文档库 最新最全的文档下载
当前位置:文档库 › 土压平衡盾构上穿运营地铁隧道上浮控制

土压平衡盾构上穿运营地铁隧道上浮控制

土压平衡盾构上穿运营地铁隧道上浮控制
土压平衡盾构上穿运营地铁隧道上浮控制

土压平衡盾构上穿运营地铁隧道上浮控制

摘要:建立了盾构掘进三维计算模型,采用刚度迁移法模拟超大直径土压平衡盾构上穿运营中地铁隧道的影响。结果表明,盾构掘进会引起下方土体发生卸载回弹,从而引起地铁隧道的过量上浮; 通过对盾构施工过程进行分析,提出隧道内“增稳加载”的方法控制下方隧道上浮的施工方法,通过每延米 30 t 的加载,配合适当的施工方法,可将下方隧道的上浮控制在允许范围以内,确保施工的安全进行。

关键词: 超大直径土压平衡盾构; 近接施工; 上穿; 上浮; 加载

1 引言

目前,地下空间的综合开发利用已成为全世界的发展趋势,因而在建造隧道时必然会出现越来越多的“近接施工”问题,根据隧道与即有构筑物的关系,可分为隧道水平、竖直和倾斜平行,上下正交和斜交等,近接施工产生的主要问题是新建隧道的施工对既有构筑物影响的控制。国外对此类问题已经开展了大量研究,提出了相应的施工对策[1 ~3]。

我国在修建大量地铁工程时,也遇到了“近接施工”问题。例如广州地铁 2 号线越秀公园站共有 3 条平行隧道,最小间距仅 2. 7 m,深圳地铁罗湖至大剧院区间重叠隧道和天虹—岗厦区间隧道与民房桩基近接距离仅为0. 31 m 等。我国对该类工程进行了研究,并提出了一些处理措施[4],但这些处理措施大多是针对直径 6 m 级别的地铁盾构隧道而言,而对于直径达到 14 m 级别的超大直径盾构的穿越影响控制问题,国内外相关的研究还很少。

上海外滩通道在南京东路路口与运营中的轨道交通二号线斜交,与2 号线顶部的最小距离仅 1. 46 m,属于“超近接施工”问题,而外滩通道工程又是我国首个超大直径土压盾构隧道工程,诸多未知因素加大了盾构掘进施工的控制难度。为此,本文进行了盾构掘进三维数值模拟分析,同时对施工过程的荷载变化进行了分析,提出了在盾构上穿 2 号线施工时控制措施,保证了施工的安全进行。

2 工程概况

外滩通道工程盾构采用日本三菱公司设计制造的Ф14. 27 m 的超大直径土压平衡盾构。盾构段全长 1 098 m,共 549 环。隧道衬砌结构外径13. 95 m,隧道主线最大纵坡为 5. 0% 。

外滩通道工程设计蓝图盾构在里程 NXK0 +430 ~ NXK0 + 408 即345 环~ 355 环将上穿正在运营的地铁二号线,斜交角度 73 度,最小间距仅1. 46 m,如图 1 所示。在穿越区域无法对地铁 2 号进行加固或采取其他保护措施,而 2 号线承担着连接上海浦东浦西交通的重任,每天的客流量超过100 万人次,一旦由于施工不当造成 2 号线停运,后果不堪设想。

3 盾构穿越数值模拟

3. 1 盾构推进三维模型的建立和材料参数

盾构掘进过程数值模拟的关键是刀盘、盾壳和盾尾这三部分与土体间的相互作用关系的模拟,从而对土体产生的应力变化以及沉降与隆起等。盾构推进的过程十分复杂,目前的数值模拟软件上无法做到精确模拟,因此,本文采用刚度迁移法模拟盾构推进,即盾构推进是一步一步地跳跃式前进,因此,这一阶段的一个模拟循环为: ①首先开挖一段长度为一个开挖步长的土体隧道; ②给间隙单元和盾壳单元赋属性; ③给开挖面施加一个法向的压力( 即土舱压力) ,赋予注浆材料属性和注浆压力;④进行模型的力学平衡计算; ⑤进入下一步开挖。

盾构推进过程中材料模拟方法: ①将盾壳视作刚体,通过提高盾壳的厚度和弹性模量来实现,盾壳的弹性模量取值210 Gpa; ②采用低模量的材料模拟盾构周围受扰动较大的土圈,土圈变形模量取周围土体模量的 0.1%; ③将注浆材料视为有内压的低刚度材料,弹性模量等于注浆压力,取各注浆点压力的平均值作为注浆材料的弹性模量; ④用大于盾壳弹性模量和厚度的实体单元模拟盾壳的受力和变形。在盾体通过时给数值模型中的注浆体单元赋予盾壳的属性,因此,在这一阶段盾壳的厚度相当于注浆体的厚度。模拟过程中管片的弹性模量为35. 5 GPa。原始地层用 M—C 模型模拟,土层的各项物理力学参数如下:

3. 2 三维计算模型

根据外滩隧道盾构施工实际工程,隧道直径13. 95 m,盾构直径14. 27 m,管片厚度 0. 6 m,环宽2 000 mm,覆土厚度为 8. 4 m,为 0. 589 D,属于浅覆土施工.外滩隧道与下部 2 号线隧道中心距为11. 73 m,两隧道最小净距为 1. 38 m。根据工程地质勘探结果,土体分为 6 层。模型总长 100 m,宽80 m,高 43. 4 m。整个模型如图 2 所示。

模型采用最接近实际工况的分步开挖施工模型盾构推进施工工况,整个过程分为 35 步开挖施工。从模型边界开始,在盾构开挖面距离运营地铁2 号线 10 环之前,由于此过程盾构距离下部地铁 2号线距离较远,影响较小,因此采用每 4 环 1 步开挖的工况进行模拟,共开挖 3 步( 12 环) 。接下来采用 1 环 1 步的开挖方式进行盾构穿越 2 号线段数值模拟推进工况,共 30 步( 30 环) 。当盾尾距离运营 2 号线 10 环左右后,此时盾构推进施工对 2号线影响很小,因此采用每 4 环 1 步开挖的工况进行模拟,共模拟开挖 2 步( 8 环) 。

3. 3 结果及分析

表 2 与图 3 为数值模拟结果,可以看到盾构穿越过程中对于地铁2 号线水平位移的影响主要受盾构机与地铁 2 号线的位置关系影响。当盾构机切口未到达地铁 2 号线之前,上、下行线的水平位移方向与盾构推进方向一致,且水平位移量随着盾构机的接近逐渐增大; 而竖向位移量在切口到达之前相对于水平位移量较小,因此,在盾构机切口到达 2 号线下行线之前,应重点监测

地铁隧道水平向位移量,且施工过程中应适当调整控制盾构机土舱压力,减少其对前下方地铁隧道的水平位移量。

当盾构机在地铁 2 号线上方推进时,下方地铁隧道水平向位移量基本保持不变,且有少量减小,而竖向位移此过程中逐渐出现上抬量增大的趋势。主要原因是由于开挖过程中的土体卸载回弹引起下方土体出现上抬现象。在此过程中,应加强对于下部地铁隧道的水平及竖向位移的监测,并实时反馈,进而指导后续施工。

当盾尾脱出地铁 2 号线时,位于下方的地铁隧道水平向位移量随着盾尾的远离而逐渐减小,而竖向位移此过程中由于盾尾同步注浆以及外滩隧道上浮等原因而逐渐增大而后基本稳定不变。建议在施工过程中,严格控制注浆压力和注浆量,在安全的前提下,可在穿越过程中适当增大注浆压力和注浆量。另外,为了减少由于外滩隧道的上浮引起的下部土体上抬回弹,因为应采取必要的隧道抗上浮措施,如增加同步注浆的抗剪切能力或隧道内部堆载等方式,来保证穿越段的顺利施工。

3. 4 隧道内加载对即有隧道的变形控制

隧道内部加载的模拟方法是通过在隧道下部施加竖向荷载实现。计算时,取隧道内部的堆载为10 ~ 40 t / m。

图 4 为不同堆载重量下施工期间 2 号线的最大上抬变形,从图中可以看出在隧道内部堆载可以有效控制 2 号线的上抬,当隧道内的堆载达到

40t /m 时,可将施工期 2 号线的上抬控制在 12 mm以内。

4 盾构上穿地铁 2 号线施工控制措施

前文数值模拟结果表明,如果不采取适当的施工措施,盾构穿越2 号线时会出现较大的上浮,为了盾构顺利穿越2 号线,必须采取卸荷控制技术,并对推进速度及开挖面稳定进行控制。

同时,分等级控制各区域的参数设定,施工时结合数值模拟的结果,把整个穿越过程分为“二号线试验段”、“二号线穿越段”、“二号线穿越后”三个控制范围区域。在试验段推进,主要就土压力、推进速度、出土量、注浆量和注浆压力设定与地面沉降关系进行分析,同时通过对盾构机荷载变化的分析,采用增稳加载的措施控制2 号线的变形。

4. 1 施工速度对二号线的变形影响

盾构在穿越2 号线之前的试验段证明盾构推进速度与对周围土体

的扰动有很大关联,匀速推进对减少盾构对周围的土体有十分重要的意义,本工况条件下速度控制在20 ~25 mm/min 对周边土体扰动最小。为此根据穿越区域的划分,合理控制各阶段的推进速度。试验段及穿越后( 328 ~340 环和 359~

372 环) ,盾构掘进速度控制在 25 mm / min; 穿越过程中( 341 ~358 环) ,速度不宜过高或过低,控制在20 mm/min,尽量保持推进速度稳定,确保盾构均衡、匀速地穿越地铁二号线,以减少对周边土体的多次扰动影响,以免对其结构产生不利影响。如图 5所示。

4. 2 开挖面平衡控制措施

盾构推进时单位时间内进入土舱的土体体积较大,为改善土舱内土体的流塑性,通过在盾构机刀盘设置8 个注入口加注泡沫来改良土体; 同时在土仓中心位置设置了直径为 5 m 的搅拌机,加强对土仓内土体的搅动,增加其流塑性。经过对试验区域的泡沫添加剂试验,得到以下参数,泡沫溶液浓度为5% ,发泡率为 25 倍,注入率为 30% ,按此比例添加能确保土舱内的土砂塑性的柔性和流动性,能较好控制螺旋机出土的稳定性。

盾构切口上穿越二号线期间侧向压力系数为0. 75 ~ 0. 8,压力设定在 138 ~ 143 Mpa 之间,同时根据二号线实时监测和地表监测情况微调土压力设定值。

根据盾构机自带的土体称重系统对试验段每环出土量进行分析对比,并将此数据与土压力设定相结合,防止控制欠挖或超挖。

4. 3 施工期增稳加载对二号线的变形影响控制

根据理论计算,完全卸载隧道断面土体,可以产生285 t/m 的卸载量,在穿越 2 号线期间,各工序阶段卸载量如下:341 ~347 环,二号线下行线卸载量为136 t / m,上行线无卸载; 348 ~ 356 环,下行线卸载量为148 t/m,上行线卸载量为 136 t/m; 357 ~363 环,下行线卸载量逐渐增加到170 t/m,上行线卸载量基本没变化;364 ~368 环,下行线卸载量为152 t/m,上行线卸载量逐渐增加到170 t/m。

随着盾构机的 1 号车架的前进,管片将从车架出来,该区域卸载量将从148 t/m 骤然增加到170 t/m,故 357 环开始至 368 环是控制二号线上浮的关键阶段。工程中采用钢垫块及时补充由于盾构 1 号车架前移产生的二次卸载,钢垫块每延米摆放 30 t,同时由于后续同步施工的开展的需要,钢垫块陆续向盾构前进方向平移; 此外,在口子件内部的空档也堆载钢垫块,增加压重效果; 盾构机穿越后,及时在下层路面两侧不影响隧道施工的区域进行配重,稳定二号线后期的变形,如图6 所示。

4. 4 同步施工对二号线的变形影响控制

隧道同步施工口字件安放及两旁边混凝土的浇倒紧跟盾构施工。一块口字件和两旁边混凝土约重55 吨,这些重量不仅可对隧道产生压重效应,而且可以有效增强隧道的整体刚性,对防止隧道的上浮起到一定的作用。

4. 5 其他措施对二号线的变形影响控制

通过自动导向系统,严格控制各区油压,同时控制千斤顶的行程,合理纠偏,做到勤纠,减小单次纠偏量,实现盾构沿设计轴线方向推进,341 ~

358 环没有特殊状况不做较大纠偏,防止过大过多纠偏对土体产生较大二次扰动。

浆液的质量直接影响到管片与土体之间建筑空隙的填充效果,对于二号线及自身隧道的上浮控制起到关键性作用。浆液采用单液浆,为了控制质量由泵站统一拌制,穿越过程中对于每车浆液进行指标检测,需达到以下要求: 比重>2. 00 kg/cm3,常压泌水量<30 ml,坍落度12 ~14 cm,抗剪屈服强度>300 Pa。

盾构上穿地铁二号线区域所用管片内弧面纵、环向均布置有预埋钢板,管片拼装完毕用钢板将纵、环向预埋件焊接牢固。同时在管片端面安装剪力销,加强管片环与环之间的连接。通过这些措施增加隧道的整体刚度以减小隧道变形对 2 号线的影响。

5 地铁 2 号线变形控制效果分析

图7 显示了盾构推进过程中 2 号线的变化趋势,变化最大的位置位于盾构切口切入点,由于盾构与2 号线存在一定夹角,因此,变形最大的位置不在盾构轴线下方,而是位于盾构轴线的左侧。切口距离二号线隧道4 ~5 环时,2 号线上下行线开始受到影响,至切口到达时,上抬约 1 mm。盾构掘进使 2号线上覆荷载减小,下行线上浮约 3 mm,上行线上浮约4 mm,隧道上浮; 推进过程比拼装过程容易引起隆起。6 月17 日,1 号车架脱出穿越段后,2 号线变形逐渐稳定,这表明所在以号车架后采取的压重措施对于控制2 号线的变形具有明显效果。

6 结语

由于盾构机重远小于开挖土重,因此开挖引起二号线上浮无法避免,但 2 号线的最终变形控制在允许范围以内。盾构穿越二号线过程中,上下行线分别发生最大近 10 mm 的上浮。监测仪器布设于轨道道床,所监测的变形量是道床的变形,而钢轨自身的刚度大于道床的刚度,因此轨道的实际变形量更小。从施工方人员进入二号线隧道的观察情况来看,隧道内没有发现任何管片碎裂、渗水等现象,穿越期间,二号线运营正常,因此采用通过在 1 号车架后方采取合理的增稳加载措施,并对盾构推进过程进行严格控制的方法可以有效控制盾构上穿即有隧道的影响。

参考文献(References)

[1]李围,何川.盾构隧道近接下穿地下大型结构施工影响研究[J].岩土工程学报,2006 ,28( 10) : 1 277-1 282.

[2]孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[J].同济大学学报,2002 ,22( 4) :379-385.

[3]李围,何川.南京地铁区间隧道盾构法施工关键技术研究-区间盾构隧道下穿玄武湖公路隧道施工研究报告[R].成都: 西南交通大学,2002.[4]张志强,何川.地铁盾构隧道近接桩基的施工力学行为研究[J].铁道学报,2003 ,25( 1) : 92-95.

盾构隧道穿越既有建筑物施工应对技术

盾构隧道穿越既有建筑物施工应对技术 文章摘要: 盾构隧道穿越既有建筑物施工应对技术摘要:随着近几年地下工程建设的不断发展,盾构施工技术已越来越成熟,特别是在城市轨道交通建设中更显示出其优越性。但是,对于盾构施工过程中穿越障碍物或近距离通过既有建(构)筑物的施工还缺少相应的工程实例,经验相对也较少。近年来,我国城市轨道交通建设发展迅速,但是面临着越来越复杂的周边环境和施工条件,因此研究和制定相应的施工技术和应对措施十分必要。文章针对盾构施工穿越城市内河、下穿既有隧道以及湖底施工、下穿古城墙等工程实例进行分析研究,提出了针对类似情况的应对技术措施。 1 引言 随着国民经济的发展和城镇化建设的加速,国内城市轨道交通建设发展也越来越迅速。在轨道交通建设中,盾构工法由于其优越性在国内的应用越来越多。为了使轨道交通尽快形成网络达到预期的规模效应,轨道交通的建设也在加速。随着初期单条线的建成,后续线路建设的难度会越来越大。同时,伴随城市规划建设,特别是通常伴随地铁建设的沿线开发的增多,工程建设所面临的是越来越复杂的周边环境,穿越障碍物或近距离通过既有建(构)筑物的情况也越来越多。工程施工时既需要对既有建(构)筑物进行保护,又要确保工程本身的安全性和进展顺利,因此对不同的情况采用相应的应对技术十分必要。本文以南京地铁施工中已成功完成的盾构施工穿越障碍物的几个实例为基础,研究分析相应的应对技术。 2 下穿既有河流 2.1 工程实例 金川河宽10.4m,河堤深4m, 水深1.3m,为污水河。盾构隧道与 该河近正交下穿通过,盾构机与 河床底净间距6.2m。该段 地质情况自上而下分别是:② -1d3-4粉细砂(3.5m)、②-2c2-3 粉土(约6.0m)、②-2b4淤泥质粉 质粘土(约3m)、③-2-1b2粉质粘 土(4m)、③-3-1(a+b)1-2粉质粘 土(约 4.7m)。隧道主要在② -2c2-3粉土、②-2b4淤泥质粉质 粘土(上部)和③-2-1b2粉质粘土 (下部)地层中穿过(图1)。 该工程盾构机于2002年5月 9日~2002年5月10日和2002年 12月28日~2002年12月29日分 别在下行线和上行线顺利通过金 川河,沉降监测结果良好,没有采 用应急预案。但是在下行线掘进

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

地铁隧道盾构施工安全管理(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 地铁隧道盾构施工安全管理(标 准版) Safety management is an important part of production management. Safety and production are in the implementation process

地铁隧道盾构施工安全管理(标准版) 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO 后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大

城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

海瑞克土压平衡盾构机结构分析

海瑞克土压平衡式盾构机结构分析 [2008-08-07] 关键字:盾构机结构分析 承担修建深圳地铁—期工程第七标段(华强至岗厦区间内径为5.4m的双线隧道)的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。 本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN&#82 26;m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土

海瑞克φ8800mm土压平衡盾构机参数书讲解

TABLE OF CONTENTS TECHNICAL DATA E D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 1 D O C U M E N T : 7686-001 II. Technical Data 1. Tunnel boring machine general. . . . . . . . . . . . . . . . . . . . . . . . . .II - 3 1.1Tunnel boring machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.2Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.3Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 4 2. Shield general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 5 2.1Steel construction shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.2Tailskin articulation cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.3Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.4Man lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 62.5Screw conveyor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 6 3. Cutting wheel general. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 7 3.1Steel construction cutting wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 7 4. Drive general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 8

土压平衡盾构施工工艺

16土压平衡盾构施工工艺 16.1总则 16.1.1适用范围 本标准适用于采用土压平衡式盾构机修建隧道结构的施工。 16.1.2编制参考标准及规范 16.1.2.1地下铁道工程施工及验收规范(GB 50299-1999)。 16.1.2.2地下铁道设计规范(GB 50157-2013)。 16.1.2.3铁路隧道设计规范(TB10003-2016)。 16.1.2.4盾构掘进隧道工程施工验收规范。 16.1.2.5公路隧道施工技术规范(JTJ042-94)。 16.1.2.6公路工程质量检验评定标准(JTGF80/1-2004)。 16.2术语 16.2.1土压平衡式盾构 土压平衡盾构也称泥土加压式盾构,它的基本构成见图16.2.1。在盾构切削刀盘和支承环之间有一密封舱,称为“土压平衡舱”,在平衡舱后隔板的中间装有一台长筒形螺旋输送器,进土口设在密封舱内的中心或下部。用刀盘切削下来的土充填整个

16.2.2 端头加固 为确保盾构始发和到达时施工安全,确保地层稳定,防止端头地层发生坍塌或涌漏水等意外情况,根据各始发和到达端头工程地质、水文地质、地面建筑物及管线状况和端头结构等综合分析,确定对洞门端头地层加固形式。 16.2.3 盾构后座 盾构刚开始掘进时,其推力要靠工作井井壁来承担。因此,在盾构与井壁之间需要设传力设施,此设施称为后座。 16.2.4 添加材 采用土压平衡盾构掘进时,为改善土体的流动性防止其粘附在盾构机上而注入的一些外加剂。添加材的功能是:辅助掘削面的稳定(提高泥土的塑流性和止水性);减少掘削刀具的磨耗;防止土仓内的泥土压密粘附;减少输送机的扭矩和泵的负荷。 16.3 施工准备 16.3.1 技术准备 16.3.1.1 根据隧道外径、埋深、地质、地下管线、构筑物、地面环境、开挖面稳定及地表隆陷值等的控制要求,经过经济、技术比较后选用盾构设备。盾构选型流程如图16.3.1.1所示。 16.3.1.2 认真熟悉工程设计文件、图纸,对工程地质、水文地质、地下管线、暗

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案

艮丿丿架安■ 苗沟机就位调试 --------- A 丿- 达- 止加掘逬 洒门螯封陽住妓 盾构札托歆- iVt 汕 涧门处牟站) 1 隆护舞曲除1 头 再次琥程啊试 期门篷刘圈安寢 — "L J V 割门处牢站 再就解1 側护堆凿陈■ 图1盾构隧道施工流程图 地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 初蜡掘it 到ii 终点

1.2盾构始发流程图 图2始发流程图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约 200t ,分解为5块,最 大块重约60t 。综合考虑吊机的起吊能力和工作半径,安排 1台200t 和一台 40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图 3。 始 发 准 备 拆 除 临 时 墙 掘 进

图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。

8储口F诧 5*注腿諜 >—£ L27KW 图4盾构管片反力架示意图 3盾构机安装调试 3.1盾构机的安装主要工作 1?盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4?台车顶部皮带机及风道管的连接; 5?刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1?刀盘转动情况:转速、正反转; 2?刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩;

海瑞克土压平衡式盾构机分析

海瑞克土压平衡式盾构机分析 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后

土压平衡盾构机技术规格及要求

土压平衡盾构机技术规格及要求 1.土压平衡盾构机(以下简称盾构机)技术要求的说明 1.1盾构机技术要求以南昌轨道交通工程、周边环境及地质条件要求,兼顾满足南昌轨道交通其他线路区间、周边环境及地质条件要求及各项施工条件。 1.2本技术要求为南昌轨道交通3号线盾构区间掘进的盾构机最低技术规格和施工要求。 1.3本技术要求对盾构机部件结构不作具体的规定,但其必须满足本标准对盾构机所需的功能、性能、配置等要求。 1.4本技术要求仅限于主要部件、总成、系统的功能、性能、配置等,未描述部分应自动满足南昌轨道交通3号线工程、周边环境及地质条件。 2.新机技术规格要求 2.1整机 盾构机技术规格必须满足南昌轨道交通3号线工程、周边环境及地质条件要求,兼顾满足南昌轨道交通其他线路区间、周边环境及地质条件要求及各项施工条件。 盾构机的各项安全性能指标必须满足国家及南昌地区相关安全使用和施工规范要求。 盾构机应满足南昌地铁三号线管片规格:外径Φ6000mm,内径Φ5400mm,宽度1200/1500mm,纵向螺栓分度36°。 盾构机最大推进速度应≤80mm/min。 盾构机最小掘进转弯半径应≤250m;适用隧道纵向坡度应≥±45‰。 盾构机最大工作压力应≥0.5Mpa。 盾构机主要部件及总成使用寿命应≥10km或10000小时。 盾构机主要部件应采用世界知名厂商品牌及产品。 盾构机主要结构件材料应采用国内知名厂商品牌及产品。 2.2刀盘 2.2.1基本结构 刀盘支腿数量≥4个,≤6个。 宜采用复合式刀盘,刀盘开口率应≥30%。 复合式刀盘滚刀的安装刀座宜采用单楔块方式。软岩刀具的安装可采用螺栓紧固或销轴安装方式。

土压平衡盾构机工作原理.

土压平衡盾构机流体输送控制系统工作原理 何於琏 (中铁隧道股份公司河南新乡 453000 摘 要流体输送系统用于盾构机的润滑、密封、填充以及碴土改良 , 是盾构机中的重要系统。本文介绍了流体输送系统的组成 , 并简明叙述了衬砌背后注浆控制系统、碴土改良控制系统、主轴承油脂密封润滑控制系统、盾尾密封油脂注入控制系统的工作原理。关键词流体输送 非传动介质控制系统原理 W orki n g Pri n c i ple of Control Syste m of Flui d Conveyi n g Syste m s of EPB Shi eld Machi n es HE Yu 2lian (China R ail w ay Tunnel S tock Co . , L td . , X ingxiang 453000, Henan, China Abstract:Fluid conveying syste m, which is app lied in the lubricati on, sealing, backfilling and conditi oning of EP B shield machines, is one of the i m portant syste m s of EP B shield This compositi on of the fluid conveying syste m and the working p rinci p les of contr ol syste of ment lining, gr ound conditi oning syste m, main bearing grease sealing and grease injecti on syste m. Key words:fluid conveying; non 2transit; p le

地铁隧道盾构施工安全管理措施 - 制度大全

地铁隧道盾构施工安全管理措施-制度大全 地铁隧道盾构施工安全管理措施之相关制度和职责,1引言安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业... 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一个重点,也是一个值得注意的危险源。 2. 2压气作业的相应措施 (1)尽量减少在不良地质条件下进人刀盘内,尽可能地在基本可以自稳的地层中进行开舱作业,这样可以不用压气作业。因此,要根据地质条件的变化,选择适当的时机,提前或推迟进人刀盘内,尤其是更换刀具时要有预见性。 (2)要挑选身体健康、强壮的工人作为进人刀盘内的操作人员,并经过职业病医院严格的身体检查,确保对恶劣环境的抵抗力。一般压气作业一天不宜超过4小时。 (3)如需压气作业时,一定要选用无油型空压机,确保空气质量,减小环境污染。 (4)准备好通迅工具,无间断地保持联络。 (5)做好应急准备,必要时要能在减压舱(刀盘与盾构前体间的密封过渡通道)内抢救伤员,并与有关医院签好急救协议。有条件的要配备专用的流动医疗舱,以便在送往医院的过程中,保持伤员所受体外压力差基本一致。 3盾构刀具更换 随着地质条件的变化,隧道掘进过程中需要对刀具进行更换,尤其是当岩石强度较高时,需要

地铁盾构施工安全管理

地铁盾构施工安全管理 发表时间:2017-07-17T11:34:12.927Z 来源:《建筑知识》2017年14期作者:符昌钦 [导读] 在二十一世纪,城市化的进程得到加快,地铁建设是城市发展的必然选择之一。 (广东华隧建设股份有限公司广东广州 510520) 【摘要】在二十一世纪,城市化的进程得到加快,地铁建设是城市发展的必然选择之一。但是在地铁盾构施工中,存在的各类风险直接关系到社会的和谐稳定和人民的生命财产安全。因此,地铁盾构施工的安全尤为重要。本文对地铁盾构施工中的安全管理进行研究,为今后的地铁施工提供参考依据。 【关键词】地铁盾构;施工风险;安全管理 【中图分类号】U231 【文献标识码】A 【文章编号】1002-8544(2017)14-0105-02 1.引言 我国的交通流量每年都在快速增长,地面交通已无法满足交通需求,人们开始在地下兴建地铁,但是地铁盾构施工存在的风险不容忽视,需要对这些风险进行分析与管理,才能保证地铁盾构施工建设的安全。 2.地铁盾构施工存在的风险 近几年来,地铁给我们带来的便利可是家喻户晓,各大城市也在加快地铁的修建,其所带来的安全事故也层出不穷,给地铁的施工带来了困扰。盾构法相对于别的工法施工虽然具有较高的安全性,但是也避免不了起重伤害、机械伤害、坍塌、车辆伤害、高处坠落、触电、中毒等安全事故,给人民的生命与财产带来了巨大的损失。 2.1 起重伤害的风险 盾构施工过程中一般需要龙门吊或者起重设备进行垂直吊装作业,作为施工物资运送的必须设备,在日常机械设备管理上,如无法对设备机械及时进行维修和保养,缺少过程安全检查,设备带病作业,过程中未能严格执行起重作业安全操作规程,容易造成群死群伤事故。 2.2 坍塌的风险 盾构隧道设计规划一般会在道路下方穿行,甚至会不可避免的穿越建构筑物群,由于盾构施工过程对沉降的要求很严格,加上地质条件的复杂性,存在很多不可预见性,无法保证盾构施工过程中路面不发生塌方或沉降。在盾构施工中若发生坍塌事故,可能会造成路面塌陷,车辆人员掉入,影响路面交通,严重的造成建筑物倒塌,造成重大人员伤亡和经济损失,坍塌事故还可能使自来水管、煤气管等管线遭到破坏,造成更为严重的次生灾害。 2.3 车辆伤害的风险 盾构隧道的水平运输主要是靠电瓶车,由于隧道搭设的临时性轨道质量相对比较差,如果电瓶车刹车不灵敏或者司机不正当的操作都会使电瓶车发生意外,造成电瓶车溜车事故,轻者撞坏了设备,重者伤及人命。1998年3月19日晚,在上海地铁2号线陆家嘴-东昌路区间,电瓶车司机在清理轨道下的泥土时启动电瓶车但是没有打铃警示,车才开了几米远就撞到了民工方正飞。 2.4 盾构开仓换刀作业的风险 盾构施工中不可避免的会进行换刀作业,常规换刀作业分为常压开仓和气压开仓,由于地下环境的复杂性,掌子面的稳定性、舱内气体的质量、施工过程的动火作业等等,种种风险因素中如果过程管理不严,没有按照操作规程作业,会给仓内施工人员带来危险。 2.5 隧道堵漏作业的风险 隧道堵漏往往与盾构施工同时进行,不可避免的与电瓶车之间存在交叉作业,堵漏架子的不稳定性、过程中固定措施不足、高处作业不系安全带、堵漏材料侵入电瓶车轨行区、行车过程指令不明确、堵漏工人不避让等风险因素,都有可能造成人车伤亡事故。 2.6 交叉作业的风险 交叉作业是指两个以上的班组在同一区域内进行施工。盾构施工过程中,为了施工能够穿插进行,盾构施工中的电瓶车往往与联络通道开挖、隧道堵漏,与车站主体之间存在诸多交叉作业,如果各方职责不明确,过程中管理不严,极易在交叉作业过程中出大事故。 2.7 高处坠落风险 盾构法地铁施工过程中,施工人员在盾构机安装维护过程中如果高处作业没有系好安全带,或者施工作业平台防护不到位,稍在有不慎就会从高处摔下去,造成高处坠落事故。 2.8 触电风险 盾构机为大型的设备,施工过程中采用一万伏供电电压,除了生产用电外,需要用到其他的辅助设备,如水泵、电焊机、照明灯等等,如果电工过程中检查不严、无证上岗、线路乱拉乱接、安全警示不到位、漏电保护器失效等等,都有很容易在施工过程中发生漏电事故。 2.9 物体打击风险 在地铁施工过程中,如果安全帽佩戴不正确,头部就有可能受到打击,稍有不慎就会被没有放稳的器材砸到,比如在交叉作业中很容易被上方的施工人员掉落的工具造成伤害。 3.地铁盾构施工风险控制措施 3.1 起重伤害控制措施 为了更好的做好起重设备的安全管理。首先,临时起重设备必须严格执行进场审批制度,从源头上杜绝有问题的起重设备进入施工现场,杜绝设备带病作业;其次,加强对工人进场的教育关,特别是特殊工种,要求工人履行三级安全教育外,还必须对其进行手抄安全技术交底,通过深刻教育传输过程安全管理的强度和硬度,做到严把进场关。最后,过程中做好安全监督,加强检查,日常中加强对设备的维修保养。通过管控人的安全行为和物的安全状态,确保设备安全运行。 3.2 坍塌控制措施 盾构隧道在施工过程中(1)针对不利地层,可提前对隧道沿线进行加固处理,改良土体,特别是溶洞发育较多的地方,可以进行填

地铁区间隧道盾构施工安全风险管理的措施1范玉玉

地铁区间隧道盾构施工安全风险管理的措施1范玉玉 发表时间:2018-07-12T13:22:39.263Z 来源:《建筑学研究前沿》2018年第7期作者: 1范玉玉 2邵磊 [导读] 近年来随着城市数量的增加,规模的扩大,造成了可用土地减少、环境污染、交通拥挤、空气质量下降等问题。 1范玉玉 2邵磊 1身份证号码:37098219830810XXXX;2身份证号码:37083119850524XXXX 摘要:近年来随着城市数量的增加,规模的扩大,造成了可用土地减少、环境污染、交通拥挤、空气质量下降等问题。在这种形式之下,以高效、节能、低耗、舒适为特点的地铁在我国得到了迅速发展,盾构法以其与众不同的优势,迅速发展为修建城市地铁隧道施工的主要方法。上述施工方法在快速发展的过程中暴露了一些问题,其中安全问题是地铁隧道建设过程中最受关注的,由于地铁区间隧道工程的大规模建设且具有特殊的地理位置、建设周期较长以及高安全性和质量的要求造成影响安全施工的不确定因素较多,可能引发的事故种类繁多,因此,对地铁区间隧道盾构施工进行风险管理研究十分迫切和必要。 关键词:地铁区间;隧道盾构;施工安全;风险管理 1风险的定义 风险的不确定性包含风险发生的不确定性与风险产生后果的不确定性两类。其中风险发生的不确定性主要是风险是否会发生,风险将在何时何地发生等。风险的不确定性主要指风险损失的不确定性。其范围包括风险发生与否的不确定性、风险发生时间的不确定性、风险发生程度的不确定性与风险发生造成损失大小的不确定性。虽然不同的学者对风险的理解不同,但大家都普遍认可风险的内涵为不确定性。本文认为风险是指在项目实施过程中,不同阶段的各类潜在风险因素发生的可能性与一旦发生带来的损失程度的综合。 1.1风险的特征 风险在现代社会产生的影响越来越大,要对风险进行深刻认识并尽可能减轻风险带来的危害还需要了解风险的特征。 1.1.1风险的不确定性 风险的不确定性包括的范围比较广,一般认为主要有风险发生的不确定、风险何时发生的不确定与损失程度的不确定,。在如今这个社会,风险的重要性是不言而喻的,针对风险的不确定性,人们只能利用概率理论或模糊理论去讨论风险的大小程度。但预测结果也只能作为参考,因为小概率事件也有发生的可能,风险可能现在发生,也可能以后发生,风险发生的结果有可能还导致产生新的风险,这些都是不确定的。 1.1.2风险的客观性 风险的客观性是指风险是客观存在的,取决于主体的客观结构与状态,而不随人的主观变化而改变。我们可以研究风险,通过改变主体状态或客观环境尽量将风险控制在可承受的水平,而不能完全消除风险,任何事物都不能做到零风险。 1.2多样性和复杂性 地铁工程施工技术的多样性与施工环境的多样性也决定了施工风险的多样性,地铁工程受环境的制约影响很大,环境风险是不容忽视的。同时,地铁施工风险也是复杂多变的,风险是可以相互影响、相互组合的,大多事故的发生都不是由单一风险因素引起的,而是多种风险共同作用的结果。 1.3风险的动态性 风险具有动态性,工程建设项目风险的动态性尤其普遍。有的风险会贯穿于整个工程的始终,也有风险在工程建设的过程中逐渐显现,风险的重要程度也会随着工程进度而不断改变。针对风险的这一特征,需要在工程前期就要尽可能的识别出所有风险,并在施工过程中逐渐加入所识别的新风险,建立一个尽可能全面的风险清单。对于风险清单中的每一个风险因素都要有相应的应对策略,并在施工过程中,不断对照检查清单中的风险,分析是否有发生的可能性,坚持动态风险管理的理念。此外,风险还具有普遍性、偶然性、发展性等特征。 1.4风险的构成要素 风险构成三要素包括风险因素、风险事故、风险损失。 1.4.1风险因素 风险因素是指引发风险事件的原因与条件,是造成风险事故的潜在原因,是导致风险损失发生的间接条件。一般情况下风险因素分为以下两种:有形风险和无形风险。有形风险指造成风险事件发生或者引发风险损失更加严重的事物自身拥有的因素,所以它也被称为实质风险,举例来说,施工过程中自然条件恶劣、地质不良等都是有形风险。无形风险是指导致风险事件发生的人的心理或行为因素。 1.4.2风险事故 风险事故又称风险事件,指导致人身伤害或财产损失发生的不可预料事件。风险事故是造成风险损失的直接原因或前提条件,它的发生使事物存在的潜在危险转变成了可见的人身伤害或财产损失。 1.4.3风险损失 风险损失是因为不可预料事件发生所引发的意外的经济损失。通常损失有两种形态:直接损失和间接损失。直接损失是风险事件发生引发的人身伤害及善后处理所支出的费用和损坏财产的价值,间接损失是指直接损失引发的在一定范围内的未来财产利益的损失。 2城市地铁区间隧道盾构施工风险管理策略 2.1控制地层与重要建筑物的隆降 在盾构机掘进施工前,要对施工影响范围内的地面建筑物、地下障碍物、地下管线以及地下设施等进行详细探查,并对重要建筑物给予必要的事先加固或保护。若未对地层及重要建筑物进行保护采取针对性措施很有可能造成地层及重要建筑物沉降。①要建立严格的隧道沉降量测量控制网,及时定期的对地层及建筑物进行监控,并分析盾构前方监测点的监测数据,充分掌握盾构施工对隧道及本身周边环境的影响。地铁施工中地面监测数据一般控制在-30~+10mm范围以内。若地面变形接近-21~+7mm时,应尽快找出原因并采取相应的而措

地铁隧道盾构施工安全管理

地铁隧道盾构施工安全管理1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后, 全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世 界先进水平,企业安全管理工作已作为和生产管理并列的一项企业 管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大, 安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖 面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的 人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较 为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管 理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管 理经验的总结。

2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或 上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威 胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过 密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的 压力升高,以达到平衡外侧土体压力的目的,压力最大可达到 3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的 过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能 有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作 面的环境温度将会很高,当操作人员出现不适时,需要经过一定时 间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一 个重点,也是一个值得注意的危险源。 2.2压气作业的相应措施

地铁盾构法隧道施工重点及相应对策解析

地铁盾构法隧道施工重点及相应对策 来源:Error! Hyperlink reference not valid.日期:2009年04月20日点击:235 次 ㈠引言 近年来,为适应城市发展需要和满足城市居民日益增长的出行需求,上海市地铁建设不断加快了建设步伐。根据上海地区软土地质的特点,地铁区间隧道建设一般都采用盾构法施工,盾构法施工是以盾构机为隧道掘进设备,以盾构机的盾壳作支护,用前端刀盘切削土体,由千斤顶顶推盾构机前进,以开挖面上拼装预制好的管片作衬砌,从而形成隧道的施工方法。盾构机的类型有多种,目前在上海地铁区间隧道建设中以土压平衡式盾构应用最为广泛。土压平衡盾构工艺原理是利用安装在盾构最前面的全断面切削刀盘,将正面土体切削下来的土进入刀盘后面的密封舱内,井使舱内具有适当压力与开挖面水土压力平衡,以减少盾构推进对地层土体的扰动,从而控制地表沉降或隆起,在出土时由安装在密封舱下部的螺旋运输机向排土口连续的将土渣排出。由于地铁盾构法隧道施工技术难度大、施工风险高、质量要蟾摺⒉豢稍げ庖蛩囟唷R虼耍嗬砣嗽庇κ煜ず驼莆斩芄狗ㄋ淼朗┕ぜ嗬砑嗫刂氐慵跋嘤Χ圆撸诩嗬砉ぷ髦胁拍苷嬲 龅接行У囟允┕ぶ柿拷屑嗫兀佣抵魈峁┯胖实募嗬矸瘛?本人有幸参加了地铁二号线西延伸工程的施工监理工作,在区间隧道掘进施工监理过程中,通过不断摸索与总结,也积累了一些菲薄的工作经验,以下就以土压平衡式盾构为例,对隧道掘进施工中监理应监控的重点及采取的对策,谈几点体会,以 为抛砖引玉。 ㈡正文 1.盾构始发(出洞)阶段 盾构始发(出洞)阶段是控制盾构掘进施工的首要环节。在盾构始发(出洞)前、后各项准备工作中监理需监督承包单位做好充分的技术、人员、材料、设备准备,并对盾构是否具备出洞条件予以审查,确 保盾构在安全可靠的前提下能顺利出洞。 1.1盾构出洞土体加固 为了确保盾构出洞施工的安全和更好地保护附近的地下管线和建(构)筑物,盾构出洞前需对出洞区域洞口土体进行加固。土体加固的方法较多(如水泥搅拌桩加固、旋喷桩加固等),但无 论采用何种加固方法,对土体加固的效果检验始终应作为监理重点控制的内容。在确保加固效果满足设计要求前提下,才能同意盾构出洞,否则应督促承包方及时采取补救措施。针对土体加固监理人员应重点关 注以下三方面: ⑴加固土体与地墙间隙封闭 由于加固土体与地墙之间存在间隙,监理在审查土体加固专项方案时应审查承包方是否在方案中有相应的措施,一般可采用注浆、旋喷等方法封闭该间隙,并监督承包方予以落实。 ⑵加固土体的强度 加固土体的强度是否满足设计要求是衡量加固效果的首要指标,可通过对进出洞加固范围内不同深度土体采用钻芯取样检测的方式加以验证,监理人员应对承包方钻芯取样过程进行见证,确保取样工作的真 实性。 ⑶加固土体的均匀性 检验加固土体的均匀性目前尚无相应的工具、手段,可通过打探孔方式进行观察。监理人员应监督承包方在洞口割除围护结构背土面钢筋及凿除砼后,合理布置探孔(选择有代表性部位、数量一般不少于5个),现场观察探孔有无渗漏或流砂等异常情况,作为判断土体加固效果的辅助手段。 1.2盾构始发基座设置 盾构始发前需将盾构机准确的搁置在符合设计轴线的始发基座上,待所有准备工作就绪后,沿设计轴线向地层内掘进施工。因此,盾构出洞前盾构始发基座定位的准确与否,直接影响到盾构机始发姿态好坏。 监理在检查盾构始发基座时,应重点复核以下内容: ⑴洞门位置及尺寸 在基座设置前,监理人员应采用测量工具对洞口实际的净尺寸、直径、洞门中心的平面位置及高程进

相关文档
相关文档 最新文档