文档库 最新最全的文档下载
当前位置:文档库 › 实验6 HF高频RFID通信协议实验-V20170317

实验6 HF高频RFID通信协议实验-V20170317

实验6 HF高频RFID通信协议实验-V20170317

1.实验目的

掌握高频读卡器的通讯协议;

掌握高频模块工作原理;

掌握本平台高频模块的操作过程;

2.实验设备

硬件:RFID实验箱套件,电脑等;

软件:Keil,串口调试助手;

STC_ISP软件:配套光盘\第三方应用软件\STC_ISP

异或计算小软件:配套光盘\第三方应用软件\异或计算小软件

源码路径:配套光盘\源代码\RFID基础实验\实验 6 HF高频RFID通信协议实验-V20170317

Hex路径:配套光盘\源代码\RFID基础实验\实验6 HF高频RFID通信协议实验-V20170317\out

3.实验原理

3.1 高频RFID系统

典型的高频HF(13.56MHz)RFID系统包括阅读器(Reader)和电子标签(Tag,也称应答器Responder)。电子标签通常选用非接触式IC卡,又称智能卡,可读写,容量大,有加密功能,数据记录可靠。IC卡相比ID卡而言,使用更方便,目前已经大量使用在校园一卡通系统、消费系统、考勤系统、公交消费系统等。目前市场上使用最多的是PHILIPS的Mifare系列IC卡。读写器(也称为“阅读器”)包含有高频模块(发送器和接收器)、控制单元以及与卡连接的耦合元件。由高频模块和耦合元件发送电磁场,以提供非接触式IC 卡所需要的工作能量以及发送数据给卡,同时接收来自卡的数据。此外,大多数非接触式IC卡读写器都配有上传接口,以便将所获取的数据上传给另外的系统(个人计算机、机器人控制装置等)。IC卡由主控芯片ASIC(专用集成电路)和天线组成,标签的天线只由线圈组成,很适合封状到卡片中,常见IC卡内部结构如图3.1所示:

图3.1 IC卡内部结构图

较常见的高频RFID应用系统如图3.2所示,IC卡通过电感耦合的方式从读卡器处获得能量。

图3.2 常见高频RFID应用系统组成

下面以典型的IC卡MIARE 1为例,说明电子标签获得能量的整个过程。读卡器向IC 卡发送一组固定频率的电磁波,标签内有一个LC串联谐振电路(如图3.3),其谐振频率与读写器发出的频率相同,这样当标签进入读写器范围时便产生电磁共振,从而使电容内有了电荷,在电容的另一端接有一个单向通的电子泵,将电容内的电荷送到另一个电容内储存,当储存积累的电荷达到2V时,此电源可作为其他电路提供工作电压,将标签内数据发射出去或接收读写器的数据。

图3.3 IC卡功能结构图

3.2 非接触式IC卡

目前市面上有多种类型的非接触式IC卡,它们按照遵从的不同协议大体可以分为三类,各类IC卡特点及工作特性如图3.4所示。PHILIPS的Mifare 1卡(简称M1卡)属于PICC卡,该类卡的读写器可以称为PCD。

图3.4 IC卡分类

高频RFID系统选用PICC类IC卡作为其电子标签,这里以Philips公司典型的PICC卡Mifare 1为例,详细讲解IC卡内部结构。Philips是世界上最早研制非接触式IC卡的公司,其Mifare技术已经被制定为IS0 14443 TYPE A国际标准。本平台选用用Mifare1(S50)卡作为电子标签,其内部原理如图3.5所示:

图3.5 M1卡内部原理

射频接口部分主要包括有波形转换模块。它可将读写器发出的13.56MHZ的无线电调制频率接收,一方面送调制/解调模块,另一方面进行波形转换,将正弦波转换为方波,然后对其整流滤波,由电压调节模块对电压进行进一步的处理,包括稳压等,最终输出供给卡片上的各电路。数字控制单元主要针对接收到的数据进行相关处理,包括选卡、防冲突等。

Mifare1卡片采取EEPROM作为存储介质,其内部可以分为16个扇区,每个扇区由4块组成,(我们也将16个扇区的64个块按绝对地址编号为0-63,存贮结构如下图3.6所示:

图3.6 MF1卡片存储结构

第0扇区的块0(即绝对地址0 块),它用于存放厂商代码,已经固化,不可更改。其中:第0~3 个字节为卡片的序列号;第4个字节为序列号的校验码;第5个字节为卡片内容“size”字节,第6~7个字节为卡片的类型字节。

每个扇区的块0、块1、块 2 为数据块,可用于存贮数据。数据块可作两种应用:用作一般的数据保存,可以进行读、写操作。例如在食堂消费时采用输入饭菜金额的方

式扣款。用做数据值,可以进行初始化加值、减值、读值操作。例如在食堂消费时对于定额套餐采用输入餐号的方式加以扣款,又如公交/地铁等行业的检票/收费系统中的扣费。每个扇区的块 3 为控制块,包括了密码 A 、存取控制、密码 B 。具体结构如下,

A0 A1 A2 A3 A4 A 5 FF 07 80 69 B0 B1 B2 B3 B4 B5

其中 A0—A5 代表密码 A 的六个字节;B0—B5 代表密码 B 的六个字节;FF 07 80 69 为四字节存取控制字的默认值,FF 为低字节。每个扇区的密码和存取控制都是独立的,可以根据实际需要设定各自的密码及存取控制。存取控制为 4 个字节,共 32 位,扇区中的每个块(包括数据块和的存取条件是由密码和存取控制共同决定的,在存取控制中每个块都有相应的三个控制位,定义如下:

块 0: C10 C20 C30

块 1: C11 C21 C31

块 2: C12 C22 C32

块 3: C13 C23 C33

三个控制位以正和反两种形式存在于存取控制字节中,决定了该块的访问权限(如进行减值操作必须验证KEY A ,进行加值操作必须验证KEY B ,等等)。三个控制位在存取控制字节中的位置,以块0为例,如下所示:

Bit 7 6 5 4 3 2 1 0

字节6

字节7

字节8

字节9

3.3 ISO 14443协议标准简介

ISO 14443协议是超短距离智慧卡标准,该标准定义出读取距离7-15公分的短距离非接触智能卡的功能及运作标准,ISO 14443 为TYPE A 和TYPE B 两种。TYPE A 产品具有更高的市场占有率,如Philips 公司的MIFARE 系列占有了当前约80%的市场,且在较为恶劣的工作环境下有很高的优势。而TYPE B 在安全性、高速率和适应性方面有很好的前景,特别适合于CPU 卡。这里重点介绍MIFARE1符合ISO 14443 TYPE A 标准。

1) ISO 14443 TYPE A 标准中规定的基本空中接口基本标准

PCD 到PICC (数据传输)调制为:ASK ,调制指数100%

PCD 到PICC (数据传输)位编码为:改进的Miller 编码

PICC 到PCD (数据传输)调制为:频率为847kHz 的副载波负载调制

PICC 到PCD 位编码为:曼彻斯特编码

数据传输速率为106kbps

射频工作区的载波频率为13.56MHz

最小未调制工作场的值是 1.5A/mrms (以Hmin 表示),最大未调制工作场的值是

7.5A/mrms (以Hmax 表示),邻近卡应持续工作在Hmin 和Hmax 之间

C20_ b C10_ b

C10 C30_ b C30 C20

PICC的能量是通过发送频率为13.56MHz的阅读器的交变磁场来提供。由阅读器产生的磁场必须在1.5A/m-7.5A/m之间。

2) ISO 14443 TYPE A标准中规定的PICC标签状态集,读卡器对进入其工作范围的多张IC卡的有效命令有:

REQA:TYPE A请求命令

WAKE UP:唤醒命令

ANTICOLLISION:防冲突命令

SELECT:选择命令

HALT:停止命令

图3.7为PICC(IC卡)接收到PCD(读卡器)发送命令后,可能引起状态的转换图。传输错误的命令(不符合ISO 14443 TYPE A协议的命令)不包括在内。

图3.7 PICC状态转化图

掉电状态(POWER OFF):在没有提供足够的载波能量的情况下,PICC不能对PCD发射的命令做出应答,也不能向PCD发送反射波;当PICC进入耦合场后,立即复位,进入闲置状态。

闲置状态(IDLE STA TE):当PICC进入闲置状态时,标签已经上电,能够解调PCD发射的信号;当PICC接收到PCD发送的有效的REQA(对A型卡请求的应答)命令后,PICC 将进入就绪状态。

就绪状态(READY STATE):在就绪状态下,执行位帧防碰撞算法或其他可行的防碰撞算法;当PICC标签处于就绪状态时,采用防冲突方法,用UID(惟一标识符)从多张PICC 标签中选择出一张PICC;然后PCD发送含有UID的SEL命令,当PICC接收到有效的SEL 命令时,PICC就进入激活状态(ACTIVE STATE)。

激活状态(ACTIVE STATE ):在激活状态下,PICC 应该完成本次应用所要求的所有操作(例如,读写PICC 内部存储器);当处于激活状态的PICC 接收到有效的HALT 命令后,PICC 就立即进入停止状态。

停止状态(HALT STA TE ):PICC 完成本次应用所有操作后,应进入停止状态;当处于停止状态的PICC 接收到有效的W AKE_UP 命令时,PICC 立即进入就绪状态。注意:当PICC 处于停止状态下时,在重新进入就绪状态和激活状态后, PICC 接受到相应命令,不在是进入闲置状态,而是进入停止状态。

3.4 高频RFID 系统读写器

3.4.1 通信流程

高频RFID 系统读写器与IC 卡通信过程如图3.8所示,主要步骤有:

复位应答(Answer to request ):M1射频卡的通讯协议和通讯波特率是定义好的,当有卡片进入读写器的操作范围时,读写器以特定的协议与它通讯,从而确定该卡是否为M1射频卡,即验证卡片的卡型。

防冲突机制(Anticollision Loop ):当有多张卡进入读写器操作范围时,防冲突机制会从其中选择一张进行操作,未选中的则处于空闲模式等待下一次选卡,该过程会返回被选卡的序列号。具体防冲突设计细节可参考相关协议手册。

选择卡片(Select Tag )选择被选中的卡的序列号,并同时返回卡的容量代码。

三次互相确认(3 Pass Authentication ):选定要处理的卡片之后,读写器就确定要访问的扇区号,并对该扇区密码进行密码校验,在三次相互认证之后就可以通过加密流进行通讯(在选择另一扇区时,则必须进行另一扇区密码校验)。

对数据块的操作:包括读、写、加、减、存储、传输、终止。 卡呼叫(休眠卡/全部)

防冲突循环,取得卡号

选卡(激活)

三轮认证(对指定扇区)

读块切换扇区不切换扇区

写块加值减值恢复休眠

转存

图3.8 读卡器与IC 通讯流程

3.4.2 防冲突

当读写器读写范围内部有多张PICC 标签时,读写器利用各卡的UID(惟一标识符)从多张标签中选择出一张PICC 标签。不同IC 卡其内部的UID 大小不同,通常UID 由4、7或10个UID 字节组成。PICC 将这些字节按照其字节数封装在几个串联级别中发送给读卡器,每个串联级别内包含5个数据字节,其中包括3个或4个UID 字节,如图3.9所示,从图可知PICC 最多会发送三个串联级别(串联级别数又可以称为UID 大小)。

图3.9 UID结构

图中CT为级联信号,表示在下一级中还有UID;BCC为本级检验码。由图可知,PICC 最多应处理3个串联级别,以得到所有UID字节。阅读器防冲突过程如下:1)首先由PCD发送REQA命令或WAKE UP命令,使卡进入READY状态(参见标签状态转换图)。这两个命令的差别是:REQA命令使卡从IDLE状态进入READY状态,而W AKE UP命令使卡从HALT状态进入READY状态。

2)PICC接收到命令后,所有处在PCD电磁场范围内的PICC同步发出A TQA应答,说明本卡UID的大小(1、2或3),之后进入READY状态,执行防冲突循环操作。

3)PCD通过发送ANTICOLLISION和SELECT命令执行防冲突循环操作

3.5 读写芯片CLRC632简介

CLRC632是NXP生产的高集成13.56MHZ射频卡芯片。支持ISO/IEC 14443A、ISO/IEC 14443B和ISO/IEC 15693标准,支持最大10cm的工作距离。采用8位并行接口或SPI总线与微控制器进行通信。

3.6 PC与高频节点通讯协议

3.6.1下传数据包格式(上位机发给下位机)

?命令头:2字节,固定AA BB

?数据长度:2字节,低位在前,高位在后,数据长度后面所有的字节数个数(不含数据长度本身的2个字节数)

?设备号:2个字节,未使用,00 00

?命令码:2字节,低位在前,高位在后

?数据包:字节数不定,由命令吗决定

?数据校验:1字节,命令码(含)后面所有的字节异或运算

即DCS = COMH xor COML xor PD0 xor PD1 xor …xor PDn

例:设置波特率指令AA BB 06 00 00 00 01 01 01 01,其中AA BB是命令头,06 00是数据长度,00 00是设备码,01 01是设置波特率命令,01是将比特率设为9600,01是数据

校验。

3.6.2 上传数据包格式(下位机发给上位机)

当上位机下传指令到下位机,下位机执行并返回应答数据。如下位机无数据返回,说明上位机发送的指令格式不对,需修改重新发送。

下位机接收到指令并执行后返回上位机的数据格式和上位机下传的数据格式是一样的。其中命令码是下传的命令码,PD0值则反应命令执行情况。

PD0返回的是00表示下位机准确执行了上位机发送的命令,返回的是其他值则表示执行错误,见下图:

注意:代码中定义的错误代码是十进制数,上传到上位机上是十六进制数。

例:下传寻卡指令:AA BB 06 00 00 00 01 02 52 51

寻卡成功上传:AA BB 08 00 00 00 01 02 00 04 00 07

寻卡失败上传:AA BB 06 00 00 00 01 02 14 14

上传、下传指令中的01 02表示寻卡命令,下传命令码后面的52表示寻感应区的所有的14443A卡。寻卡成功时命令码后面的00表示寻卡成功,04 00是Mifare S50卡,表示在感应区寻找到Mifare S50卡。寻卡失败时命令码后面的14是寻卡失败代码,换算成十进制数则是20,对应的错误代码是FAULT20,表示寻卡失败。

3.6.3 CLRC632读写卡操作流程

设置波特率→关闭天线→设置通讯协议→打开天线→寻卡→防碰撞:读UID →选择卡→验证密钥→读卡→写卡

3.6.4 CLRC632通讯指令(以读写14443A卡为例)

上位机发送指令码到下位机,下位机对命名进行判断,执行相应的命令。判断程序在main.c中,见下图:

3.6.5 常用指令解析

3.6.5.1、设置波特率

下传:AA BB 06 00 00 00 01 01 01 01

上传:AA BB 06 00 00 00 01 01 00 00

说明:波特率设置为9600,返回正确

3.6.5.2、关闭天线

下传:AA BB 06 00 00 00 0C 01 00 0D

上传:AA BB 06 00 00 00 0C 01 00 0D

说明:天线配置命令,执行关闭天线,返回正确

3.6.5.3、设置通讯协议

下传:AA BB 06 00 00 00 08 01 41 48

上传:AA BB 06 00 00 00 08 01 00 09

说明:下传指令中41表示配置成14443A协议,详见源码中SIRC632.c中函数PcdConfigISOType( ),返回正确

3.6.5.4、打开天线

下传:AA BB 06 00 00 00 0C 01 01 0C

上传:AA BB 06 00 00 00 0C 01 00 0D

说明:天线配置命令,执行打开天线,返回正确

3.6.5.5、寻卡

下传:AA BB 06 00 00 00 01 02 52 51

上传:AA BB 08 00 00 00 01 02 00 04 00 07

说明:寻卡,52表示寻感应区的所有卡,返回正确,04 00表示寻找到Mifare S50卡

3.6.5.6、防碰撞:读UID

下传:AA BB 06 00 00 00 02 02 04 04

上传:AA BB 0A 00 00 00 02 02 00 4A FA 72 04 C6

说明:防碰撞,返回正确,读取到UID : 4A FA 72 04

3.6.5.7、选卡

下传:AA BB 09 00 00 00 03 02 4A FA 72 04 C7

注意:4A FA 72 04是3.6.5.6小节读到的UID,实验中请根据读到的UID填写;

上传:AA BB 07 00 00 00 03 02 00 08 09

说明:防碰撞,4A FA 72 04上防碰撞读取到的UID,C7是校验位(校验位的计算请查

看本文档的3.6.1小节)。

3.6.5.8、验证密钥

下传:AA BB 0D 00 00 00 07 02 60 00 FF FF FF FF FF FF 65

上传:AA BB 06 00 00 00 07 02 00 05

说明:三重验证,60表示验证A密钥(如果是61即是验证B密钥),00表示绝对地址块,12个F是默认的密钥,返回正确。

3.6.5.9、读卡

下传:AA BB 06 00 00 00 08 02 00 0A

上传:AA BB 16 00 00 00 08 02 00 4A FA 72 04 C6 08 04 00 62 63 64 65 66 67 68 69 06说明:读块地址00的数据,返回4A FA 72 04 C6 08 04 00 62 63 64 65 66 67 68 69为块0的内容

3.6.5.10、写卡

下传:AA BB 16 00 00 00 09 02 02 20 00 00 00 00 00 00 20 00 00 00 00 00 00 00 02 0B 上传:AA BB 06 00 00 00 09 02 00 0B

说明:将20 00 00 00 00 00 00 20 00 00 00 00 00 00 00 02写入块地址02,返回正确

注意:Mifare卡每个扇区的密钥相互独立,在不同扇区读写需重新验证密钥,在同一扇区不同块读写则只需验证一次密钥。

4.实验步骤

第一步:打开配套光盘\源代码\RFID基础实验\实验6 HF高频RFID通信协议实验-V20170320下面的“RC632开发.uvproj”,如图4.1所示:

图4.1 打开工程

点击左上角的,如果为0错误的话,那么我们的代码编译正常,如图4.2所示:

图4.2 编译无错误

第二步:使用串口线连接PC和3号节点高频读卡器的DB9接头。S1开关拨打到左边,STC串口与DB9连接

第三步:根据配套光盘\第三方应用软件\STC_ISP\STC-ISP软件使用说明书,使用STC-ISP软件将配套光盘\源代码\RFID基础实验\实验6 HF高频RFID通信协议实验-V20170320\out下的SL601F.hex文件通过STC_ISP串口下载软件下载到3号高频节点的STC单片机中。

第四步:继续使用STC-ISP软件,选择“串口助手功能”,设置波特率为9600,无校验位,1位停止位,HEX模式,打开串口。如图4.3所示:

图4.3 串口配置

第五步:在串口助手右侧的“多字符串发送”中,填入3.6.5.1到3.6.5.10步骤中的指令,在指令后面的方框内打√,按3.6.5.1到3.6.5.10的顺序,发送指令(点击字符串前面的数字发送指令),实现+

IC卡扇区内容的读写,如图4.4所示:

图4.4 用STC的串口助手发送指令

RFID实训报告

RFID与传感器技术实训 包头职业技术学院 系别:计算机与信息工程系专业:物联网应用技术 班级:XXX 姓名:XXX

2017年1月3日

项目一,,,,,,,,,,, 丿、 1项目二,,,,,,,,,,, 4 项目三,,,,,,,,,,, 丿、1__16 项目四,,,,,,,,,,, 7 项目五,,,,,,,,,,, 丿、* '10 项目六,,,,,,,,,,, 丿、1__1 / 13 项目七,,,,,,,,,,, 14项目八,,,,,,,,,,, 14

项目一:日常生活中的物联网技术应用分析 及报告撰写 (一)RFID 概述 RFID技术是众多自动识别技术中的一种,也是当今第三次信息浪潮,即物联网关键技术之一,也有人称其是一项具有革命性的技术。 RFID是一种非非接触式的自动识别技术,它利用射频信号及其空间耦合的传输特性,实现对静止或移动物品的自动识别。RFID常称为感应式电子芯片或 接近卡、感应卡、非接触卡、电子标签、电子条码等。一个简单的RFID系统由 读写器、应答器或电子标签组成,其原理是由读写器发射一特定频率的无线电波能量给应答器,用以驱动应答器电路,从而读取应答器内部的ID码。应答器的 形式包括卡、纽扣和电子标签等多种类型,其中,电子标签具有免用电池、免接触、不怕脏污,且芯片密码为世界唯一,无法复制,安全性高、寿命长等特点。因此,RFID标签可以贴在或安装在不同的物品上,然后有安装在不同地理位置的读写器读取存储于标签中的数据,从而实现对物品的自动识别。RFID的应用 非产广泛,目前典型的应用包括动物芯片、汽车芯片防盗器、门禁管制、停车场管制、生产线自动化、物料管理和校园一^通等。 (二)RFID在日常生活中的物联网技术应用 RFID应用列表

RFID实验报告.doc

实验报告 课程名称RFID 射频识别实验学生学院自动化学院 专业班级15级物联网4班学号 学生姓名 指导教师高明琴

2017年11月12日 实验一125KHz RFI D 实验 一、实验目的 1、掌握 125kHz 只读卡、 125kHz 读写卡的基本原理 2、熟悉和学习125kHz 只读卡协议、125kHz 读写卡协议 二、实验内容与要求 学会使用综合实验平台识别125kHz 只读卡卡号,并对125kHz 读写卡进行数据读写操作,观察只读卡和读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 1、注意事项 切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID读写器串口波特率为9600bps 2、环境部署 ⑴准备 125K低频RFID模块,参考章节设置跳线为模式 2 ,将模块的电源拨码开关设

置为 OFF,参考章节通过交叉串口线将模块与电脑的串口相连,给模块接5V 电源; ⑵将模块的电源拨码开关设置为ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行 RFID 实训系统 .exe软件,选项卡选择125K模块; 3、打开串口操作 设置串口号为COMx,设置波特率为9600 ,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签ID并显示在ListView控件中,16进制数据listview控件显示的是16进制标签ID , 10 进制数据 listview控件显示的是10进制标签ID ,实验结果如下图; 思考题 1多张卡在一起时,能否正确识别卡号请说明原因 答:多张卡在一起时,无法正确识别卡号,因为125kHz 的读卡器没有采用防冲撞算法2变卡和阅读器的相对位置和距离,观察读卡结果并解释;在卡和阅读器之间放置不同的障碍物,观察读卡结果并解释。 答 : 当卡和阅读器的距离超过 5cm后,读卡结果并不理想,几乎读不到数据。 属薄片(如几张纸、塑料板)时,读卡结果正常;而放置金属障碍物时,读卡结果就不正常 了 五、小结 通过本实验,初步熟悉了 RFID 寻卡的步骤,还尝试了多卡一起时的系统响应,结果发现不能多 卡一起识别。识别距离不能太远,否则无法识别。

RFID设备实验报告

RFID实验记录 一、实验目得: 随着射频识别技术(Radio FrequencyIdentification, RFID)得不断发展与传统得道路信息采集方法得效率低成本高,所以此次实验得目得就是将RFID技术运用到改善道路信息收集上、在设计RFID道路系统中,将携带有道路信息得RFID标签铺设在道路或路边单元上、配备有RFID读写器得车辆可以从标签中获取事先存储得道路信息(如,路面信息、沿线设施与沿线环境等),从而快速地掌握道路信息。RFID电子标签主要有两种,无源电子标签自身不带有电源, 其特点就是重量轻、体积小、寿命长、成本低,但就是工作距离短;有源电子标签通过自身带有得电池供电,特点就是识别距离长,但价格较高且寿命短。为了达到道路信息采集得高效性、准确性与经济性。 2016年12月9日在茨坝镇得x003水团段分别对选购得有源RFID设备与无源RFID 设备在车速、识别距离、有无遮挡物得不同变量下进行实验对比分析,最后,通过实验分析选出最合适得运用RFID技术改善道路信息采集方法得RFID设备。测试得有源RFID设备为深圳航天华拓科技有限公司得SAAT-F527全向性读写器与SAAT-T505主动式电子标签,无源得RFID设备为深圳深圳捷通科技有限公司得JT-9292读写器与JT-15532抗金属标签,下面就是本次实验得记录: 二、实验设备参数 1、有源RFID设备参数 SAAT—F527全向读写器 该型号就是工作在2.45GHz频段得有源RFID读写器,该 产品采用外置天线安装方式,可灵活配置各类全向、定向天线,具 有覆盖范围广、识别率高、扩展性强等特点,读取距离在0到2 00米,范围可调、广泛应用于医院、学校、工矿灯单位得人员区 域定位等集成应用领域。 技术指标: 性能指标 工作频率2.4-2.48GHz 输出功率+15dBm (软件可调) 接收灵敏度-95 dBm 天线类型全向天线 通信接口RS—232接口,10M/100M自适应以太网接口

RFID实验心得体会报告

RFID实验心得体会报告 一、实验目的 了解智能识别技术概念、特点、原理和优势。 掌握条码技术和RFID技术的各自优缺点、技术特征和应用优势。了解条码自动识别系统和RFID自动识别系统的组成和工作原理。了 解指纹、视频、语音识别系统的组成、工作原理和应用特点。 二、实验原理 1、条码技术实验 (1)一维条码识别原理 由于不同颜色的物体,其反射的可见光的波长不同,白色能反 射各种波长的可见光,黑色吸收各种波长的可见光,所以当条形码扫描光源发出的光经凸透镜1后,照射到黑白相间的条形码上时,反射光经凸透镜2聚焦后,照射到光电转换器上,接收到与白条和黑条相应的强弱不同的反射光信号,并转换成相应的电信号输出到放大整电路。在放大电路后需加一整形电路,把模拟信号转换成数字电信号,以便计算机系统能准确判读。整形电路的脉冲数字信号经译码器译成数字、字符信息。 (2)二维条码识别原理 矩阵式二维码(又称棋盘式二维码)是在一个矩形空间通过黑、白像素在矩阵中的不同分布进行编码。在矩阵元素位置上,出现方点、圆点或其他形状点表示二进制“1”,不出现点表示二进制的“0”,点的排列组合确定了矩阵式二维码所代表的意义。

行排式二维码(又称:堆积式二维码或层排式二维码),其编码原理是建立在一维码基础之上,按需要堆积成二行或多行。 两者的识别原理,通过图像的采集设备,得到含有条码的图像,此后经过条码定位、分割和解码三步骤实现条码的识别。 2、RFID技术实验 RFID系统的基本工作原理是:读写器通过发射天线发送一定频率的射频信号,当装有电子标签的物体进入发射天线工作区域时,受电磁场激励产生感应电流,电子标签获得能量被激活并收到读写器的查询信号后,将自身编码等信息通过改变电子标签天线的反射面积,将信息发送出去;读写器接收到从电子标签反射回的微波合成信号,进行解调和解码,即可将电子标签储存的识别代码等信息读取出来,送到RFID信息处理机进行相关处理。本实验中RFID系统是由RFID 信息处理机(带相关软件的PC机)、无源超高频电子标签卡、超高频读写器,RFID天线一起组成。其工作原理是:搭建好RFID识别系统后,读写器通过发射天线发送一定频率的射频信号,无源高频电子标签卡进入发射天线工作区域,受激励电磁场产生感应电流,电子标签卡获得能量被激活并收到读写器的查询信号,然后将储存的信息通过改变天线的反射面积,将信息发送出去;读写器接收到从电子标签卡反射回来的微波合成信号,进行解调和解码,然后将电子标签储存的识别代码等信息读取出来,送给RFID信息处理机进行相关处理。 3、

RFID通讯技术实验报告

RFID通讯技术试验 专业: 物流工程 班级: 物流1201 学生: 学号: 指导教师:

一.前言 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之内都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之内,也可以嵌入被追踪物体之内。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之内。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二.实验目的 1. 了解RFID相关知识,了解RFID模块读写IC卡数据的原理与方法(电子钱包试验); 2. 模拟企业生产线上的物料跟踪情况,掌握RFID的应用(企业物流采集跟踪系统演示)。 三.实验原理 1. 利用RFID模块完成自动识别、读取IC卡信息,实现RFID电子钱包的

功能,给IC卡充值、扣款(电子钱包试验); 2.利用4个RFID模块代替4个工位,并与软件系统绑定(添加,删除),由IC卡模拟物料的移动,并对物料在生产线上所经过的工位的记录进行查询,而且可以对物料的当前工位定位。 四.实验设备 《仓库状态数据检测开发系统》试验箱、IC卡、、锂电池、ZigBee通讯模块、RFID阅读器,ID卡、条码扫描器。 五.实验过程 电子钱包试验 (1)先用电源线将试验箱连上电源,打开电源开关,然后打开Contex-A8电源开关,如错误!未找到引用源。所示。 (a)(b) 图 1 连上电源 (2)将RFID模块下方的开关拨至ON位置,给RFID模块上电,LED5灯会红色常亮。 (3)将RFID模块下方的4位拨码开关1234 在编号1、2、3中选择一个拨到上侧,同时保证该选择的编号在ZigBee、IPV6、 Bluetooth下方的拨码开关中没有拨到拨到上侧,否则会起冲突(例 如,RFID模块下方的拨码开关选择1拨到上侧,那么ZigBee、IPV6、

RFID实验报告66232

实验报告 课程名称射频识别实验 学生学院自动化学院 专业班级 14级物联网2班 学号 91 学生姓名卢阳 指导教师高明琴 2016 年 11 月 20 日

实验一125K H z R F I D实验 一、实验目的 1、掌握125kHz只读卡、125kHz读写卡的基本原理 2、熟悉和学习125kHz只读卡协议、125kHz读写卡协议 二、实验内容与要求 学会使用综合实验平台识别125kHz只读卡卡号,并对125kHz读写卡进行数据读写操作,观察只读卡和读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 2、注意事项 切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID 读写器串口波特率为 9600bps 2、环境部署 ⑴准备 125K 低频 RFID 模块,参考章节设置跳线为模式 2,将模块的电源拨码开关设 置为 OFF,参考章节通过交叉串口线将模块与电脑的串口相连,给模块接 5V 电源; ⑵将模块的电源拨码开关设置为 ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行 RFID 实训系统.exe 软件,选项卡选择 125K 模块; 3、打开串口操作 设置串口号为 COMx,设置波特率为 9600,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将 125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签 ID 并显示在 ListView 控件中,16 进制数据 listview 控件显示的是 16 进制标签 ID,10 进制数据 listview 控件显示的是 10 进制标签 ID,实验结果如下图;

RFID实验报告

第一次实验 10月17日 1. 125khz硬件基本实验 1.1 125khz 时钟信号测量实验 一、实验目的 熟悉和学习iso/iec 18000-2,iso18000标准规范的从电子标签返回的时钟信号。 二、实验内容 通过示波器观测从电子标签返回的时钟clk信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用ch1 探头,地接到j22测试架,ch1探针接到j23测试架设置示波器:触发源选择ch,其余设置可以参照图5-2-12。 2、操作 打开控制软件,系统默认实验模式即为lf 125khz模式,打开串口,启动只读自动识别标签。 3、观测信号,如图5-3-1所示: 图5-3-1 解调电子标签返回的时钟信号图 1.2 125khz mod信号测量实验 一、实验目的 熟悉和学习iso/iec 18000-2,iso18000标准规范的对射频进行调制的信号。 二、实验内容 通过示波器观测微处理器对射频芯片进行调制的mod信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用ch1 探头、ch2探头,地都接到j22测试架,ch1探针接到j23测试架,ch2接到j24测试架。 设置示波器:触发源选择ch,其余设置可以参照图5-3-2。 2、操作 打开控制软件,系统默认实验模式即为lf 125khz模式,打开串口,选择读写卡操作的读数据。 3、观测信号,如图5-3-2所示: 图5-3-2 射频调制信号图 1.3 125khz 调制解调信号测量实验 一、实验目的 熟悉和学习iso/iec 18000-2,iso18000标准规范的对射频进行调制和解调的信号。 二、实验内容 通过示波器观测射频调制的mod信号和解调的demod信号。

RFID通讯技术实验报告

· RFID通讯技术试验 专业: 物流工程 班级: 物流1201 学生: 学号: 指导教师:

一.前言 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之,也可以嵌入被追踪物体之。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二.实验目的 1. 了解RFID相关知识,了解RFID模块读写IC卡数据的原理与方法(电子钱包试验);

2. 模拟企业生产线上的物料跟踪情况,掌握RFID的应用(企业物流采集跟踪系统演示)。 三.实验原理 1. 利用RFID模块完成自动识别、读取IC卡信息,实现RFID电子钱包的功能,给IC卡充值、扣款(电子钱包试验); 2.利用4个RFID模块代替4个工位,并与软件系统绑定(添加,删除),由IC卡模拟物料的移动,并对物料在生产线上所经过的工位的记录进行查询,而且可以对物料的当前工位定位。 四.实验设备 《仓库状态数据检测开发系统》试验箱、IC卡、、锂电池、ZigBee通讯模块、RFID阅读器,ID卡、条码扫描器。 五.实验过程 5.1电子钱包试验 (1)先用电源线将试验箱连上电源,打开电源开关,然后打开Contex-A8电源开关,如图1所示。

RFID实验报告

实验报告 课程名称 RFID射频识别实验 学生学院自动化学院 专业班级 15级物联网4班 学号 学生姓名 指导教师高明琴 2017年 11 月 12 日 实验一125K H z R F I D实验 一、实验目的 1、掌握125kHz只读卡、125kHz读写卡的基本原理 2、熟悉和学习125kHz只读卡协议、125kHz读写卡协议 二、实验内容与要求 学会使用综合实验平台识别125kHz只读卡卡号,并对125kHz读写卡进行数据读写操作,观察只读卡和读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 1、注意事项

切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID 读写器串口波特率为9600bps 2、环境部署 ⑴准备125K 低频RFID 模块,参考1.4.2 章节设置跳线为模式2,将模块的电源拨码开关设 置为OFF,参考1.4.3 章节通过交叉串口线将模块与电脑的串口相连,给模块接5V 电源; ⑵将模块的电源拨码开关设置为ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行RFID 实训系统.exe 软件,选项卡选择125K 模块; 3、打开串口操作 设置串口号为COMx,设置波特率为9600,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签ID 并显示在ListView 控件中,16 进制数据listview 控件显示的是16 进制标签ID,10 进制数据listview 控件显示的是10 进制标签ID,实验结果如下图; 思考题 1多张卡在一起时,能否正确识别卡号?请说明原因 答:多张卡在一起时,无法正确识别卡号,因为125kHz的读卡器没有采用防冲撞算法 2变卡和阅读器的相对位置和距离,观察读卡结果并解释;在卡和阅读器之间放置不同的障碍物,观察读卡结果并解释。 答:当卡和阅读器的距离超过5cm后,读卡结果并不理想,几乎读不到数据。 属薄片(如几张纸、塑料板)时,读卡结果正常;而放置金属障碍物时,读卡结果就不正常了 五、小结

rfid实验报告

RFID原理与应用 实验报告 2016– 2017学年第二学期 级物联网工程专业 课程名称 RFID原理与应用 学号 姓名 指导教师王超梁 2017年月日

实验一RFID通信系统编解码和调制解调仿真 一、实验目的 射频识别技术是一种通过高频电磁破实现物体识别的无线电技术,一个完整的射频识别系统由射频识别阅读器,射频识别标签和射频识别软件系统三大部分组成,根据工作频段的不同,RFID系统编解码方式、调制解调方式不同,不同的编解码和调制解调方式可以提高RFID系统的通信效率,分析与设计RFID系统中不同编解码算法和调制解调方式具有很强的实用性。分析RFID系统不同编解码算法和调制解调方式,并进行仿真,比较不同编解码算法和调制方式对波形的影响,同时对现有算法进行优化和改进,从而提高RFID系统的效率。 二、实验内容 1. RFID实验箱各模块的划分和作用; 电子标签各种编解码算法的仿真; 3. RFID电子标签调制解调的仿真; 4. 记录并截图电子标签各编解码算法和调制解调的波形。 三、预备知识 了解RFID的通信模型和原理;了解调制解调和编解码算法及波形;了解RFI实验箱各模块的功能;了解RFID系统的组成和各部分的作用。 四、实验设备 1. 硬件环境配置 计算机:Intel(R) Pentium(R) 及以上; 内存:1GB及以上; 实验设备:韩柏电子RFID实验箱一套; 2. 软件环境配置 操作系统:Microsoft Windows 7 Professional Service Pack 1; RFID开发环境:AVR Studio,Miniscope。 五、实验分析 1.采用Manchester编码方式,对编码数据和解码数据波形的对比。 2.采用AM调制方式(AM/FM/PM),对数据ASK调制和解调波形的对比。

RFID实验报告解析

学生学号: 实验报告书 实验课程名称射频识别与传感器技术 开课学院计算机科学与技术学院 指导老师姓名 学生姓名 学生专业班级 2014 - 2015 学年第一学期

目录 RFID部分 实验一 125KHz与ISO 15693实验 实验二 13.56MHZ ISO14443与900MHZ实验实验三 RFID应用实验 传感器部分 实验一金属箔式应变片 实验二差动变压器 实验三温度传感器

RFID部分: 实验一 125KHz与ISO 15693实验 1.实验目的 1.1125KHz硬件基本实验 1.熟悉和学习ISO/IEC 18000-3,ISO15693标准规范的第二部分规定的编码 方式,掌握脉冲位置调制技术的256取1、4取1数据编码模式。 2.了解系统载波信号的产生部分原理、实现方法。 3.熟悉和学习ISO/IEC 18000-3,ISO15693标准规范的第二部分规定的通信信 号调制部分,掌握本标准的ASK调制技术。 4.熟悉和熟悉和学习ISO/IEC 18000-3,ISO15693标准规范的RF末级输出调 制载波信号。 5.学习ISO15693标准规范下的HF RF信号功率放大技术。 6.熟悉和学习ISO/IEC 18000-3,ISO15693标准规范的从电子标签返回信号 的解调技术。 1.2ISO15693硬件基本实验 1.熟悉和学习ISO/IEC 18000-2,ISO18000标准规范的从电子标签返回的时钟 信号。 2.熟悉和学习ISO/IEC 18000-2,ISO18000标准规范的对射频进行调制的信 号。 3.熟悉和学习ISO/IEC 18000-2,ISO18000标准规范的对射频进行调制和解调 的信号。 2.实验基本原理或实验内容 2.1基本原理 1.基于高频模拟信号产生基本原理 2.基于分离器件的RF功率放大的基本原理。 3.基于ISO15693标准的数字调制的基本原理。 4.负载调制的基本原理。 2.2实验内容 1.ISO15693 1.ISO15693射频编码测量实验 2.ISO15693射频载波测量实验 3.ISO15693射频调制测量实验 4.ISO15693射频功率放大测量实验 5.ISO15693射频末级输出调制载波测量实验 6.ISO15693射频FSK测量实验 7.ISO15693射频FSK测量实验 2.125K 1.125KHz 时钟信号测量实验 2.125KHz MOD信号测量实验 3.125KHz 调制解调信号测量实验 3.实验器材 实验箱,PC机,示波器

RFID设备实验报告

RFID实验记录 一、实验目的: 随着射频识别技术(Radio Frequency Identification, RFID)的不断发展与传统的道路信息采集方法的效率低成本高,所以此次实验的目的就是将RFID技术运用到改善道路信息收集上。在设计RFID道路系统中,将携带有道路信息的RFID标签铺设在道路或路边单元上。配备有RFID读写器的车辆可以从标签中获取事先存储的道路信息(如,路面信息、沿线设施与沿线环境等),从而快速地掌握道路信息。RFID电子标签主要有两种,无源电子标签自身不带有电源, 其特点就是重量轻、体积小、寿命长、成本低,但就是工作距离短;有源电子标签通过自身带有的电池供电,特点就是识别距离长,但价格较高且寿命短。为了达到道路信息采集的高效性、准确性与经济性。 2016年12月9日在茨坝镇的x003水团段分别对选购的有源RFID设备与无源RFID设备在车速、识别距离、有无遮挡物的不同变量下进行实验对比分析,最后,通过实验分析选出最合适的运用RFID技术改善道路信息采集方法的RFID设备。测试的有源RFID设备为深圳航天华拓科技有限公司的SAAT-F527全向性读写器与SAAT-T505主动式电子标签,无源的RFID设备为深圳深圳捷通科技有限公司的JT-9292读写器与JT-15532抗金属标签,下面就是本次实验的记录: 二、实验设备参数 1、有源RFID设备参数 SAAT-F527 全向读写器 该型号就是工作在2、45GHz频段的有源RFID读写器,该产 品采用外置天线安装方式,可灵活配置各类全向、定向天线,具有 覆盖范围广、识别率高、扩展性强等特点,读取距离在0到200 米,范围可调。广泛应用于医院、学校、工矿灯单位的人员区域 定位等集成应用领域。 技术指标: 性能指标 工作频率2、4-2、48GHz 输出功率+15 dBm (软件可调) 接收灵敏度-95 dBm 天线类型全向天线 通信接口RS-232接口, 10M/100M自适应以太网接口

RFID技术实验报告

福建农林大学计算机与信息学院 信息工程类 实验报告 课程名称:RFID技术 姓名:*** 系:电子信息工程 专业:电子信息工程 年级:2012级 学号:*** 指导教师: 职称:讲师 2015 年6 月24 日

实验项目列表

福建农林大学计算机与信息学院信息工程类实验报告 系:电子信息工程专业:电子信息工程年级: 2012级 姓名: *** 学号: *** 实验课程: RFID技术 实验室号:_田C306 实验设备号: 12 实验时间: 15.5.15 指导教师签字:成绩: 实验名称 例:实验一RFID(13.56MHz)实验 一、实验目的 1、学习ZigBee协议栈的原理。 2、学习RFID模块数据的传输过程。 二、实验内容 1、搭建由协调器、路由器、终端节点组成的ZigBee网络。 2、通过ZigBee网络采集RFID模块的数据并在上位机上显示结果。 三、实验设备 1、串口线、USB线(一头扁的一头方的)、M3-LINK仿真器、5V电源。 2、协调器开发板、路由器开发板、包含RFID(13.56MHz)传感器的节点开发板和射 频卡。 3、安装有Keil uVision4的计算机以及ZigBee组网源程序。 四、实验说明 1、硬件组成 从硬件角度看,系统由4大部分组成:位于最底层的传感器采集节点、中间的路由节点、 将数据传送到PC机的协调器节点以及PC机几个平台。系统框图如下图所示:

从上图可以看到,除协调器与PC机的通讯可采用以太网或USB外,其他各个部分之间都采用ZigBee网络。整个系统除了PC机外的其他部分都采用当前最流行的低功耗、小封装的Cortex-M3芯片做主控芯片。其中的终端节点和路由节点采用LM3S811,汇聚节点采用内部集成以太网和USB控制器的LM3S6952或LM3S9B96,终端节点除ZigBee部分进行数据传输外,还有不同的传感器信号处理部分。 2、ZigBee协议栈串口应用 五、实验步骤 1、将PDL-LM3S-6734MDK文件夹下的Luminary文件夹拷贝到“C:\Keil\ARM\INC”目录下,若弹出“确认文件夹替换”的对话框,请选择“全部”。 2、将PDL-LM3S-6734MDK文件夹下的driverLib.lib文件拷贝到“C:\Keil\ARM\RV31\LIB\Luminary”目录下,若弹出“确认文件替换”的对话框,请选择“是”,即将原先工程模板中的文件DriverLib.lib替换成为PDL-LM3S-6734MDK文件夹下的文件driverLib.lib。 3、将CC2420模块插入ZigBee RF1接口上。如果协调器板上没有下载程序,在安装有Keil uVision4的计算机上运行附带的源程序:实验程序\节点程序(V1.1)\9b96_协调器\Coordinator.uvproj,编译、下载到路由器板上。程序下载过程如下: 1)将仿真器连接到实验箱的JTAG1接口上,给实验箱上电; 2)打开工程文件:实验程序\节点程序(V1.1)\9b96_协调器\Coordinator.uvproj,编

RFID实验报告(读写一体)

郑州轻工业学院 实验报告名称:《课程名称》综合实验 院(系):计算机与通信工程学院 专业班级:网络工程(物联网技术13-01)指导教师: 时间:2015-2016(1)

郑州轻工业学院 实验报告名称:《课程名称》综合实验 院(系):计算机与通信工程学院 专业班级:网络工程(物联网技术13-01)姓名: 学号: 指导教师:杨永双陈燕 成绩评定表 时间:2015-2016(1)

目录 1实验任务和目的 (7) 2实验过程和结果............................................................................................ 错误!未定义书签。 2.1实验过程 ........................................................................................... 错误!未定义书签。 2.2实验结果 ........................................................................................... 错误!未定义书签。3实验总结和心得............................................................................................ 错误!未定义书签。4附录(代码)................................................................................................ 错误!未定义书签。

RFID实验报告

第一次实验10月17日 1. 125KHz硬件基本实验 1.1 125KHz 时钟信号测量实验 一、实验目的 熟悉和学习ISO/IEC 18000-2,ISO18000标准规范的从电子标签返回的时钟信号。 二、实验内容 通过示波器观测从电子标签返回的时钟CLK信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用CH1 探头,地接到J22测试架,CH1探针接到J23测试架设置示波器:触发源选择CH,其余设置可以参照图5-2-12。 2、操作 打开控制软件,系统默认实验模式即为LF 125KHz模式,打开串口,启动只读自动识别标签。 3、观测信号,如图5-3-1所示: 图5-3-1 解调电子标签返回的时钟信号图 1.2 125KHz MOD信号测量实验 一、实验目的

熟悉和学习ISO/IEC 18000-2,ISO18000标准规范的对射频进行调制的信号。 二、实验内容 通过示波器观测微处理器对射频芯片进行调制的MOD信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用CH1 探头、CH2探头,地都接到J22测试架,CH1探针接到J23测试架,CH2接到J24测试架。 设置示波器:触发源选择CH,其余设置可以参照图5-3-2。 2、操作 打开控制软件,系统默认实验模式即为LF 125KHz模式,打开串口,选择读写卡操作的读数据。 3、观测信号,如图5-3-2所示: 图5-3-2 射频调制信号图 1.3 125KHz 调制解调信号测量实验 一、实验目的 熟悉和学习ISO/IEC 18000-2,ISO18000标准规范的对射频进行调制和解调的信号。 二、实验内容 通过示波器观测射频调制的MOD信号和解调的DEMOD信号。 三、基本原理 负载调制的基本原理。 四、所需仪器

RFID实验1,2报告

RFID实验报告 实验一智能识别技术与系统实验 实验时间:2014年6月21日 一、实验目的 1.了解智能识别技术概念、特点、原理和优势。 2.掌握条码技术和RFID技术的各自优缺点、技术特征和应用优势。 3.了解条码自动识别系统和RFID自动识别系统的组成和工作原理。 4.了解指纹、视频、语音识别系统的组成、工作原理和应用特点。 二、实验原理 1、条码技术实验 (1)一维条码识别原理 由于不同颜色的物体,其反射的可见光的波长不同,白色能反射各种波长的可见光,黑色吸收各种波长的可见光,所以当条形码扫描光源发出的光经凸透镜1后,照射到黑白相间的条形码上时,反射光经凸透镜2聚焦后,照射到光电转换器上,接收到与白条和黑条相应的强弱不同的反射光信号,并转换成相应的电信号输出到放大整电路。在放大电路后需加一整形电路,把模拟信号转换成数字电信号,以便计算机系统能准确判读。整形电路的脉冲数字信号经译码器译成数字、字符信息。 (2)二维条码识别原理 矩阵式二维码(又称棋盘式二维码)是在一个矩形空间通过黑、白像素在矩阵中的不同分布进行编码。在矩阵元素位置上,出现方点、圆点或其他形状点表示二进制“1”,不出现点表示二进制的“0”,点的排列组合确定了矩阵式二维码所代表的意义。 行排式二维码(又称:堆积式二维码或层排式二维码),其编码原理是建立在一维码基础之上,按需要堆积成二行或多行。 两者的识别原理,通过图像的采集设备,得到含有条码的图像,此后经过条 码定位、分割和解码三步骤实现条码的识别。 2、RFID技术实验 RFID 系统的基本工作原理是:读写器通过发射天线发送一定频率的射频信号,当装有电子标签的物体进入发射天线工作区域时,受电磁场激励产生感应电流,电子标签获得能量被激活并收到读写器的查询信号后,将自身编码等信息通过改变电子标签天线的反射面积,将信息发送出去;读写器接收到从电子标签反射回的微波合成信号,进行解调和解码,即可将电子标签储存的识别代码等信息读取出来,送到RFID 信息处理机进行相关处理。 本实验中RFID 系统是由RFID 信息处理机(带相关软件的PC 机)、无源超高频电子标签卡、超高频读写器,RFID 天线一起组成。其工作原理是:搭建好RFID 识别系统后,读写器通过发射天线发送一定频率的射频信号,无源高频电子标签卡进入发射天线工作区域,受激励电磁场产生感应电流,电子标签卡获得能量被激活并收到读写器的查询信号,然后将储存的信息通过改变天线的反射面积,将信息发送出去;读写器接收到从电子标签卡反射回来的

RFID实验报告

第一次实验10月17日 1、 125KHz硬件基本实验 1、1 125KHz 时钟信号测量实验 一、实验目的 熟悉与学习ISO/IEC 18000-2,ISO18000标准规范的从电子标签返回的时钟信号。 二、实验内容 通过示波器观测从电子标签返回的时钟CLK信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用CH1 探头,地接到J22测试架,CH1探针接到J23测试架设置示波器:触发源选择CH,其余设置可以参照图5-2-12。 2、操作 打开控制软件,系统默认实验模式即为LF 125KHz模式,打开串口,启动只读自动识别标签。 3、观测信号,如图5-3-1所示: 图5-3-1 解调电子标签返回的时钟信号图 1、2 125KHz MOD信号测量实验 一、实验目的 熟悉与学习ISO/IEC 18000-2,ISO18000标准规范的对射频进行调制的信

号。 二、实验内容 通过示波器观测微处理器对射频芯片进行调制的MOD信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用CH1 探头、CH2探头,地都接到J22测试架,CH1探针接到J23测试架,CH2接到J24测试架。 设置示波器:触发源选择CH,其余设置可以参照图5-3-2。 2、操作 打开控制软件,系统默认实验模式即为LF 125KHz模式,打开串口,选择读写卡操作的读数据。 3、观测信号,如图5-3-2所示: 图5-3-2 射频调制信号图 1、3 125KHz 调制解调信号测量实验 一、实验目的 熟悉与学习ISO/IEC 18000-2,ISO18000标准规范的对射频进行调制与解调的信号。 二、实验内容 通过示波器观测射频调制的MOD信号与解调的DEMOD信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤

中南大学RFID实验报告

中南大学 物联网工程RFID 实验报告 学生姓名代巍 指导教师高建良 学院信息科学与工程学院 专业班级信安1201班 学号 0909121615 完成时间 2014年12月2日

UHF超高频实验 实验一超高频读写器的基本认知 一、实验目的 了解超高频读写器的基本设置,熟悉超高频读写器的设置与使用。通过本次实验,了解超高频读写器和标签参数的含义和设置方法。 二、实验器材 1.RFID实验箱 2.计算机一台 三、实验内容 了解和设置读写器参数; 四、实验步骤 1.打开RFID实验箱,使用读写器试验箱上的USB连接线连接实验箱和电脑, 启动电源。 2.在电脑上安装USB转串口驱动程序、读写器控制软件。安装方法见实验 箱软件安装文档。 3.在电脑上打开读写器控制软件,进入主界面,点击主菜单“control”, 选择下拉菜单中“Add UHF Reader”。如图1-1示: 4.选择串口(弹出的显示值即对应串口),如图1-2示,点击ok,进入超 高频读写器选择界面,如图1-3示: 5.主界面上显示读写器基本信息,鼠标选中该读写器,鼠标右击、选中 “Reader Settings and Diagnostics”,进入读写器参数设置界面。如 图1-4示: 6.读写器参数的了解和设置 1)Inventory Delay 参数,用于设置读写器读取标签的频率,例如:其值

设置10ms表示读写器每间隔10ms读取一次标签信息。读写器读取标签的次数在主界面上实时动态显示 2)Tag Model参数,选择协议类型,具体有Gen2(ISO16000C)、Gen2+RSSI、 ISO 6B(ISO16000B)。目前,市场上大部分标签都遵守Gen2协议。 Gen2+RSSI表示主界面上将同时动态显示读写器读取标签的次数和返回的射频信号强度 3)Output level 参数和 Sensitivity参数,两者分别用于调节读写器读 取功率和灵敏度。功率设置值越大,读写器读取标签的有效距离越长; 灵敏度设置值越小,读写器读取标签的灵敏度越高。 4)Frequencies中有八项参数,其中Profile参数表示全球不同国家和地 区对UHF频段设置的不同标准,包括USA、Europe、Japan、Chin***.625、Chin***.125、Korea等,一旦选择某一标准,其余的七项参数也随即确定 了解各项参数实际功用和意义后,也可对这些参数进行自定义设置。5)Gen2 Setting中的4项参数是对协议本身进行参数的设定,此项内容设 置方法可以参考ISO18000-6C协议等资料。

RFID实验报告13202

实验报告 课程名称 RFID射频识别实验学生学院自动化学院 专业班级 15级物联网4班 学号 学生姓名 指导教师高明琴

2017年 11 月 12 日 实验一125K H z R F I D实验 一、实验目的 1、掌握125kHz只读卡、125kHz读写卡的基本原理 2、熟悉与学习125kHz只读卡协议、125kHz读写卡协议 二、实验内容与要求 学会使用综合实验平台识别125kHz只读卡卡号,并对125kHz读写卡进行数据读写操作,观察只读卡与读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 1、注意事项 切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID 读写器串口波特率为9600bps 2、环境部署

⑴准备125K 低频RFID 模块,参考1、4、2 章节设置跳线为模式2,将模块的电源拨码开关设置为OFF,参考1、4、3 章节通过交叉串口线将模块与电脑的串口相连,给模块接5V 电源; ⑵将模块的电源拨码开关设置为ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行RFID 实训系统、exe 软件,选项卡选择125K 模块; 3、打开串口操作 设置串口号为COMx,设置波特率为9600,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签ID 并显示在ListView 控件中,16 进制数据listview 控件显示的就是16 进制标签 ID,10 进制数据listview 控件显示的就是10 进制标签ID,实验结果如下图; 思考题 1多张卡在一起时,能否正确识别卡号?请说明原因 答:多张卡在一起时,无法正确识别卡号,因为125kHz的读卡器没有采用防冲撞算法

RFID实验报告

广西科技大学鹿山学院 实验报告 课程名称: RFID原理及应用 指导教师:王亓剑 班级:物联网141 物联网142 姓名:李宏强杨逸丰林健钊但功成 学号:20142081 20142931 20142944 20142071 成绩评定: 指导教师签字: 2016年12月15日

一、实验的目的 (2) 二、RFID系统组成和工作原理 (2) 最基本的RFID系统由三部分组成: (2) 1.标签: (2) 2.阅读器: (2) 3.天线: (2) 负载调制的基本原理,把信号转换成适合在信道中传输的形式过程: (2) 1.载波调制: (2) 2.调幅: (2) 三、所需仪器 (2) 四、实验步骤 (2) 五、数据及结果分析 (2) 在控制软件上的显示: (3) 得到图像: (3) 将输出频率调高: (4) 得到图像: (4) 六、总结及心得体会 (5) 李宏强: (5) 杨逸丰: (5) 林健钊: (5) 但功成: (5)

一、实验的目的 通过实验了解RFID的基本概念,掌握RFID系统硬件射频设计技术,了解防碰撞算法,熟悉掌握RFID应用系统设计技术,熟悉和学习ISO/IEC 18000-2,ISO18000标准规范的对射频进行调制的信号。 二、RFID系统组成和工作原理 RFID技术利用无线射频方式在阅读器和射频卡之间进行非接触双向数据传输,已达到目标识别和数据交换的目的。 最基本的RFID系统由三部分组成: 1.标签: 由耦合原件及芯片组成,标签含有内置天线,用于和射频天线间进行通信。 2.阅读器: 读取标签信息的设备。 3.天线: 在标签和读取器间传递射频信号。 负载调制的基本原理,把信号转换成适合在信道中传输的形式过程: 1.载波调制: 用调制信号去控制载波的参数的过程使载波的某一个/几个参数按照调制信号的规律而变化。 2.调幅: 由调制信号去控制高频载波的幅度使之随调制信号做线性变化的过程。 三、所需仪器 供电电源、电脑、RFID实验箱一套 四、实验步骤 (一)在电脑上安装好所需软件; (二)测试线连接; (三)设臵试验箱参数; (四)打开控制软件,设臵软件参数,端口; (五)试验箱输出数据; (六)在电脑上的软件观测信号并分析; 五、数据及结果分析

相关文档