Y 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在ABCD Y 的内

部,则z =2x -5y 的取值范围是

A .(-14,16)

B .(-14,20)

C .(-12,18)

D .(-12,20)

31.(2010山东)设变量,x y 满足约束条件20

510080x y x y x y -+??

-+??+-?

≥≤≤,则目标函数34z x y =-的最大值和最小值分

别为

A .3,11-

B .3,11--

C .11,3-

D .11,3 二、填空题

32.(2018北京)若x ,y 满足12x y x +≤≤,则2y x -的最小值是__________. 33.(2018全国卷Ⅰ)若x ,y 满足约束条件220100--??

-+???

≤≥≤x y x y y ,则32z x y =+的最大值为__.

34.(2018全国卷Ⅱ)若,x y 满足约束条件25023050+-??

-+??-?≥,≥,≤,x y x y x 则=+z x y 的最大值为___.

35.(2018浙江)若x ,y 满足约束条件0262x y x y x y -??

+??+?≥≤≥,则3z x y =+的最小值是__,最大值是__.

36.(2017新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +??

+-??-?≤≥≤,则32z x y =-的最小值为 .

37.(2017新课标Ⅲ)若x ,y 满足约束条件0200x y x y y -??

+-???

≥≤≥,则34z x y =-的最小值为__.

38.(2016年全国I)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料

1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产

一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.

39.(2016全国III)若x ,y 满足约束条件1020220x y x y x y -+??

-??+-?

≥≤≤,则z x y =+的最大值为 .

40.(2016江苏)已知实数x ,y 满足240220330x y x y x y -+≥??+-≥??--≤?

,则22

x y +的取值范围是 .

41.(2015新课标Ⅰ)若,x y 满足约束条件10

040

x x y x y -??

-??+-?≥≤≤,则y x 的最大值为 .

42.(2015新课标Ⅱ)若,x y 满足约束条件10,20,220,x y x y x y -+??

-??+-?≥≤≤,则z x y =+的最大值为__.

43.(2014安徽)不等式组20240320x y x y x y +-≥??

+-≤??+-≥?

表示的平面区域的面积为________.

44.(2014浙江)当实数x ,y 满足240,10,1,x y x y x +-≤??

--≤??≥?

时,14ax y ≤+≤恒成立,则实数a 的取值范围是

________.

45.(2014湖南)若变量,x y 满足约束条件4y x x y y k ≤??

+≤??≥?

,且2z x y =+的最小值为-6,

则k = .

46.(2013新课标Ⅰ)设,x y 满足约束条件13,

10x x y ≤≤??

-≤-≤?

,则2z x y =-的最大值为___.

47.(2013浙江)设z kx y =+,其中实数,x y 满足2

242240x x y x y ≥??

-+≥??--

48.(2013湖南)若变量x ,y 满足约束条件28,04,03,x y x y +≤??

≤≤??≤≤?

则x +y 的最大值为________.

49.(2012新课标)设x ,y 满足约束条件1300

x y x y x y --??+?

????…………,则y x z 2-=得取值范围

50.(2011湖南)设1,m >在约束条件1y x y mx x y ≥??

≤??+≤?

下,目标函数5z x y =+的最大值为4,则m 的值为 .

51.(2011陕西)如图,点(,)x y 在四边形ABCD 内部和边界上运动,那么2x y -的最小值为________.

y

5,1()

3,2()

B C A(1,1)

O

D(1,0)

52.(2011新课标)若变量x ,y 满足约束条件32969x y x y ≤+≤??≤-≤?

,则2z x y =+的最小值

是_________.

53.(2010安徽)设x ,y 满足约束条件220

8400,0x y x y x y -+≥??

--≤??≥≥?

,若目标函数(0,0)z abx y a b =+>>的最大值为8,

则a b +的最小值为 __ _.

54.(2010陕西)铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的的2CO 排放量b 及每万吨铁矿石的价格c

如下表:

a

b (万吨)

c (百万元)

A 50% 1 3 B

70%

0.5

6

某冶炼厂至少要生产1.9(万吨)铁,若要求2CO 的排放量不超过2(万吨)则购买铁矿石的最少费用为 (万元). 三、解答题

55.(2010广东)某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,

6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白

质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

不等式选讲-2019年高考理科数学解读考纲

16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1). (2). (3)会利用绝对值的几何意义求解以下类型的不等式: . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)柯西不等式的向量形式: (2). (3). (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n为大于1的实数时伯努利不等式也成立. 7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等. 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解 样题1 (2018新课标全国Ⅱ理科)设函数 . (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 样题2 (2018新课标全国Ⅲ理科)设函数 . (1)画出()y f x =的图象;

(2)当[)0x +∞∈,,,求a b +的最小值. 【解析】(1)()y f x =的图象如图所示.

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

高考数学《不等式选讲》专项复习

高考数学《不等式选讲》专项复习 一、考纲解读 1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值. 2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位. 3.了解基本不等式,会用它来证明不等式和求最值. 4.会用综合法、分析法、反证法及数学归纳法证明不等式. 二、命题趋势探究 本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 三、知识点精讲 (一).不等式的性质 1.同向合成 (1), >>?>; a b b c a c (2),c >>?+>+; a b d a c b d (3)0,c0 >>>>?>. a b d ac bd (合成后为必要条件) 2.同解变形 >?+>+; (1)a b a c b c (2)0,0, >?>>?<<; a b c ac bc c ac bc

(3)11 000a b b a >>? >>?>>. (变形后为充要条件) 3.作差比较法 0,0a b a b a b a b >?>->-<<;0,||,a x a x a x a >>?>><-或 (2)22||||a b a b >?> (3)||||x a x b c +++<零点分段讨论 (三).基本不等式 (1)222a b ab +>(当且仅当等号成立条件为a b =) (2)0,0, 2 a b a b +>>≥a b =) ; 0,0,0, 3 a b c a b c ++>>>≥a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号) ①几何意义:||ad bc ??+≤a b a b ||||||≤②推广:22222 2 212 121122()()()n n n n a a a b b b a b a b a b +++++ +≥++ +.当且仅当向量 12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2018年高考数学考试大纲解读专题16不等式选讲理版含答案

专题16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b . (2)a b a c c b . (3)会利用绝对值的几何意义求解以下类型的不等式: ; ;ax b c ax b c x a x b c . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明 . (1)柯西不等式的向量形式: ||||||.(2) 22222()(+)()a b c d ac bd . (3)222222121223231313()()()()()()x x y y x x y y x x y y . (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n 为大于1的实数时伯努利不等式也成立 . 7.会用上述不等式证明一些简单问题 .能够利用平均值不等式、 柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等 . 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数 2–4()x ax f x ,11()x x g x ||||. (1)当a =1时,求不等式 ()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围. 所以a 的取值范围为[1,1]. 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法, 也可以将绝对值函数转化为分段函数,借助图象解题.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

最新新课标2013年全国高考理科数学试题分类汇编6:不等式

最新新课标2013年全国高考理科数学试题分类汇编6:不等式 一、选择题 1 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数 ,,x y z 满足 22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +- 的最大值为 ( ) A .0 B .1 C .94 D .3 【答案】B 2 .(2013年高考陕西卷(理))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 ( ) A .[-x ] = -[x ] B .[2x ] = 2[x ] C .[x +y ]≤[x ]+[y ] D .[x -y ]≤[x ]-[y ] 【答案】D 3 .(2013年高考湖南卷(理))若变量,x y 满足约束条件211y x x y y ≤?? +≤??≥-? ,2x y +则的最大值是 ( ) A .5- 2 B .0 C . 53 D . 52 【答案】C 4 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数()(1||)f x x a x =+. 设关 于x 的不等式() ()f x a f x +< 的解集为A , 若11,22 A ?? -????? , 则实数a 的取值范围是 ( ) A . ????? B .? ???? C . ?? ????? ?? D .?- ?? ∞ 【答案】A 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知0a >,,x y 满足约 束条件1 3(3)x x y y a x ≥?? +≤??≥-? ,若2z x y =+的最小值为1,则a = ( ) A . 14 B . 12 C .1 D .2 【答案】B 6 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x , y 满足约束条件360,20, 30,x y y x y ≥--≤+-?-≤? ???

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

[最新版]高考理科数学《不等式选讲》题型归纳与训练

高考数学题型归纳与训练 1 高考理科数学《不等式选讲》题型归纳与训练 【题型归纳】 题型一 解绝对值不等式 例1、设函数f (x )=|x -1|+|x -2|. (1)解不等式f (x )>3; (2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围. 【答案】(1)(-∞,0)∪(3,+∞);(2)(-∞,1). 【解析】(1)因为f (x )=|x -1|+|x -2|=?? ???-.2>3,-22,≤≤1,11,<,23x x x x x 所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3. 所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞). (2)因为f (x )=?? ???-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1. 因为f (x )>a 恒成立, 【易错点】如何恰当的去掉绝对值符号 【思维点拨】用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值. 题型二 利用绝对值的几何意义或图象解不等式 例2、(1)若不等式|x -1|+|x +2|≥a 2+12 a +2对任意实数x 恒成立,则实数a 的取值范围是________. 【答案】(1)???? ??-1-174,-1+174. 【解析】(1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3, ∴a 2+12a +2≤3,解得-1-174≤a ≤-1+174 . 即实数a 的取值范围是???? ??-1-174,-1+174. 【易错点】绝对值的几何意义和如何把恒成立问题转化为最值问题 【思维点拨】解含参数的不等式存在性问题,只要求出存在满足条件的x 即可;不等式的恒成立问题,可

高三数学第二轮复习 不等式选讲

第2讲 不等式选讲 [考情考向分析] 本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点一 含绝对值不等式的解法 含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a . (2)|f (x )|0)?-a 1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集; (2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=????? -2x +6,x ≤2,2,2

不等式-高考数学解题方法归纳总结专题训练

专题20 不等式训练 【训练目标】 1、掌握不等式的性质,能利用不等式的性质,特殊值法等判断不等式的正误; 2、熟练的解一元二次不等式,分式不等式,绝对值不等式,对数不等式,指数不等式,含根式的不等式; 3、掌握分类讨论的思想解含参数的不等式; 4、掌握恒成立问题,存在性问题; 5、掌握利用基本不等式求最值的方法; 6、掌握线性规划解决最优化问题; 7、掌握利用线性规划,基本不等式解决实际问题。 【温馨小提示】 在高考中,不等式无处不在,不论是不等式解法还是线性规划,基本不等式,一般单独出现的是线性规划或基本不等式,而不等式的解法则与集合、函数、数列相结合。 【名校试题荟萃】 1、若实数且,则下列不等式恒成立的是() A. B. C. D. 【答案】C 【解析】根据函数的图象与不等式的性质可知:当时,为正确选项,故选C. 2、已知,,则() A. B. C. D. 【答案】A 3、,设,则下列判断中正确的是() A. B. C. D. 【答案】B 【解析】令,则,故选B

4、若,且,则下列不等式成立的是() A. B. C. D. 【答案】B 【解析】 . 5、袋子里有大小、形状相同的红球个,黑球个().从中任取个球是红球的概率记为.若将红球、黑球个数各增加个,此时从中任取个球是红球的概率记为;若将红球、黑球个数各减少个,此时从中任取个球是红球的概率记为,则() A. B. C. D. 【答案】D 6、若,,则下列不等式错误的是() A. B. C. D. 【答案】C 【解析】 因为,,所以,,故A、B正确;由已知得, ,所以,所以C错误;由,得,,所以 成立,所以D正确.故选C.

2020年高考理科数学一轮总复习:基本不等式

2020年高考理科数学一轮总复习 基本不等式 [基础梳理] 1.重要不等式 a 2+ b 2≥2ab (a ,b ∈R )(当且仅当a =b 时等号成立). 2.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件是a >0,b >0. (2)等号成立的条件是:当且仅当a =b 时取等号. (3)其中a +b 2称为正数a ,b 的算术平均数, ab 称为正数a ,b 的几何平均数. 3.利用基本不等式求最值问题 已知x >0,y >0,则: (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2 p (简记:积定和最小). (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 2 4(简记:和定积最大) 1.基本不等式的两种常用变形形式 (1)ab ≤? ????a +b 22 (a ,b ∈R ,当且仅当a =b 时取等号). (2)a +b ≥2 ab (a >0,b >0,当且仅当a =b 时取等号).

2.几个重要的结论 (1)a 2+b 22≥? ?? ??a +b 22 . (2)b a +a b ≥2(ab >0). (3)21a +1b ≤ab ≤a +b 2≤ a 2+b 2 2(a >0,b >0). [四基自测] 1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案:C 2.若x <0,则x +1 x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2 答案:D 3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________. 答案:25 m 2 4.已知x >1,则x +4 x -1 的最小值为________. 答案:5 5.若1a +1 b =1(a >0,b >0),则a +b 的最小值为________. 答案:4

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

2020年全国高考数学第二轮复习 选修4—5 不等式选讲 理

选修4—5 不等式选讲 真题试做 1.(2020·天津高考,文9)集合A ={ x ∈R |}|x -2|≤5中的最小整数为__________. 2.(2020·上海高考,文2)若集合A ={x |2x -1>0},B ={x ||x |<1},则A ∩B =__________. 3.(2020·江西高考,理15(2))在实数范围内,不等式|2x -1|+|2x +1|≤6的解集为__________. 4.(2020·课标全国高考,理24)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集; (2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 5.(2020·辽宁高考,文24)已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值; (2)若??? ??? f (x )-2f ? ????x 2≤k 恒成立,求k 的取值范围. 考向分析 该部分主要有三个考点,一是带有绝对值的不等式的求解;二是与绝对值不等式有关的参数范围问题;三是不等式的证明与运用.对于带有绝对值不等式,主要考查形如|x |<a 或|x |>a 及|x -a |±|x -b |<c 或|x -a |±|x -b |>c 的不等式的解法,考查绝对值的几何意义及零点分区间去绝对值符号后转化为不等式组的方法.试题多以填空题或解答题的形式出现.对于与绝对值不等式有关的参数范围问题,此类问题常与绝对值不等式的解法、函数的值域等问题结合,试题以解答题为主.对于不等式的证明问题,此类问题涉及的知识点多,综合性强,方法灵活,主要考查比较法、综合法等在证明不等式中的应用,试题多以解答题的形式出现. 预测在今后高考中,对该部分的考查如果是带有绝对值的不等式,往往在解不等式的同时考查参数的取值范围、函数与方程思想等;如果是不等式的证明与运用,往往就是平均值不等式.试题难度中等. 热点例析 热点一 绝对值不等式的解法 【例1】不等式|x +3|-|x -2|≥3的解集为__________. 规律方法 1.绝对值不等式的解法 (1)|x |<a ?-a <x <a ;|x |>a ?x >a 或x <-a ; (2)|ax +b |≤c ?-c ≤ax +b ≤c ; |ax +b |≥c ?ax +b ≤-c 或ax +b ≥c ; (3)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 的解法有三种:一是根据绝对值的意义结合数轴直观求解;二是用零点分区间去绝对值,转化为三个不等式组求解;三是构造函数利用函数图象求解. 2.绝对值三角不等式 (1)|a |-|b |≤||a |-|b ||≤|a ±b |≤|a |+|b |; (2)|a -c |≤|a -b |+|b -c |. 变式训练1 不等式|2x -1|<3的解集为__________. 热点二 与绝对值不等式有关的参数范围问题 【例2】不等式|2x +1|+|x +a |+|3x -3|<5的解集非空,则a 的取值范围为__________. 规律方法 解决含参数的绝对值不等式问题,往往有以下两种方法: (1)对参数分类讨论,将其转化为分类函数来处理;

相关文档
相关文档 最新文档