文档库 最新最全的文档下载
当前位置:文档库 › _650nm塑料光纤传输系统_研究与开发

_650nm塑料光纤传输系统_研究与开发

_650nm塑料光纤传输系统_研究与开发
_650nm塑料光纤传输系统_研究与开发

光纤传光原理

11-2 光纤传光原理 一、教学目的 1.了解光的全反射原理 2.掌握光的全反射条件 3.了解光纤传光原理 二、教学重点难点 重点:光的全反射条件 难点:由折射定律计算临界角 三、教学器材 光具盘 四、教学建议 教法建议:多媒体演示光的全反射现象,讲解,讨论 教学设计方案: (一)多媒体课件演示引入新课 草叶上露珠在阳光下晶莹透亮;透过杯壁观察盛满水的玻璃杯水面,光灿如银;水或玻璃中的气泡显得特别明亮。 为什么会出现这一些现象呢?这些都是光的全反射引起的。 (二)引出课程内容 1.光的全反射 (1)通过下面的实验观察光发生了怎样的变化。 让一束光沿着半圆柱玻璃砖从玻璃射向空气。(见11-7图),这时可以同时看到反射光线和折射光线,这两条光线都比入射光线要弱。增大入射角,折射角也随之增大,这时折射光线 90,这时折射越来越弱,反射光线越来越强。当入射角增大到某一角度?时,折射角等于0 光线沿两种介质的界面传播。再增大入射角,折射光线消失,只剩下反射光线,光线全部反射回到玻璃中,如下图所示。此时的反射光线几乎与入射光线一样亮。 图 11-7:观察光的全反射现象 (2)光的全反射定义 90折射角的入射角?称为临入射光全部被反射回原介质的现象称为光的全反射。对应于0 界角。

(3) 光发生全反射必须具备的条件是: ①光从光密介质射向光疏介质; ②入射角大于临界角。 复习提问:什么叫光疏介质,什么叫光密介质? 答:两种介质相比较,折射率较小的(或光传播速度较大的)称为光疏介质;折射率较大的(或光传播速度较小的)称为光密介质。光疏介质和光密介质是相对的。 记住:光的全反射现象只发生在光密介质内部,如果光线从光疏介质射入光密介质不会发生全反射。 (4)临界角的计算 同学们还记得上次课所学习的折射定律吗?(提问2到3名同学回答,并在黑板上写下折射定律表达式) 由折射定律可以计算临界角: 201 sin sin 90n n ?= 21 sin n n ?= (11—5) 若光从某介质n 射向真空(或空气),则 2n =l 1sin n ?= 根据上式,只要知道某种介质的折射率n ,就可以求出它对真空(或空气)的临界角?。书上用表11—2为我们列出了几种介质对真空(或空气)的临界角。 (5)全反射技术的应用 全反射在生产技术中有着广泛的应用。用全反射棱镜可以制造潜望镜;利用光在光导纤维中的全反射传光、传像等更是当今世界上最先进的通信方式。 提问请同学们思考讨论: 全反射在生产技术中还有哪些广泛应用? (6)例题讲解 例题1.某种玻璃的折射率1n =1.52,水的折射率2n =1.33,光线如何射人,可在界面发生全反射?临界角?多大? 解 因为玻璃相对水是光密介质,所以只有当光从玻璃射向水里时才可能发生全反射,得 201sin sin 90n n ?= 21sin n n ?==1.331.52 =0.875 临界角?=0/ 613

塑料光纤长周期光栅的传感特性研究

- 1 -塑料光纤长周期光栅的传感特性研究1 杨冬晓1,2,廖启亮1,陈松涛1,耿丹1 1 浙江大学信息与电子工程学系,浙江杭州(310027) 2浙江大学太赫兹技术研究中心,浙江杭州(310027) E-mail :yangdx@https://www.wendangku.net/doc/0a3387995.html, 摘 要:本文对一种塑料光纤长周期光栅的传感特性进行了实验研究,测得的最大应变量为 1.268%,应变灵敏度系数为1.144 pm/με,温度灵敏度系数为56.23 pm/℃。该种光纤光栅具有柔性好、调谐范围大等优点。 关键词:长周期光栅,塑料光纤, 温度传感,应变传感 中图分类号:TP212.14 1. 引 言 自从Vengsarkar A M 等人[1] 在光纤中成功地写入长周期光栅(LPG )以来,有关LPG 的研究工作引起了广泛的关注,LPG 在带阻滤波器、宽带掺铒光纤放大器的增益平坦、全光开关和高灵敏度传感器等方面[2]有重要的应用。同石英光纤相比,一般塑料光纤具有可挠性好、重量轻、应变范围大等优点,通过紫外激光在塑料光纤中写入的长周期光栅具有调谐范围大、灵敏度高等特点。若对塑料光纤光栅施加一定的温度与应变,其产生的调谐范围可以覆盖光纤通信系统的波长范围。本文对塑料光纤长周期光栅(PLPG )的温度[3]与应变传感特性进行实验研究。 2. 基本原理 LPG 是一种光纤光栅,光栅周期一般大于100 μm ,其基本的传光原理是将前向传输的纤芯模式耦合至前向传输的包层模式中,包层模能量很快消逝。其相位匹配条件为 ()Λ?=)(cl )(co )(n m mn n n λ (1) 其中)(co m n 、)(cl n n 分别为m 阶纤芯模式和n 阶包层模式的有效折射率,)(mn λ为满足以上相位匹配条件的波长,Λ为光栅周期。只有满足相位匹配条件,纤芯模式才能有效地从LPG 纤芯耦合到包层中的包层模,在透射谱上出现损耗谷。LPG 的透射损耗谷要比布喇格光栅的透射损耗谷宽,而具有几个低阶模式的LPG 透射损耗谷比单模光纤LPG 的透射损耗谷宽。 当温度不变时,对式(1)两边关于应变求导,可以得到应变系数εK ()()Λ??Λ?==)(cl cl )(co co )(ε11d d n m mn n p n p K ε λ (2) 式中p co 、p cl 分别为纤芯和包层的有效弹光系数。 当应变不变时,对(1)式两边关于温度求导,可以得到温度系数K T 1 本课题得到高等学校博士学科点专项科研基金(项目编号:20030335029)和国家自然科学基金(项目编 号:60177025)资助

1,光纤通信简介与光纤的导光原理介绍。

什么是光纤通信 所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。 要使光波成为携带信息的载体,必须对之进行调制,在接收端再把信息从光波中检测出来。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式(IM-DD)。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 典型的数字光纤通信系统方框图如图下所示。 从图中可以看出,数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD 就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。 光纤的导光原理 光是一种频率极高的电磁波,而光纤本身是一种介质波导,因此光在光纤中的传

输理论是十分复杂的。要想全面地了解它,需要应用电磁场理论、波动光学理论、甚至量子场论方面的知识。但作为一个光纤通信系统工作者,无需对光纤的传输 理论进行深入探讨与学习。 为了便于理解,我们从几何光学的角度来讨论光纤的导光原理,这样会更加直观、形象、易懂。更何况对于多模光纤而言,由于其几何尺寸远远大于光波波长,所以可把光波看作成为一条光线来处理,这正是几何光学的处理问题的基本出发 点。 全反射原理 我们知道,当光线在均匀介质中传播时是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图下所示。

塑料光纤的性能及其应用和制备

塑料光纤的特性以及应用 080611338 丁宁 摘要:介绍了塑料光纤在局域网、汽车工业、传感器等领域的应用。通过对石英光纤、金属电缆与塑料光纤的性能进行比较,得到了塑料光纤具有芯径大、柔韧性好、价格低廉、制作简单等特点。就塑料光纤在局域网、汽车工业、传感器等领域的应用进行了分析、总结。此外还指出阻碍塑料光纤进一步发展的因素。 一、引言 随着通信产业的迅猛发展,光纤作为信息载体的光信号传输介质在大容量数据的高速传输中起着重要的桥梁和纽带作用。目前,石英光纤由于其宽带、低损耗、适合长距离通信传输,而占据着光通信的主要市场。然而,由于石英光纤芯径小、连接复杂、成本高,所以在光纤人户时遇到很大的困难。随着短距离、大容量的数据通信系统及汽车等工业的迅速发展,塑料光纤(P0F)以其芯径大、柔韧性可塑性强、重量轻、价格低廉等优点而受到国际的普遍关注。为了对塑料光纤有一个较为全面的认识,本在查阅有关文献的基础上,阐述塑料光纤的主要特性和应用以及制备方法。 二、基本原理 塑料光纤的定义:塑料光学纤维是以光学塑料为材料的一类重要的光学纤维。 塑料光纤传光原理: 1、子午光线在阶跃型塑料光纤中的传输 阶跃型塑料光纤是一种具有芯皮结构的光纤。子午平面指的是包含有光纤轴的平面,所谓子午线,就是光线的传播路径始终在同一平面内,子午光线总是和光纤轴相交的,光在一种均匀介质传播时是一种直线式传播:当光从一种介质传至另一介质表面时,一般同时发生反射和折射;如果光从折射率小的光疏介质射入折射率大的光密介质时,则折射角小于入射角;而当光从光密介质射入光疏介质时折射角将大于入射角,因而当光从光密介质射入光疏介质时就有可能出现只有反射而无折射的现象,这就是全反射,全反射是光折射的一种边界效应,即光从一种透明介质进入到另一种介质里而发生弯曲的现象。塑料光纤就是通过全反射原理进行光传输的。 2、子午线在阶跃型光纤中的几何行程和反射次数 由于子午光线入射光纤中并不是同一角度,故而其在光纤中的几何行程也不相同。无论是子午线在光线中的行程计算公式还是反射次数计算公式,都是假定光纤是处于非常理想状态下:光纤非常直,光纤直径均匀,光纤内部无缺陷和光纤入射端面平直等,倘若光纤不在这一理想条件下,则入射子午线全反射的状况就会发生变化,如有的会从光纤中反射出,有的反射角会发生变化等,因此光纤的传输损耗也会增加。 3、斜光线在阶跃型折射率塑料光纤中的传输 所谓斜面光线,就是光在光纤中传输中时,并不是像子午光线一样保证在同一平面内,它在光纤中传输时,其轨道通常是一空间螺旋曲线,其最大入射角比子午线的大,但通常以子午线传输表征光纤的传输特性,自然这是最理想的一种状况。 4、光在渐变型折射率分布塑料光纤中的传输 对于渐变型折射率GI 塑料光纤,同样有子午线和斜光纤,这种光纤折射率并不是一恒定常数,而是随着离轴距离的增加而折射率下降,其渐变折射分布图参见如下;抛物线型折射率分布光纤具有较小的模式色散的特点,渐变折射分布有多种形式,当折射率分布按二次方抛物线分布时,子午线在光纤中的传播路径为正弦曲线型,斜光纤的传播路径为螺旋曲线,渐变型折射率塑料光纤多用于短距离数据传输,用于光纤照明较少。 5、荧光塑料光纤的传光原理 荧光塑料光纤就是在塑料光纤芯材中掺入一定量的荧光剂制备而成的塑料光纤,这种塑

光纤的导光原理

光纤的导光原理 光就是一种频率极高的电磁波,而光纤本身就是一种介质波导,因此光在光纤中的传输理论就是十分复杂的。要想全面地了解它,需要应用电磁场理论、波动光学理论、甚至量子场论方面的知识。但作为一个光纤通信系统工作者,无需对光纤的传输理论进行深入探讨与学习。 为了便于理解,我们从几何光学的角度来讨论光纤的导光原理,这样会更加直观、形象、易懂。更何况对于多模光纤而言,由于其几何尺寸远远大于光波波长,所以可把光波瞧作成为一条光线来处理,这正就是几何光学的处理问题的基本出发点。 ·5、1 全反射原理 我们知道,当光线在均匀介质中传播时就是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图5-1 所示。 图5-1 光的反射与折射 根据光的反射定律,反射角等于入射角。 根据光的折射定律: (公式5-1) 其中n1为纤芯的折射率,n2为包成的折射率。 显然,若n1>n2,则会有。如果n1与n2的比值增大到一定程度,则会使折射率,此时的折射率光线不再进入包层,而会在纤芯与包层的分界面上经过(),或者重返回到纤芯中进行传播()。这种现象叫光的全反射现象,如图5-2所示。 图5-2 光的全反射现象 人们把对应于折射角等于90的入射角叫做临界角,很容易可以得到临界角 。

不难理解,当光在光纤中发生全反射现象时,由于光线基本上全部在纤芯区进行传播,没有光跑到包层中去,所以可以大大降低光纤的衰耗。早期的阶跃光纤就就是按这种思路进行设计的。 ·5、2光在阶跃光纤中的传播 传播轨迹了解了光的全反射原理之后,不难画出光在阶跃光纤中的传播轨迹,即按“之”之形传播及沿纤芯与包层的分界面掠过,如图5-3 所示。 图5-3 光在阶跃光纤中的传输轨迹 通常人们希望用入射光与光纤顶端面的夹角来衡量光纤接收光的能力。于就是产生了光纤数值孔径NA的概念。 因为光在空气的折射率n0=1,于就是多次应用光的折射率定律可得: (公式5--2) 其中,相对折射率差: (公式5--3) 因此,阶跃光纤数值孔径NA的物理意义就是:能使光在光纤内以全反射形式进行传播的接收角θc之正弦值。 需要注意的就是,光纤的NA并非越大越好。NA越大,虽然光纤接收光的能力越强,但光纤的模式色散也越厉害。因为NA越大,则其相对折射率差Δ也就越大(见5--2 公式),以后就会知道,Δ值较大的光纤的模式色散也越大,从而使光纤的传输容量变小。因此NA 取值的大小要兼顾光纤接收光的能力与模式色散。CCITT建议光纤的NA=0、18--0、23。

光纤传感中的光学原理及效应

第1章:光纤传感中的光学原理及效应 光学反射原理 分为镜面反射和漫反射 镜面反射和漫反射情况 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 光学折射原理

光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer 定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 光学多普勒效应 θ cos 11f f 02 20 0c u c u -= 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, aE 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

光纤的导光原理

光纤的导光原理 光是一种频率极高的电磁波,而光纤本身是一种介质波导,因此光在光纤中的传输理论是十分复杂的。要想全面地了解它,需要应用电磁场理论、波动光学理论、甚至量子场论方面的知识。但作为一个光纤通信系统工作者,无需对光纤的传输理论进行深入探讨与学习。 为了便于理解,我们从几何光学的角度来讨论光纤的导光原理,这样会更加直观、形象、易懂。更何况对于多模光纤而言,由于其几何尺寸远远大于光波波长,所以可把光波看作成为一条光线来处理,这正是几何光学的处理问题的基本出发点。 -全反射原理 我们知道,当光线在均匀介质中传播时是以直线方向进行的, 介质 的分界面时,会发生反射与折射现象,如图5-1所示。 (公式5-1) 其中n1为纤芯的折射率,n2为包成的折射率。 显然,若n1>n2,贝U会有F诗^1。如果n1与n2的比值增大到一定程度,则会使折射率?,此时的折射率光线不再进入包层,而会在纤芯与包层的分界面上经过(: ),或者重返回到纤芯中进行传播(鬥応讣I朋|)。这种现象叫光的全反射 现象,如图5-2所示。 图5-2光的全反射现象 人们把对应于折射角◎等于90的入射角叫做临界角,很容易可以得到临界角 但在到达两种不同根据光的反射定律, 根据光的折射定律 : I 2=903 O

不难理解,当光在光纤中发生全反射现象时,由于光线基本上全部在纤芯区进行 传播,没有光跑到包层中去,所以可以大大降低光纤的衰耗。 早期的阶跃光纤就是按 这种思路进行设计的。 -光在阶跃光纤中的传播 传播轨迹了解了光的全反射原理之后,不难画出光在阶跃光纤中的传播轨迹,即 按 “之”之形传播及沿纤芯与包层的分界面掠过,如图 5-3所示。 通常人们希望用入射光与光纤顶端面的夹角来衡量光纤接收光的能力。 于是产生 了光纤数值孔径NA 的概念。 因为光在空气的折射率nO=1,于是多次应用光的折射率定律可得: Sin? 为黒证去祖Jte 蚌中的全反射.则应心吗?%, H (公式5--2) 其中,相对折射率差: * 听 占 =T 1 (公式 5--3) 因此,阶跃光纤数值孔径 NA 的物理意义是:能使光在光纤内以全反射形式进行 传播的接收角B c 之正弦值。 需要注意的是,光纤的NA 并非越大越好。NA 越大,虽然光纤接收光的能力越 强,但光纤的模式色散也越厉害。因为 NA 越大,则其相对折射率差△也就越大(见 5--2公式),以后就会知道,△值较大的光纤的模式色散也越大,从而使光纤的传输 容量变小。因此NA 取值的大小要兼顾光纤接收光的能力和模式色散。 CCITT 建议光 纤的NA=。 -光在渐变光纤中的传播 定性解释 图5-3光在阶跃光纤中的传输轨迹 = =

光纤基本知识

光缆基本知识介绍 光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、 石英光纤的分类 单模光纤 G.652A(B1.1简称B1) G.652B(B1.1简称B1) G.652C(B1.3) G.652D(B1.3)

G.655A光纤(B4)(长途干线使用) G.655B光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1) 62.5/125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前本公司层绞式光缆芯数可达216芯或更高。 ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通常外护套颜色采用兰色,以利于矿井中对光缆的识别。按结构可分入中心管式光缆与层绞式光缆两类结构中。 2、室内光缆 室内光缆按光纤芯数分类,主要有单芯、双芯及多芯光缆等。室内光缆主要由紧套光纤,纺纶及PVC外护套组成。根据光纤类型可分为单模及多模两大类,单模室内缆通常外护套颜色为黄色,多模室内缆通常外护套颜色为橙色,还有部分室内缆的外护套颜色为灰色。

光纤通信原理光纤传输原理图

光纤通信原理光纤传输原理图 光纤通信原理 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维 中的全反射原理而达成的光传导工具。掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。WDM技术、极大地增加了光纤通信的容量。成为当前光纤通信中应用最广的光放大器件。 光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件。在使用光纤的通信系统中,不需将光信号转换为电信号,直接对光信号进行放大的一种技术。掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大 学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。掺铒光纤放大器的工作原理: 铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦光源组成。其工作原理是:掺铒光纤在泵浦光源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。研究表明,掺铒光纤放大器通常可得到15-40db的增益,中继距离可以在原来的基础上提高

100km以上。那么,人们不禁要问:科学家们为什么会想到在光纤放大器中利用掺杂铒元素来提高光波的强度呢?我们知道,铒是稀土元素的一种,而稀土元素又有其特殊的结构特点。长期以来,人们就一直利用在我学器件中掺杂稀土元素的方法,来改善光学器件的性能,所以这并不是一个偶然的因素。另外,为什么泵浦光源的波长选在980nm或1480nm呢?其实,泵浦光源的波长可以是520nm、650nm、980nm、和1480nm,但证明波长980nm的泵浦光源激光效率最高,次之是波长1480nm的泵浦光源。 掺铒光纤放大器的基本结构: EDFA的基本结构,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。信号光与泵浦光在铒光纤内可以在同一方向(同向泵浦)、相反方向(反向泵浦)或两个方向(双向泵浦)传播。当信号光与泵光同时注入到铒光纤中时,铒离子在泵光作用下激发到高能级上,三能级系统),并很快衰变到亚稳态能级上,在入射信号光作用下回到基态时发射对应于信号光的光子,使信号得到放大。其放大的自发发射(ASE)谱,带宽很大(达20-40nm),且有两个峰值分别对应于1530nm和1550nm。 掺铒光纤放大器的优点:

光缆基本知识介绍

光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、石英光纤的分类 单模光纤 G.652A(B1.1简称B1) G.652B(B1.1简称B1) G.652C(B1.3) G.652D(B1.3) G.655A光纤(B4)(长途干线使用) G.655B光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1) 62.5/125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位

于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS 等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前本公司层绞式光缆芯数可达216芯或更高。 ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通常外护套颜色采用兰色,以利于矿井中对光缆的识别。按结构可分入中心管式光缆与层绞式光缆两类结构中。 2、室内光缆 室内光缆按光纤芯数分类,主要有单芯、双芯及多芯光缆等。室内光缆主要由紧套光纤,纺纶及PVC外护套组成。根据光纤类型可分为单模及多模两大类,单模室内缆通常外护套颜色为黄色,多模室内缆通常外护套颜色为橙色,还有部分室内缆的外护套颜色为灰色。 三、光缆型号的命名方法(YD/T908-2000) 1、光缆型式由五部分组成 Ⅰ、表示光缆类别 Ⅱ、加强构件类型 Ⅲ、结构特征 Ⅳ、护层 Ⅴ、外护层

塑料光纤应用及发展前景

塑料光纤特性研究及其应用 摘要: 塑料光纤是由高折射率的高聚物芯层和低折射率的高聚物包层所制成的光导纤维。塑料光纤的研究己经历30年之久,最早的塑料光纤是美国杜邦公司于1968年开发的聚甲基内烯酸甲酯阶跃型塑料光纤。最初生产的塑料光纤由于衰减大、色散大,带宽远远不能满足高速数据通信的要求,它仅仅用于照明、汽车车灯监控等非通信领域。随着高聚物材料的合成工艺,改性方法等技术的发展,使得塑料光纤的芯、包材料的选择,制造工艺方法,性能的改善等方面得以长足发展,现今塑料光纤己达到成熟生产和实用化水平。现在研制的新型氟树脂塑料光纤(POF)的传输速率为2. 5 Gbit/s,传输距离达200 m,其性能与现存的石英多模光纤技术性能完全接近,充分展示了塑料光纤的魅力和应用前景。这种塑料光纤可以取代石英多模光纤应用到光纤入户的局域网建设中,市场潜力巨大。 塑料光纤与石英光纤相比,塑料光纤在高速短距离通信网络中具有显著的竞争优势,它在100~1 000 m范围内带宽可达数GHz,而成本与对称电缆相当同时塑料光纤具有加工容易、弯曲性能好、连接分路简单、操作简便、价格便宜、可以采用可见光作光源等一系列优点。 塑料光纤制备技术的不断提升正不断提升这塑料光纤的品质,在汽车,局域网,甚至战斗机等高速短距离通信要求较高,传输距离不高的地方,塑料光纤起着举足轻重的地位。 关键词:市场现状制备方法市场前景特性研究应用领域 目录 前言: (2) 1.塑料光纤市场现状及前景 (2) 1.1塑料光纤发展过程及前景 (2) 1.2塑料光纤主要市场现状 (3) 1.2.1汽车工业 (3) 1.2.2.消费电子 (3) 1.2.3工业控制总线系统 (4) 1.2.4互连网 (4) 2.塑料光纤的材料及性能 (5) 2.1.塑料光纤的皮层材料 (5) 2.2塑料光纤的芯材料 (5) 2.3塑料光纤的性能 (6) 3塑料光纤的制备技术及比较 (9) 3.1塑料光纤制备技术 (9) 3.1.1棒管法 (9) 3.1.2共挤法 (10)

光导纤维的原理及应用

光导纤维的原理及应用 廖浚竹 物理学2015级 摘要:介绍了阶跃型和梯度型光导纤维内光线传输原理,光导纤维的优良特性和在各个领域的广泛应用。 关键词:光导纤维、全反射、自聚焦、光纤应用 引言: 光导纤维的研制成功使人类的通迅技术得到了前所未有的发展,自从1977年美国加利福尼亚洲通用电话公司安装第一套光纤通讯系统以后,发展十分迅猛,至今已普遍使用。于当今信息爆炸的世界,人们对提高无线电波传递信息容量给予了极大的关注,光纤通信就是这一征程上的重大里程碑。 近年来,随着现代科学技术的迅猛发展,光导纤维不仅在通信、电子和电力等领域的应用日益扩展,而且在医学检测、太阳光照明、制作传感器等方面也有了重要突破,成为大有前途的新型基础材料。 1、阶跃型(全反射型)光导纤维光线传输原理 1.1全反射 光由光密介质进入光疏介质时,即n2>n1时,折射光线将远离法线。随着入射角θ1的增大,折射角θ2增加很快,当入射角θ1增加到θc时,折射线延表面进行,即折射角为90°,该入射角θc称为临界角。若入射角大于临界角,则只有反射没有折射,此现象称为全反射(图1)。当光线由光疏媒介射到光密媒介时,折射光线将靠近法线而折射,故这时不会发生全反射。 临界角:θc=arc(n1/n2) 图1 1.2光导纤维 ⑴基本结构 光纤的内层是纯玻璃光芯,外包折射率低于玻璃折射率的掺杂物(包层)。内芯是光传播的部分,包层与纤芯折射率的差别就是为了使光发生全内反射。大部分的光纤在包层外还有一层涂覆层,它一般是一层或几层聚合物,防止纤芯和包层受到震荡而影响光学或物理性质。涂覆层对在光纤里传播的光没有影响,它只是作为一个减震器。 ⑵基本原理

浅谈塑料光纤与光纤照明应用

浅谈塑料光纤与塑料光纤照明应用 导读:今天浅谈下塑料光纤灯发展概要及主要研发生产国情况,深入了解下塑料光纤的照明应用领域及市场前景,同时增强自身的专业知识,让更多的朋友加入我们的队伍来宣传并推广光纤照明应用。 一、浅谈塑料光纤 通过对塑料光纤的传光原理的研究及相关材料的开发,欧日等国的公司对塑料光纤的研制取得了重要的进展。 它们研制成的塑料光纤,光损耗率已降到25~9dB/Km。其工作波长已扩展到870nm(近红外光),接近石英玻璃光纤的实用水平。美国研制的一种PFX塑料系列光纤,有着优异的抗辐照性能。 此外,美国麻省波士顿光纤公司研制的Opti-Giga塑料光纤更是引人注目,它不仅比玻璃轻、柔性更好、成本更低,而且可在100米内以每秒3兆比特的速度传输数据。这种光纤还可以利用光的折射或光在纤维内的跳跃方式来达到较高的传输速度。 现在美欧日已把塑料光纤用于短途传输,如汽车、医疗器械、复印机等。就目前塑料光纤生产量而言,日本是世界上最大的塑料光纤生产者,然而却是欧洲推动了塑料光纤新应用领域的开发并建立了光纤检验标准。2001年下半年是欧洲塑料光纤工业发展的重要阶段,在这段时间内建立了欧洲塑料光纤检验和测量的新发展方针。世界上第一个专用塑料光纤应用中心(POFAC)在德国Nuremberg 落成。德国采用塑料光纤已经研制成功了多媒体总线系统MOST (24Mbit/s),并且有几家轿车制造商已把该系统引入到自己的产品上。德国宝马公司(BMW)在其新的7个系列产品中开创了使用100m塑料光纤的记录。 二、光纤照明应用领域及前景 光纤照明是近年新发展起来的一门全新高科技照明技术。它是采用光导纤维

光纤传输的特点优势及传输原理

光纤传输的特点优势及传输原理 优点 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。 组成部分 光源(又称光发送机),传输介质、检测器(又称光接收机)。计算机网络之间的光纤传输中,光源和检测器的工作一般都是用光纤收发器完成的,光纤收发器简单的来说就是实现双绞线与光纤连接的设备,其作用是将双绞线所传输的信号转换成能够通过光纤传输的信号(光信号)。当然也是双向的,同样能将光纤传输的信号转换能够在双绞线中传输的信号,实现网络间的数据传输。在普通的视、音频、数据等传输过程中,光源和检测器的工作一般都是由光端机完成的,光端机就是将多个E1信号变成光信号并传输的设备,所谓E1是一种中继线路数据传输标准,我国和欧洲的标准速率为2.048Mbps,光端机的主要作用就是实现电一光、光一电的转换。由其转换信号分为模拟式光端机和数字式光端机。因此,光纤传输系统按传输信号可分为数字传输系统和模拟传输系统。模拟传输系统是把光强进行模拟调制,将输入信号变为传输信号的振幅(频率或相位)的连续变化。数字传输系统是把输入的信号变换成“1”,“O”脉冲信号,并以其作为传输信号,在接受端再还原成原来的信号。当然,随着光纤传输信号的不同所需要的设备有所不同。光纤作为传输介质,是光纤传输系统的重要因素。可按不同的方式进行分类:按照传输模式来划分:光线只沿光纤的内芯进行传输,只传输主模我们称之为单模光纤(Single—Mode)。有多个模式在光纤中传输,我们称这种光纤为多模光纤(Multi-Mode)。 按照纤芯直径来划分:缓变型多模光纤、缓变增强型多模光纤和缓变型单模光纤按照光纤芯的折射率分布来划分:阶跃型光纤(Step index fiber),简称SIF;梯度型光纤(Graded index f iber),简称GIF;环形光纤(r iv er f iber);W 型光纤。 光缆:点对点光纤传输系统之间的连接通过光缆。光缆含1根光纤(称单纤),有2根光纤(称双纤),或者更多。 单、多模光纤传输设备的原理 光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。

塑料光纤知识

塑料光纤知识问答 1、Q:什么是塑料光纤? A:塑料光纤也称聚合物光纤,就是采用聚合物材料或有机材料制备而成的细丝状可传导光功率的传输线,现今国内低于POF的命名除聚合物光纤外,较为普遍的为塑料光纤,还有高聚物光纤,有机光纤,聚合物光波导等名称。塑料光导纤维(POF)是由高透明聚合物如聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)作为核结构材料,氟塑料作为皮层结构的一类光导体 2、Q:塑料光纤按照用途不同可分为哪几类? A:塑料光纤按照用途不同可分为装饰用塑料光纤和通信用塑料光纤。 3、Q:通信用塑料光纤按照其芯-皮折射率分布不同可分为哪几类? A:通信用塑料光纤按照其芯-皮折射率分布不同可分为阶跃折射率分布型塑料光纤(简称SI-POF)和渐变折射率分布型塑料光纤(简称GI-POF)。 4、Q:通信用PMMA塑料光纤的纤芯材料是什么? A:通信用PMMA塑料光纤的纤芯材料是聚甲基丙烯酸甲酯。俗称有机玻璃,即亚克力。 5、Q:通信用PMMA塑料光纤一般的被覆材料是什么? A:通信用PMMA塑料光纤一般的被覆材料是PE。 6、Q:通信用PMMA塑料光纤的纤芯直径是多少? A:通信用PMMA塑料光纤的纤芯直径是980um。 7、Q:通信用PMMA塑料光纤的直径是多少? A:通信用PMMA塑料光纤的直径是1000um。 8、Q:通信用PMMA塑料光缆的直径是多少? A:通信用PMMA塑料光缆的直径是2.2mm。 9、Q:通信用PMMA塑料光纤的衰减范围是多少? A:通信用PMMA塑料光纤的衰减为≤200dB。 10、Q:什么叫衰减? A:光纤的传输损耗称为衰减 11、Q:一般PMMA塑料光纤裸纤产品有哪些规格? A:一般PMMA塑料光纤裸纤产品的规格有:0.25mm、0.5mm、0.75mm、1.0mm、1.5mm、2.0mm、2.5mm、3.0mm 12、Q:通信用PMMA塑料光纤的传输距离是多少? A:通信用PMMA塑料光纤的传输距离是≤100m。

光传输通信基本原理

第一部分光传输通信基本原理 第一章、光纤通信原理 第一节、光纤通信的概念 一、光纤通信的概念 光纤通信概念:利用光纤来传输携带信息的光波以达到通信的目的。典型的光纤通信系统方框图如下: 模拟信息模拟信息 数字光纤通信系统方框图 从图中可以看出,数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去

调制发送机中的光源器件LD,则LD就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。其中光发送机的调制方式有两种:直接调制也称内调制(一般速率小于等于2.5GB/S时);间接调制也称外调制(一般速率大于2.5GB/S时)。 二、光纤通信的特点 1、通信容量大 2、中继距离长 3、保密性能好 2、适应能力强 5、体积小、重量轻、便于施工和维护 6、原材料来源丰富,潜在的价格低廉 第二节、光纤的导光原理 一、全反射原理 我们知道,当光线在均匀介质中传播时是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图2.5所示。

图2.5 光的反射与折射 根据光的反射定律,反射角等于入射角。 根据光的折射定律: n Sin n Sin 1222θθ= (2.2) 其中n 1为纤芯的折射率,n 2为包层的折射率。 显然,若n 1>n 2,则会有θ2>θ1。如果n 1与n 2的比值增大到一定程度,则会使折射角θ2≥90°,此时的折射光线不再进入包层,而会在纤芯与包层的分界面上掠过(θ2=90°时),或者重返回到纤芯中进行传播(θ2>90°时)。这种现象叫做光的全反射现象,如图2.6所示。

光缆的基本知识及常识

光缆的基本知识及常识

光缆小常识 光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、石英光纤的分类 单模光纤 G.652A(B1.1简称B1) G.652B(B1.1简称B1) G.652C(B1.3) G.652D(B1.3) G.655A光纤(B4)(长途干线使用) G.655B光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1) 62.5/125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前层绞式光缆芯数可达216芯或更高。松套层绞式普通光缆 (GYTA - GYTS - GYTA53 - GYTY53 - GYTA33 - GYTA(Y)533) ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,

相关文档
相关文档 最新文档