文档库 最新最全的文档下载
当前位置:文档库 › PET monitoring of cancer therapy with He-3 and C-12 beams a study with the GEANT4 toolkit

PET monitoring of cancer therapy with He-3 and C-12 beams a study with the GEANT4 toolkit

PET monitoring of cancer therapy with He-3 and C-12 beams a study with the GEANT4 toolkit
PET monitoring of cancer therapy with He-3 and C-12 beams a study with the GEANT4 toolkit

a r X i v :0708.1691v 1 [p h y s i c s .m e d -p h ] 13 A u g 2007PET monitoring of cancer therapy with 3He and 12C beams:a study with the GEANT4toolkit Igor Pshenichnov 1,2,Alexei Larionov 1,3,Igor Mishustin 1,3and Walter Greiner 11Frankfurt Institute for Advanced Studies,Johann Wolfgang Goethe University,60438Frankfurt am Main,Germany 2Institute for Nuclear Research,Russian Academy of Science,117312Moscow,Russia 3Kurchatov Institute,Russian Research Center,123182Moscow,Russia Abstract.We study the spatial distributions of β+-activity produced by therapeutic beams of 3He and 12C ions in various tissue-like materials.The calculations were performed within a Monte Carlo model for Heavy-Ion Therapy (MCHIT)based on the GEANT4toolkit.The contributions from positron-emitting nuclei with T 1/2>10s,namely 10,11C,13N,14,15O,17,18F and 30P,were calculated and compared with experimental data obtained during and after irradiation,where available.Positron emitting nuclei are created by 12C beam in fragmentation reactions of projectile and target nuclei.This leads to a β+-activity pro?le characterised by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution.This can be used for dose monitoring in carbon-ion therapy of cancer.On the contrary,as the most of positron-emitting nuclei are produced by 3He beam in target fragmentation reactions,the calculated total β+-activity during or soon after the irradiation period is evenly distributed within the projectile range.However,we predict also the presence of 13N,14O,17,18F created in charge-transfer reactions by low-energy 3He ions close to the end of their range in several tissue-like media.The time evolution of β+-activity pro?les was investigated for both kinds of beams.We found that due to the production of 18F nuclide the β+-activity pro?le measured 2or 3hours after irradiation with 3He ions will have a distinct peak correlated with the maximum of depth-dose distribution.We also found certain advantages of low-energy 3He beams over low-energy proton beams for reliable PET monitoring during particle therapy of shallow located tumours.In this case the distal edge of β+-activity distribution from 17F nuclei clearly marks the range of 3He in tissues.Submitted to:Phys.Med.Biol.

PACS numbers:87.53.Pb,87.53.Wz,87.53.Vb

E-mail:pshenich@fias.uni-frankfurt.de

1.Introduction

Beams of protons and carbon ions are used in particle therapy of deep-seated tumours for conformal irradiation of a tumour volume while sparing surrounding healthy tissues and organs at risk (Castro et al 2004,Amaldi and Kraft 2005).New facilities for proton and ion therapy of cancer are planned or under construction in France (Bajard

et al2004),in Italy(Amaldi2004),in Austria(Griesmayer and Auberger2004)and in Germany(Haberer et al2004).Along with other facilities the Heidelberg Ion Therapy Center(HIT)(Haberer et al2004,Heeg et al2004)will use several beams for treatment:protons,3He,carbon and oxygen nuclei.There oncologists will have a variety of treatment tools at their disposal,while each treatment option will be characterised by its speci?c e?ectiveness,possible side e?ects and treatment costs. Appropriate quality assurance methods should be also developed speci?cally for each kind of treatment.

In particular,the Positron Emission Tomography(PET)during or after irradiation provides the possibility to monitor the delivered dose.The PET monitoring methods in proton and ion therapy can be divided into two categories:(i)based on tracing the positron emitting nuclei,e.g.10C,11C and15O,created by proton beams in tissues due to fragmentation of target nuclei;(ii)based on tracing the positron emitting nuclei,10C and11C,created in fragmentation reactions of12C beam nuclei. The spatial distribution of positron emitting nuclei is measured by detecting gamma pairs from e+e?→γγannihilation events.By comparing the measuredβ+-activity distribution with the distribution calculated for the planned dose,one can control the accuracy of the actual treatment.

Following extensive theoretical and experimental studies with carbon beams (Enghardt et al1992,Pawelke et al1996,Pawelke et al1997,P¨o nisch et al2004, Parodi2004),in-beam PET monitoring is successfully used in carbon-ion therapy at GSI,Darmstadt,Germany(Enghardt et al2004,Schulz-Ertner et al2004).Similar approaches can be used for monitoring of proton therapy,as shown early by Bennett et al1975,Bennett et al1978and later by Oelfke et al1996,Parodi and Enghardt 2000,Parodi et al2002,Parodi2004,Nishio et al2005,Parodi et al2007a and Parodi et al2007b.PET images from proton and carbon-ion therapy were also studied in experiments by Hishikawa et al2004at Hyogo ion therapy centre in Japan(Hishikawa et al2002).

Beams of nuclei lighter than carbon,e.g.3He,4He or7Li,are also of clinical interest.This is shown,in particular,by Furusawa et al2000and Kempe et al2007. An advantage of3He nuclei consists in their speci?c Z/A=2/3ratio which helps to protect the3He beam from contamination with4He,12C,16O nuclei.The feasibility of in-beam PET for3He therapy was demonstrated for the?rst time in experiments by Fiedler et al2006.

In the present work we use a Monte Carlo model for Heavy-Ion Therapy(MCHIT) (Pshenichnov et al2005,2006)based on the GEANT4simulation toolkit(Agostinelli et al2003,Allison et al2006)to study theβ+-activity pro?les induced by3He and12C beams in tissue-like media.We argue that speci?c nuclear reactions,namely proton pick-up by target nuclei,play certain role in production of positron emitting nuclei by3He beams in addition to previously studied nuclear fragmentation reactions.In Section2we describe the physical models from the GEANT4toolkit used to build MCHIT.In Section3the time-dependent analysis of theβ+-activity distributions induced by3He and12C beams in graphite,water and PMMA phantoms is presented. In Section4calculational results are compared with experimental data obtained by Fiedler et al2006.Results for homogeneous phantoms with stoichiometric composition of muscle and bone tissues are presented in Section5.The calculated distributions ofβ+-activity induced by low energy proton,3He and12C beams are discussed in Section6with emphasis on the role of proton pick-up reactions induced by3He. In Section7the reliability of MCHIT results is veri?ed by comparison with available

experimental data on speci?c reaction cross sections and isotope yields in thick targets. Section8contains summary and conclusions.

2.GEANT4physics models used in MCHIT

We have used the version8.2of the GEANT4toolkit(GEANT4-Webpage2006)to build a Monte Carlo model for Heavy-Ion Therapy(MCHIT).The model is intended for calculating the spatial distributions of dose andβ+-activity from beams of light nuclei(from protons to oxygen ions)in homogeneous tissue-like media.The phantom material and size,as well as beam parameters such as energy spread,transverse beam size,emittance,angular divergence,can be set via user interface commands.

In MCHIT the energy loss and straggling of primary and secondary charged particles due to interaction with atomic electrons is described via a set of models called’standard electromagnetic physics’.Multiple scattering due to electromagnetic interactions with atomic nuclei is also included in simulations.

In each simulation step,the ionisation energy loss of a charged particle is calculated according to the Bethe-Bloch formula.The average excitation energy of the water molecule was set to77eV,i.e.to the value which better describes the set of available data on depth-dose distributions for therapeutic proton and carbon-ion beams.This parameter was taken68.5eV for PMMA,78eV for graphite,86.5eV for bone tissue and70.9eV for muscle tissue.

Two kinds of hadronic interactions are considered in the MCHIT model:(a) elastic scattering of hadrons on target protons and nuclei,which dominate at low projectile energies,and(b)inelastic nuclear reactions induced by fast hadrons and nuclei(GEANT4-Documents2006).

The overall probability of hadronic interactions for nucleons and nuclei propagating through the medium depends on the total inelastic cross section for proton-nucleus and nucleus-nucleus collisions.Parametrised equations by Wellisch and Axen1996that best?t experimental data were used to describe the total reaction cross sections in nucleon-nucleus collisions.Systematics by Tripathi et al1997and Shen et al1989for the total nucleus-nucleus cross sections were used for calculating the probability of nucleus-nucleus collisions.

In the MCHIT model the inelastic interaction of nucleons below20MeV is simulated by means of data driven models.Above20MeV the exciton-based precompound model is invoked(Agostinelli et al2003,Allison et al2006).For hadrons and nuclei with the energies above80MeV,we employed the binary cascade model (Folger et al2004).Exited nuclear remnants are created after the?rst cascade stage of interaction.Therefore,appropriate models for describing the de-excitation process have to be involved into simulation.The Weisskopf-Ewing model(Weisskopf and Ewing1940)was used to describe the evaporation of nucleons from residual nuclei at relatively low excitation energies,below3MeV per nucleon.The Statistical Multifragmentation Model(SMM)by Bondorf et al1995was used at excitation energies above3MeV per nucleon to describe the multi-fragment break-up of highly-excited residual nuclei.The SMM includes as its part the Fermi break-up model, which describes the explosive decay of highly-excited light nuclei.

3.Time-dependent analysis of theβ+activity

We follow the approach of Parodi et al2002in calculating the time dependence of β+-activity induced by therapeutic beams.As reported by Fiedler et al2006,the time structure of ion beams provided by the GSI synchrotron consists of repeated particle extractions(spills)and pauses.It is assumed in calculations,that each beam spill has duration ofτs with the average intensity of J(ions/s)during the beam extraction. The irradiation procedure consists of N spills with pauses between subsequent spills ofτp,as given in Table1.Bothτs andτp are in the range of1-3s.

Table1.Beam parameters for207.92A MeV3He and337.5A MeV12C used

for irradiation of graphite,water and PMMA phantoms by Fiedler et al2006.It

is denoted:N—number of spills,J—beam intensity during each spill,τs—

spill duration,τp—duration of a pause between spills.

3He graphite120 1.9 1.39 3.10

3He water99 2.0 1.35 3.14

3He PMMA120 2.0 1.37 3.12

12C graphite1200.9 2.20 2.29

12C water1200.9 2.20 2.29

12C PMMA1200.9 2.19 2.30

?t

=Jf i(z)?λi F i(z,t)for t j?τs≤t

λi

(1?exp(?λiτs)).(5) This gives the following expression for the depth distribution of the i-th isotope at the end of j-th spill:

F i(z,t j)=F i(z,t1)j?1

n=0

exp(?λi(τp+τs)n)for j=1,...,N.(6)

Since the measurements of theβ+-activity during the irradiation were performed only in pauses between subsequent spills,the total number ofβ+-decays per unit depth during the irradiation is

dNβ+

dz

= i F i(z,t N)[exp(?λi(t st?t N))?exp(?λi(t fin?t N))].(8)

The half-life times of the isotopes included in our analysis and listed in the next section are much longer than the spill duration and the pause between spills: (τs+τp)λi?1.Under this condition Eqs.(7)and(8)can be simpli?ed.The number ofβ+-decays per unit length during the irradiation becomes

dNβ+

τp+τs [t N?

1

dz

? iˉJf i(z)

Figure 1.Depth distribution ofβ+-activity induced by207.92A MeV3He

beam in graphite.The distributions ofβ+-decays counted during irradiation and

from10to20min after it are shown by solid lines in top and bottom panels,

respectively.Data by Fiedler et al2006are shown by points.Contributions of

speci?c isotopes and depth-dose distribution are also shown,as explained on the

legend.

were normalised to the corresponding maxima of the calculated dNβ+/dz distributions during irradiation.The same weight factor was applied for plotting the experimental data after irradiation.

The dNβ+/dz distributions during and after irradiation were calculated according to Eqs.(7)and(8),respectively,The beam parameters quoted in Table1were used in calculations.The calculated dNβ+/dz distributions were folded with the Gaussian weigth of FWHM=8mm.This width represents the sum of(1)the average distance between a nucleus which emits a positron and annihilation point~2mm,(c.f.Levin and Ho?man1999),and(2)a?nite spatial resolution(6.5±2mm)of the PET scanner used by Fiedler et al2006.The shapes of theβ+-activity distributions shown in Figs.1 2and3should be compared with the corresponding depth-dose distributions(given in arbitrary units)in order to investigate the correlation between them.

Figures1,2and3demonstrate also the dependence of theβ+-activity distributions on the elemental composition of the speci?ed target materials.In graphite,which contains only carbon nuclei,mostly11C and10C isotopes are produced by3He via the removal of one or two neutrons from target12C nuclei.As shown in Fig.1,these nuclei are evenly distributed within the range of3He projectiles and11C is the most abundantβ+-emitter.The MCHIT model predicts a bump near the Bragg peak due to14O and13N,which is,however,not visible in the data.A smaller bump

Figure2.Depth distribution ofβ+-activity induced by207.92A MeV3He beam

in water.The distributions ofβ+-decays counted during irradiation,from10to

20min and from120to130min after it are shown by solid lines in top,middle

and bottom panels,respectively.Data by Fiedler et al2006are shown by points.

Contributions of speci?c isotopes and depth-dose distribution are also shown,as

explained on the legend.

due to13N is also present in the totalβ+-activity distribution calculated10-20min after irradiation.

A larger set of isotopes is produced by3He in water,see Fig.2.The most abundant positron-emitting nuclei are15O and11C.While15O is produced by the removal of a single neutron from a target16O nucleus,the production mechanism of 11C,via the16O(3He,4p4n)11C reaction,is more complicated.This is re?ected in the

fact that the overall shape of the totalβ+-activity distribution during irradiation is satisfactory reproduced by the MCHIT model since it is mostly due to15O.However, there is a big discrepancy between theory and experiment for the time interval10-20 min after irradiation,as shown in the middle panel of Fig.2.It can be explained by the de?ciency of the model in calculating16O(3He,4p4n)11C reaction which can proceed through various intermediate states and reaction channels.

The MCHIT model predicts a noticeable contribution to theβ+-activity from14O during irradiation of water by3He.As the half-life time of14O is much shorter than that of11C,14O gives larger contribution during irradiation,while11C contribution dominates10-20min after irradiation.The model also predicts a small bump close to

the Bragg peak due to17F.A similar but somewhat shifted bump is also seen in the

Figure3.Same as Fig.2,but for207.92A MeV3He beam in PMMA and for

β+-decays counted from180to190min after irradiation(bottom panel).

data for the totalβ+-activity distribution.The distal slope of the activity distribution can be used for determination of the3He range in tissues,similar to the proposal by Parodi et al2002for therapeutic proton beams.

We have found that a better way to monitor the3He range in tissues can be provided by measuring theβ+-activity at later times,e.g.in the time window of 120-130min after irradiation.The activity distributions for this time interval are also shown in Fig.2.Here,the long-living18F isotope from the16O(3He,p)18F reaction dominates,and the peak in the activity distribution clearly marks the position of the Bragg peak.

As shown in Fig.3,in PMMA two dominatingβ+-emitters,11C and15O, are produced by3He.These isotopes are produced in the12C(3He,α)11C and 16O(3He,α)15O reactions on carbon and oxygen nuclei from PMMA.Due to PMMA

chemical composition,11C is more abundant than15O in this material.The activity distribution in PMMA calculated for later times,e.g.180-190min after irradiation, also has a bump close to the Bragg peak.This activity peak is due to18F produced in the16O(3He,p)18F reaction.

The MCHIT model is also veri?ed with theβ+-activity distributions measured by Fiedler et al2006for337.5A MeV12C beam in graphite,water and PMMA,as shown in Figs.4,5and6.In these phantom materials10C and11C can be produced by

single or double neutron removal from both12C projectiles and12C target nuclei.As

a result,theβ+-activity distribution is characterised by sharp peaks due to

projectile

fragmentation and plateau due to target fragmentation,as seen,in particular,in Fig.4.

Figure4.Depth distribution ofβ+-activity induced by337.5A MeV12C beam

in graphite.The distributions ofβ+-decays counted during irradiation and from

10to20min after it are shown by solid lines in top and bottom panels,respectively.

Data by Fiedler et al2006are shown by points.Contributions of speci?c isotopes

and depth-dose distribution are also shown,as explained on the legend.

The overall shapes of the totalβ+-activity distributions are satisfactorily described by the MCHIT model.However,as a rule,the peaks in theoretical distributions are located5-10mm deeper compared to the experimental ones.This shift is caused by the overestimation of the11C production in the binary cascade model at low energies,as explained in Section7.

As seen in Figs.4,5and6for all three materials,only11C survives within10 min after irradiation.However,during irradiation the contributions from14O and15O are important for water and PMMA.These positron-emitting oxygen isotopes are also produced beyond the Bragg peak by energetic secondary protons emitted in nuclear fragmentation of12C beam.

4.2.Total yields of positron-emitting nuclei produced by3He and12C beams

The MCHIT model can further be validated by confronting calculated total production yields of speci?c positron-emitting nuclei with the yields measured by Fiedler et al 2006.In Tables2,3and4we present the total yields of the most abundant isotopes, 10C,11C,13N and15O,produced by3He and12C beams in graphite,water and PMMA

phantoms.The values are given in%per beam particle.

Figure5.Same as Fig.4,but for by337.5A MeV12C beam in water.

From inspecting Table2one can conclude that the calculated yields of11C are

in better agreement with experiment than10C yields.The yields of11C produced by

3He are well described,while the model overestimates the production of10C by both

beams.

Table https://www.wendangku.net/doc/003465453.html,puted number ofβ+-emitters(in%per beam particle)from

interactions of3He and12C in graphite.Data are from Fiedler et al2006.

MCHIT Experiment MCHIT Experiment MCHIT Experiment MCHIT Experiment

One can also compare the model with the data on13N and15O production in

irradiation of water phantoms by3He and12C.Calculated and measured yields for this

case are presented in Table3.The yields of15O produced by3He are underpredicted

by the model by~30%for all3He energies,while the production of15O and11C

by12C beam is well described.On the other hand,the model completely fails in

describing13N and11C production by3He,as these yields are underestimated by a

factor of three.We attribute this problem to the complexity of16O(3He,3p3n)13N and

Figure6.Same as Fig.4,but for by337.5A MeV12C beam in PMMA.

16O(3He,4p4n)11C reactions.The ability of the model to predict10C yields for3He

beams depends on the beam energy.The calculations agree better with the data at

207.92A MeV than at130.03and166.05A MeV.

Table https://www.wendangku.net/doc/003465453.html,puted number ofβ+-emitters(in%per beam particle)from

interactions of3He and12C in water.Data are from Fiedler et al2006.

MCHIT Experiment MCHIT Experiment MCHIT Experiment MCHIT Experiment

Calculations and experimental data for PMMA phantoms irradiated by3He and

12C are presented in Table4.The calculated yields of10C and13N produced by3He

in this material are well described by the MCHIT model,while the yields of most

abundant11C and15O are underestimated by~30%.The model is quite successful

in describing13N,11C and15O produced by12C beam,but the production of10C is

overestimated.

In summary,the yields of the most abundant isotopes11C and15O produced by

12C in water and PMMA are very well described by the MCHIT model,see Tables3

and4.However,the yields of11C and15O,which are abundantly produced also by

Table https://www.wendangku.net/doc/003465453.html,puted number ofβ+-emitters(in%per beam particle)from

interactions of3He and12C in PMMA.Data are from Fiedler et al2006.

MCHIT Experiment MCHIT Experiment MCHIT Experiment MCHIT Experiment 3He in water and PMMA,are underpredicted at all3He energies.This means that

there is a room for improvement of the GEANT4nuclear reaction models with respect

to3He-induced reactions.

5.Calculations ofβ+-activity distributions in tissues

As demonstrated above,the total yields and spatial distributions ofβ+-activity

produced by therapeutic beams depend essentially on the elemental compositions

of target materials.Therefore,for studying the feasibility of the PET monitoring

method in real tissues irradiated with3He we have performed calculations for two

homogeneous phantoms with elemental composition similar to muscle(9×9×30cm3,

ρ=1.061g cm?3)and compact bone(9×9×15cm3,ρ=1.850g cm?3).The

elemental composition was taken in the following mass fractions:H-10.2%,C-

14.3%,N-3.4%,O-71%,Na-0.1%,P-0.2%,S-0.3%,Cl-0.1%,K-0.4%for

muscle tissue,and H-6.4%,C-27.8%,N-2.7%,O-41%,Mg-0.2%,P-7%,S

-0.2%,Ca-14.7%for compact bone tissue.The beam parameters in calculations

of3He irradiation of muscle(bone)were taken the same as for3He beam in water

(graphite),as listed in Table1.The calculated depth distributions ofβ+-activity in

tissues irradiated by207.92A MeV3He are shown in Figs.7and8.

Due to the presence of Na,P,S,Cl,Ca,K and Mg in muscle and bone tissues,

19Ne(T1/2=17.22s),21Na(T1/2=22.49s),and30P(T1/2=2.498min)can also

be produced in fragmentation reactions in addition to the isotopes analysed in the

previous sections.However,only negligible yields of19Ne and21Na are predicted by

the MCHIT model and they can be safely neglected.Theβ+-activity distributions

in muscle are similar to those in water(c.f.Fig.2).In bone tissue,however,30P

is additionally produced by the31P target fragmentation.In fact,both30P and15O

noticeably contribute to the dNβ+/dz after the distal edge of the Bragg peak,as shown

in Fig.8.This is similar to11C distribution in graphite and PMMA irradiated by

3He(see Figs.1and3where also a tail of theβ+-activity is present beyond the Bragg

peak).

Only11C and18F survive in muscle and bone tissues at later time after irradiation

The presence of18F opens a new way to monitor the3He range in tissues,as the18F

peak(see the bottom panels of Figs.7and8)clearly mark the position of the Bragg

peak.

Figure7.Depth distribution ofβ+-activity induced by207.92A MeV3He beam

in muscle tissue.The distributions ofβ+-decays counted during irradiation,from

10to20min and from120to130min after it are shown by solid lines in top,

middle and bottom panels,respectively.Contributions of speci?c isotopes and

depth-dose distribution are also shown,as explained on the legend.

6.PET monitoring with low energy proton,3He and12C beams

The nuclear pick-up reactions leading to the production of14O,17F and18F nuclei have the maximal cross sections at low energies.In this energy regime the velocities of projectile nuclei are comparable to the velocities of intranuclear nucleons due to Fermi motion.This gives optimum conditions for transferring nucleons from one collision partner to another during their collision and enhances the production of14O,17F and 18F.

It is instructive to consider the distributions ofβ+-activity in muscle produced by various low-energy beams during irradiation,as shown in Fig.9.In these calculations the time structure of all three beams was assumed the same as for graphite irradiation by3He,see Table.1.It is expected that nuclear transfer reactions are more important at low energies,while nuclear fragmentation reactions contribute less because they have certain energy thresholds.

As one can see in Fig.9,the distribution of positron emitting nuclei produced by low-energy87MeV proton beam is almost uniform and poorly correlated with the position of the Bragg peak.In fact,the Bragg peak in the depth-dose distribution is

located at the region with a negligibleβ+-activity.A similar distribution is predicted

Figure8.Same as Fig.7,but for207.92A MeV3He beam in compact bone

tissue and forβ+-decays counted from180to190min after irradiation(bottom

panel).

for15O produced by102A MeV3He.However,17F nuclei are additionally produced by3He in nuclear charge pick-up reactions close to the Bragg peak.This makes the total distribution ofβ+-activity for3He more suitable for the determination of the3He range in tissues by the PET method,as the distal end of theβ+-activity distribution marks clearly the position of the Bragg peak.It is advisable to perform the PET measurements with low-energy3He beams to quantify the contribution of charge pick-up reactions.Theβ+-activity distribution produced by162A MeV12C is also suitable for PET monitoring due to the presence of broad peaks associated with10C and11C nuclei.

7.Reliability of calculational results

We discuss the discrepancies between the MCHIT results and the experimental data by Fiedler et al2006.The calculations agree with the data on the total yields of10C, 11C,13N and15O in graphite,water and PMMA at~30?50%accuracy level,see

Tables2-4.However,the agreement with the activity distribution measured10-20 min after irradiation of water by207.92A MeV3He is poor,see the middle panel of Fig.3.We identify this discrepancy with the poor description of16O(3He,4p4n)11C

reaction,and we conclude that it has to be improved in GEANT4.In this reaction

Figure9.Depth distribution of ofβ+-activity during irradiation by87MeV

protons(top panel),102A MeV3He(middle panel)and162A MeV12C beam

in muscle tissue.

a compound nucleus19Ne can be created leading to a larger longitudinal momentum transfer as compared with the direct mechanism.Therefore,the11C nuclei produced in decays of19Ne will have on average a larger longitudinal momentum and will stop closer to the Bragg peak.Therefore,the agreement in shapes of the calculated and measured distributions of11C nuclei can be possibly improved by taking into account the formation of19Ne.

The model was also confronted with the measured activity distributions from 337.5A MeV12C in graphite,water and PMMA.The largest discrepancy between calculations and data obtained10-20min after irradiation was found for the graphite phantom,see the bottom panel of Fig.4.To identify the origin of this discrepancy the cross sectionσ(11C)of the12C(12C,n)11C reaction was calculated with the GEANT4 toolkit.This was done following the expression:

σ(11C)=dN11C

by30-60%.The ratioσGEANT4

11C /σexp

11C

seems to grow at lower beam energies.This

explains the shift of the peak of the calculated activity distribution to larger z with respect to the data.

Table5.Cross section of the reaction12C(12C,X)11C calculated using GEANT4

in comparison to the data from Yashima et al2003,2004.The error bars on

theoretical results are pure statistical.

100144±1488.3±3.2

230106±1779.0±7.9

400100±1068.6±2.5

should,in principle,allow to identify this peak.Since the measured biological wash-out time is about of91-124min in muscle(Tomitani et al2003),https://www.wendangku.net/doc/003465453.html,parable to physical half-life of18F,the biological wash-out should not drastically decrease PET signal even for water-dominated tissues.In bone tissue PET signal is expected to be robust and survive2-3hours after irradiation.Alternatively,the biological wash-out ofβ+-activity at later times(≥1hour)may be studied with18F. Acknowledgments

This work was supported by Siemens Medical Solutions.We are grateful to Prof. Hermann Requardt for stimulating discussions.The discussions with Dr.Thomas Haberer and Dr.Dieter Schardt are gratefully acknowledged.We are indebted to Prof.Wolfgang Enghardt and Dr.Fine Fiedler for discussions and for providing us with the tables of their experimental data,and their compilation of experimental data on3He-induced nuclear reactions.

References

Agostinelli S et al(GEANT4Collaboration)2003GEANT4:A simulation toolkit Nucl.Instrum.

Methods A506250-303

Allison J et al(GEANT4Collaboration)2006GEANT4developments and applications IEEE Trans.

Nucl.Sci.53270-8

Amaldi U and Kraft G2005Radiotherapy with beams of carbon ions Rep.Prog.Phys.681861-82 Amaldi U2004CNAO–The Italian Centre for Light-Ion Therapy Radiother.Oncol.73S191-201 Bajard M,De Conto J M and Remillieux J2004Status of the”ETOILE”project for a French hadrontherapy centre Radiother.Oncol.73S211-5

Bennett G W,Goldberg A C,Levine G S,Guthy J,Balsamo J and Archambeau J O1975Beam localization via O-15activation in proton-radiation therapy Nucl.Instr.Methods125333-8 Bennett G W,Archambeau J O,Archambeau B E,Meltzer J I and Wingate C L1978Visualization and transport of positron emission from proton activation in vivo Science2001151-3

Bondorf J P,Botvina A S,Iljinov A S,Mishustin I N and Sneppen K1995Statistical multifragmentation of nuclei Phys.Rept.257133-221

Castro J R,Petti P L,Blakely E A and Daftari I K2004Particle radiation therapy Textbook of Radiation Oncology(Saunders,Elsevier Inc.)ed Leibel S A and Phillips T L pp1547-68 Cirilov S D,Newton J O and Schapira J P1966Total cross sections for the reaction12C(3He,α)11C and12C(3He,n)14O Nucl.Phys.77472-6.

Enghardt W,Crespo P,Fiedler F,Hinz R,Parodi K,Pawelke J,and P¨o nisch F2004Charged hadron tumour therapy monitoring by means of PET Nucl.Instrum.Methods A525284-8

Enghardt W,Fromm W D,Geissel H,Keller H,Kraft G,Magel A,Manfrass P,Munzenberg G, Nickel F,Pawelke J,Schardt D,Scheidenberger C and Sobiella M1992The spatial-distribution of positron-emitting nuclei generated by relativistic light-ion beams in organic-matter Phys.

Med.Biol.372127-31

Fiedler F,Crespo P,Parodi K,Sellesk M and Enghardt W2006The feasibility of in-beam PET for therapeutic beams of3He IEEE Trans.Nucl.Sci.532252-9

Fitschen J,Beckmann R,Holm U and Neuert H1977Yield and production of18F by3He irradiation of water Int.J.Appl.Radiat.Isot.28781-884

Folger G,Ivanchenko V N and Wellisch J P2004The Binary Cascade-nucleon-nuclear reactions Eur.Phys.J.A21407-17

Furusawa Y,Fukutsu K,Aoki M,Itsukaichi H,Eguchi-Kasai K,Ohara H,Yatagai E,Kanai T and Ando K2000Inactivation of aerobic and hypoxic cells from three di?erent cell lines by accelerated 3He,12C and20Ne-ion beams Radiat.Res.154485-96

GEANT4-Documents2006http://geant4.web.cern.ch/geant4/G4UsersDocuments/Overview/html/ GEANT4-Webpage2006http://geant4.web.cern.ch/geant4/

Griesmayer E and Auberger T2004The status of MedAustron Radiother.Oncol.73S202-5 Haberer T,Debus J,Eickho?H,Jakel O,Schulz-Ertner D and Weber U2004The Heidelberg ion therapy center Radiother.Oncol.73S186-90

Hahn R L and Ricci E1966Interactions of3He Particles with9Be,12C,16O and19F Phys.Rev.

146650-9.

Heeg P,Eickho?H and Haberer T2004Conception of heavy ion beam therapy at Heidelberg University(HICAT)Z.Med.Phys.1417-24

Hishikawa Y,Oda Y,Mayahara H,Kawaguchi A,Kagawa K,Murakami M and Abe M2004Status of the clinical work at Hyogo Radiother.Oncol.73S38-40

Hishikawa Y,Kagawa K,Murakami M,Sakai H,Akagi T and Abe M2002Usefulness of positron-emission tomographic images after proton therapy Int.J.Radiat.Oncol.Biol.Phys.531388-91 Kempe J,Gudowska I and Brahme A2007Depth absorbed dose and LET distributions of therapeutic 1H,4He,7Li and12C beams Med.Phys.34183-92

Knust E J and Machulla H-J1983High yield production of18F in water target via the16O(3He,p)18F reaction Int.J.Appl.Radiat.Isot.341627-8

Levin C S and Ho?man E J1999Calculation of positron range and its e?ect on the fundamental limit of positron emission tomography system spatial resolution Phys.Med.Biol.44781-99 Nishio T,Sato T,Kitamura H,Murakami K and Ogino T2005Distributions ofβ+decayed nuclei generated in the CH2and H2O targets by the target nuclear fragment reaction using therapeutic MONO and SOBP proton beam Med.Phys.321070-82

Oelfke U,Lam G K and Atkins M S1996Proton dose monitoring with PET:quantitative studies in Lucite Phys.Med.Biol.41177-96

Osgood D R,Patterson J R and Titterton E W1964The excitation function for reaction C12(He3,n0)O14between threshold and11.45MeV Nucl.Phys.60503-8

Parodi K and Enghardt W2000Potential application of PET in quality assurance of proton therapy Phys.Med.Biol.45N151-6

Parodi K,Enghardt W and Haberer T2002In-beam PET measurements ofβ+radioactivity induced by proton beams Phys.Med.Biol.4721-36

Parodi K2004On the feasibility of dose quanti?cation with in-beam PET data in radiotherapy with 12C and proton beams2004,Ph.D.Dissertation,Technische Universit¨a t Dresden.

Parodi K,Ferrari A,Sommerer F and Paganetti H2007a Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code Phys.Med.

Biol.523369-87

Parodi K,Paganetti H,Shih H A,Michaud S,Loe?er J S,DeLaney T F,Liebsch N J,Munzenrider J E,Fischman A J,Knopf A and Bortfeld T2007b Patient study of in vivo veri?cation of beam delivery and range,using positron emission tomography and computed tomography imaging after proton therapy Int.J.Radiat.Oncol.Biol.Phys.68920-34

Pawelke J,Byars L,Enghardt W,Fromm W D,Geissel H,Hasch B G,Lauckner K,Manfrass P, Schardt D and Sobiella M1996The investigation of di?erent cameras for in-beam PET imaging Phys.Med.Biol.41279-96

Pawelke J,Enghardt W,Haberer T,Hasch B G,Hinz R,Kramer M,Lauckner K and Sobiella M 1997In-beam PET imaging for the control of heavy-ion tumour therapy IEEE Trans.Nucl.Sci.

441492-8

P¨o nisch F,Parodi K,Hasch B G and Enghardt W2004The modelling of positron emitter production and PET imaging during carbon ion therapy Phys.Med.Biol.495217-32

Pshenichnov I,Mishustin I and Greiner W2005Neutrons from fragmentation of light nuclei in tissue-like media:a study with the GEANT4toolkit Phys.Med.Biol.505493-507

Pshenichnov I,Mishustin I and Greiner W2006Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4Phys.Med.Biol.516099-112

Schulz-Ertner D,Nikoghosyan A,Thilmann C,Haberer T,Jakel O,Karger C,Kraft G, Wannenmacher M and Debus J2004Results of carbon ion radiotherapy in152patients Int.

J.Radiat.Oncol.Biol.Phys.58631-40

Shen W,Wang B,Feng J,Zhan W,Zhu Y and Feng E Total reaction cross-section for heavy-ion collisions and its relation to the neutron excess degree of freedom Nucl.Phys.A491130-46 Tomitani T,Pawelke J,Kanazawa M,Yoshikawa K,Yoshida K,Sato M,Takami A,Koga M,Futami Y,Kitagawa A,Urakabe E,Suda M,Mizuno H,Kanai T,Matsuura H,Shinoda I and Takizawa S2003Washout studies of11C in rabbit thigh muscle implanted by secondary beams of HIMAC Phys.Med.Biol.48875-89

Tripathi R K,Cucinotta F A and Wilson J W1999Universal parameterization of absorption cross sections,NASA Technical Paper3621

Tsujii H,Mizoe J E,Kamada T,Baba M,Kato S,Kato H,Tsuji H,Yamada S,Yasuda S,Ohno T,Yanagi T,Hasegawa A,Sugawara T,Ezawa H,Kandatsu S,Yoshikawa K,Kishimoto R and Miyamoto T2004Overview of clinical experiences on carbon ion radiotherapy at NIRS.

Radiother.Oncol.73S41-9

Weisskopf V E and Ewing D H1940On the yield of nuclear reactions with heavy elements Phys.

Rev.57472-85

Wellisch H P and Axen D1996Total reaction cross section calculations in proton-nucleus scattering Phys.Rev.C541329-32

Yashima H,Uwamino Y,Iwase H,Sugita H,Nakamura T,Ito S and Fukumura A2003Measurement and calculation of radioactivities of spallation products by high-energy heavy ions Radiochim.

Acta91689-96

Yashima H,Uwamino Y,Iwase H,Sugita H,Nakamura T,Ito S,Fukumura A2004Cross sections for the production of residual nuclides by high-energy heavy ions Nucl.Instr.Methods B226 243-63

心情不好说说发朋友圈,适合心情不好发的朋友圈

心情不好说说发朋友圈,适合心情不好发的朋友圈 1、如果一个人真的爱你,距离不是一个问题,它只会成为一种滋长爱情的力量。 2、曾经以为,伤心是会流很多眼泪的,原来,真正的伤心,是流不出一滴眼泪。什么事情都会过去,我就是这样活过来的。 3、人人都是自顾不暇的泥菩萨,别指望谁能帮你度过现实这条河。 4、你可能也不爱我,只是刚好遇见我。 5、烟灭酒半杯,往后日子多笑少流泪。 6、再也不幻想,再也不乱想,再也不会想,再也不用想。 7、听到你的消息还是会心头一震,不过这些都不重要了,孤独至少比爱你舒服。 8、所有回不去的良辰美景,都是举世无双的好时光。感谢过去,珍惜现在,憧憬未来。哭给自己听,笑给别人看,这就是所谓的人生。 9、我一直走一直走,直到走到回忆的尽头,才发现时光与你,都没有等我。 10、付出和接受都是种债都无法还清。

11、自以为是刻骨铭心的回忆,别人早已已经忘记了。 12、成熟就是自己吞下苦难、眼泪、委屈、转脸还能给别人一个笑容。 13、我也经常觉得冷可我不会随便抱别人。 14、这世上真的没有感同身受只能冷暖自知。 15、心情不好就少听悲伤的歌。 16、有的时候连自己都不知道自己心里想什么,只知道自己心好累。 17、心情不好的时候,音乐必须大声,这样才听不到心碎的声音。 18、我们就像仙人掌,防备了别人,孤单了自己。 19、不要在流眼泪的时候做任何决定,情绪负面的时候说话越少越好。 20、说出口的伤痛都已平复,绝口不提的才触及心底。 21、不该看的东西就别去看,很多时候我们心情不好是因为我们手贱。 22、说什么待我长发及腰,心情不好全剪了,叫他想一辈子去吧。 23、心情不好的时候,做什么事都那么力不从心。 24、很多人,因为寂寞而错爱了一人,但更多的人,因为错爱一

疲劳驾驶预警系统

DSD行车安全电脑(四合一版本) 产品介绍 DSD行车安全电脑是结合车载智能电脑 和车辆辅助驾驶安全电脑功能的全新一代创新 产品,其包括疲劳检测与防瞌睡系统、视频行 车记录仪、GPS定位导航以及全面的车载3G 平板电脑的功能。 DSD行车安全电脑的防瞌睡检测系统,利 用面部生物特征模式检测技术,通过对驾驶人 员视频图像的获取、跟踪和分析,对驾驶过程 中常见的注意力涣散、驾驶姿态异常、驾驶反应迟钝、疲劳瞌睡等非正常工作状态进行提示告警和记录;不仅如此,同步结合产品的视频行驶记录、GPS定位导航服务、3G实时信息推送等功能,DSD行车安全电脑可为行车安全提供最全面有效的保护。 DSD行车安全电脑将智能视频分析技术、生物模式识别技术与无线通讯及信息传递技术相结合,可全面应用于车辆主动安全驾驶及行车监察管理等关键环节,最终为行车安全提供功能完善、简便实用、可靠安全、能够全天候实时运行的创新科技产品。 产品功能 1、驾驶疲劳及防瞌睡预警 ■完成驾驶员的状态及姿态等异常驾驶状态 预警; ■完成驾驶员的多级疲劳检测及防瞌睡告警; ■完成驾驶员各类异常驾驶事件的主动分析 和记录; 2、GPS定位导航 ■正版GPS导航3D软件; ■全面的更新及扩展能力; DSD行车安全电脑提供功能全面的GPS定位导航服务,不仅如此,结合产品本身完善的处理能力和3G通讯能力,相应的导航软件可以做到实时更新,并为车辆加入更完善的车辆在线导航服务,预留了设备功能接口的链接扩展能力。 3、行车记录黑匣子 ■无论何时何地,DSD为你的合法权益提供行车保障。 DSD行车安全电脑提供完善的行车视频记录仪功能,通过广角视频获取和超大容量的自动存储,行车过程的全视频信息,可以在DSD设备中实时重现和清晰记录,并且叠加时间标签,为你的事后过程查询、责任

心情不好的时候怎么发朋友圈 形容心情不好的句子

1.手掌就那么大,握不住的东西太多了。 2.怎么可以对淋在雨里的小孩说要乖 3.还以为你不一样呢。 4.再大大咧咧的人也会觉得难过啊,就像下了很大的雨,别人在等伞,而我在等雨停。 5.不等了,也等不到了。 6.哭,是解决不了问题的。可是,就是解决不了才哭啊。 7.我也曾对你心动过,只是赶路要紧,我忘了说 8.都会走的,无一例外 9.我可以恢复出厂设置吗? 10.我也不想一个人,但是我就擅长一个人待着。

11.要离开的人,你不妨推他一把。 12.一哄就好的人活该受尽委屈。 13.我表达不满的方式是晚一点回消息。 14.今天天气很好,好像也就一般。 15.连不开心都要暗示,你就应该知道他不在意。 16.我不会怪你,但我不会忘记每一次难过的原因。 17.我还以为这次我真能好好谈一个恋爱了呢 18.这场自救的仗我不想打了 19.生活中的糟糕小事都在消磨我对世界的兴趣。 20.心情不好说话就喜欢加句号。

21.下雨了,我说的不是天气。 22.成为遗憾,或许会被记住的久一点。 23.去吹吹风吧,能醒的话,感冒也没关系。 24.不管你承不承认,人确实是经历了一些事情后,就偷偷 换了一种性格。 25.今天还好吗,被人左右情绪了吗。 26.庆幸的是我一直很理性的看待所有的事情,我可悲的是 我是个很感性的人,所以所有的情绪我一样都没有逃过去。 27.不用考虑我,我没有感受,不用对不起,反正下次还是 会对不起。 28.我又把头发剪短了,好像变温柔了,好像过得比以前好,好像又不怎么样,我不清楚。 29.你剥开一个很酸的橘子,而感到后悔了,可对于橘子来说,那是它的一切。 30.这不就是你梦寐以求的长大吗,你怎么不笑了。

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计 摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。 司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。实验结果表明系统能实时、准确地反映司机的疲劳状态。 关键词:疲劳驾驶人脸检测肤色检测交通安全疲劳判断

目录 摘要 Abstract 1.疲劳驾驶检测系统研究背景与意义............................ 2.疲劳驾驶检测系统研究与实现 2.1国内外疲劳驾驶检测系统研究现状 2.1.1国外疲劳驾驶检测系统的研究成果...................... 2.1.2国内疲劳驾驶检测系统的研究现状...................... 2.2疲劳驾驶检测系统浅析............................................. 2.3驾驶员疲劳检测系统的研究..................................... 2.3.1人脸检测 2.3.2人眼定位 2.3.3疲劳程度的综合判定........................................................................................... 3.基于人脸特征的列车司机疲劳驾驶检测与识 别系统研究....................................................................... 3.1研究内容及目标......................................................... 3.1.1基于人脸特征的疲劳驾驶检测与识别算法 开发................................................................................... 3.1.2疲劳驾驶检测与识别算法OSP移植 3.2基于Adaboost算法的人脸检测

心情不好适合发的句子,心情不好朋友圈句子

心情不好适合发的句子,心情不好朋友圈句子 1、难过的时候别说话,因为一张口眼泪就停不下。 2、原来除了记忆外,什么也不能永久。 3、虽然知道自己是个普通人但还是会希望在特别的人心里能有特别的存在。 4、放开彼此的手,当爱已经无法挽留,终于看透幸福的背后,是一道道伤口。 5、从有你真好到没你也行,这中间的心酸与艰难,你怎么会知道。 6、在最后的时光里我决定不再哭泣,在剩下的路里我也决定放弃。 7、深夜总是那么多无奈。挣不脱从前,怕极了以后。 8、心情不好的时候删东西就有一种快感。 9、有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。 10、心情不好,微微抬起头,看看湛蓝的天,看看悠悠的云,也是一种舒心的幸福。 11、某些人,某些事,久而久之就忘了,久而久之就不那么在意了。 12、有人总说:已经晚了。实际上,现在就是最好的时光。对于一个真正有所追求的人来说,生命的每个时期都是年轻的、及时的。13、被特别在乎的人忽略,会很难过,而更难过的是你还要装作你不在乎。 14、你伤我如此之深,我心里却全是你的甜言蜜语。

15、我心情不好没关系,你开心就好。 16、我承认我在发脾气的时候最喜欢说很极端的话。 17、再深的记忆,也有淡忘的一天。 18、这几天我心情不好阿!全世界都烦死人,只有你是死烦人。 19、从相遇到离开,我欠自己良多,不欠你分毫。 20、太多心酸无处诉说,太多难过如何洒脱。 21、曾经无话不说,如今的无话可说。 22、当初我们那么不甘心,最后还不是成了陌生人。 23、人老的唯一好处就是:能失去的东西越来越少了。 24、你看的,你听的,你都相信。我用心说的话你却从不相信。 25、我的难过无人知晓,我的心情无人过问。 26、任何瞬间的心动都不容易,不要怠慢了它。 27、在一瞬间曾经所有的梦都幻灭,剩下回忆湿了我的眼。 28、悉数记忆的流沙,那些逝去的年华,洗尽了我的尘沙。 29、我心情不好的时候你不在你知道我多想你安慰我吗? 30、时间不是让人忘了痛,它只是让人习惯痛。 31、一个人吃饭也没什么不好,不过是空出来一个座,邀请了寂寞。 32、心情不好的时候,看看大海,大海那么大,足以包容你的一切。没有大海就望望天空吧,望着望着心就不痛了,脖子就会痛了。 33、嗯!生理性心情不好谢谢大哥没打死我。 34、以前觉得,人只要一天不洗澡就会长蛆。。。昨天心情不好没有洗澡就睡了,今天发现也没夸张到长蛆。。。

心情不好时发朋友圈的伤感心情说说100句

心情不好时发朋友圈的伤感心情说说100句 1、爱上等于哀伤。 2、离网络越近,离现实越远。 3、你不安定,注定我不安宁。 4、幻光留不住时光的时间。 5、你说的坚强,始终都学不会。 6、我爱你,爱了整整一个曾经。 7、有心则会累,无心者无所谓。 8、你的心不是能读懂我眼神的料。 9、他说爱你又没说只爱你一个。 10、一切都已结束,一切都将开始。 11、害怕背叛,所以不敢为爱承诺。 12、如果坦白是伤害,情愿选择谎言。 13、相爱的人,刚分开,却又心生思念。 14、女人从来不争气,男人从来不珍惜。 15、听你说他的一举一动我心如刀割。 16、不在恋爱中失败,就在恋爱中变态。 17、我就只有这么一颗心,你看着伤吧。 18、格式化我们的过去,一切重新开始。 19、有时爱情一眨眼,就把回忆当留言。 20、你说的太少或太多,都会让人很惶恐。 21、也许只有可悲,才能填补寂寞的空位。

22、不知道什么时候开始,变得如此狼狈。 23、如果说,你的忧伤是我最痛的伤口。 24、丢失的曼陀罗,我知道,不会太远。 25、我希望有个人懂我,即使我什么也不说。 26、明明说忘记,却总是不经意的想起。 27、我们都只是孩子,何必什么都懂。 28、我们在原地转了无数次,无法解脱。 29、有那么一瞬间,我以为我们会一辈子。 30、曾经的那些勇气,全都变成了回忆。 31、未知的下一秒才更容易让人刻骨铭心。 32、我尽量减少了难过,过平静的生活。 33、心不知下落,我早己找不回单纯的我。 34、宁可高傲的发霉,也不低调的凑合。 35、伤痛复合不了叻,心里永远有伤疤。 36、我捂着心脏,傻傻的痛到撕心裂肺。 37、习惯了伤感,竟然忘了什么是幸福? 38、只希望你能聆听我的世界,仅此而已。 39、看起来百毒不侵,其实早已百毒侵心。 40、给你自由的爱,冻结我们美好的回忆。 41、那种华丽旳颓废,有种令人心惊旳美丽。 42、我假装坚强,只是不想告诉自己我想哭。 43、没有人值得你放弃自己的卑微去讨好。 44、你的笑容,是我今生无法忘记的眷念。 45、明知是陌路,却还追逐,缠绵一生的毒。

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计 摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。 司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。实验结果表明系统能实时、准确地反映司机的疲劳状态。 关键词:疲劳驾驶人脸检测肤色检测交通安全疲劳判断

目录 摘要 Abstract 1.疲劳驾驶检测系统研究背景与意义............................................................................................................... 2.疲劳驾驶检测系统研究与实现 2.1国内外疲劳驾驶检测系统研究现状 2.1.1国外疲劳驾驶检测系统的研究成果......................................................................................................... 2.1.2国内疲劳驾驶检测系统的研究现状......................................................................................................... 2.2疲劳驾驶检测系统浅析................................................................................................................................ 2.3驾驶员疲劳检测系统的研究........................................................................................................................ 2.3.1人脸检测 2.3.2人眼定位 2.3.3疲劳程度的综合判定 ............................................................................................................................................................................. 3.基于人脸特征的列车司机疲劳驾驶检测与识别系统研究........................................................................... 3.1研究内容及目标............................................................................................................................................ 3.1.1基于人脸特征的疲劳驾驶检测与识别算法开发..................................................................................... 3.1.2疲劳驾驶检测与识别算法OSP移植 3.2基于Adaboost算法的人脸检测 3.2.1人脸检测技术概述 3.2.2Adaboost人脸检测算法 3.3基于Adaboost算法的人脸检测软件实现 3.3.1.样本训练过程 3.3.2人脸检测程序 3.4人眼检测与人眼状态分析算法 3.4.1基于Adaboost的人眼检测算法 3.4.2人眼级联分类器效果分析 3.4.3人眼状态分析算法 4.基于贝叶斯网络的驾驶疲劳程度识别模型 4.1基于贝叶斯网络模型的驾驶疲劳程度识别 4.2驾驶疲劳程度识别模型 4.2.1驾驶疲劳贝叶斯网络结构 4.2.2贝叶斯网络条件概率表的确定 4.2.3驾驶疲劳程度贝叶斯网络识别模型 4.3模型有效性验证 5.基于FPGA的疲劳驾驶检测系统设计 5.1疲劳驾驶检测系统总体设计方案 5.1.1系统红外光源原理 5.1.2系统总体设计 5.2系统硬件设计与实现 5.2.1系统硬件总体架构 5.2.2图像采集电路设计

精品-心情特烦想发个朋友圈_心情不好发朋友圈的句子短句

心情特烦想发个朋友圈_心情不好发朋友圈的句 子短句 心情不好发朋友圈的句子短句 1、突如其来的委屈,连笑都带着僵硬。 2、没有值不值得,只有愿不愿意。 3、一个人最伤心的事情无过于良心的死灭。 4、偶尔被需要,从来不重要。 5、走完同一条街,回到两个世界。 6、青春的抛物线,把将来始于相遇的地点。 7、别在没我的地方哭,我怕没人给你擦眼泪。 8、撕心裂肺的挽留,不过是心有不甘的表现。 9、我还是那么没出息,处处留意你的消息。 10、他依旧是我的软肋,却不再是我的盔甲。 11、我今天只做了两件事,呼吸和想你! 12、曾以为他生性冷淡,直到他对另一个人嘘寒问暖。 13、向日葵也知道,该面向太阳那头的希望。 14、决口不提不是因为忘记,而是因为铭记。

15、能动手尽量别吵吵,能整死尽量别留活口。 16、别对我笑,我怕以后得不到,还忘不掉。 17、有没有这样一个人,无论多么想念,却不曾再见面。 18、自古多情空余恨,此恨绵绵无绝期。 19、人生,是一场盛大的遇见。若你懂得,就请珍惜。 20、我的心好冷,等着你来疼。 21、过去的不再回来,回来的不再完美。 22、从现在起,我将不再期待,只珍惜我所拥有的。 23、是否在你们的生命划过,留下清晰可见的痕迹。 24、我在你眼里找不到出路,我倒在回忆里脱不开身。 25、我的倔强就是,宁愿笑着流泪,也不愿哭着说后悔。 26、你给我一滴眼泪,我就看到了你心中全部的海洋。 27、没有你,就算把世界给我,我还是一无所有。 28、这个不知所措的年龄,似乎一切都不尽人意。 29、最难过的喜欢,就是分开后的喜欢。 30、有时候突然不说话,回过神来才知道,自己在想他。 31、我想给他看最好看的我,可最好看的我却已经死了。 32、有一种单身,只是为了等待一个人。 33、你不会懂我的沉默,又怎么会懂我的难过。

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统 设计 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

司机疲劳驾驶检测系统设计 摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。 司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。实验结果表明系统能实时、准确地反映司机的疲劳状态。 关键词:疲劳驾驶

目录 摘要 Abstract 3. 预警系统的组成及工作原理 典型的疲劳驾驶预警系统 疲劳驾驶预警系统比较 发展趋势 8.新型多功能驾驶员状态监测系统设计 无线脑电信号采集和分析 酒精监测 9.多源信息融合在驾驶疲劳检测中的应用 驾驶疲劳特征 模糊神经网络疲劳识别 智能控制技术在汽车疲劳驾驶监控中的应用研究 1.研究背景与意义 驾驶疲劳川是指驾驶员由于睡眠不足或长时间持续驾驶造成的反应能力下降,这种下降表现在驾驶员困倦、打磕睡、驾驶操作失误或完全丧失驾驶能力。美国印第安那大学对交通事故原因的调查研究发现85%的事故与驾驶员有关,车辆和环境因素只占15%。驾驶员在事故发生前一瞬间的行为和故障直接导致了事故的发生,这些行为包括知觉的延迟、对环境的决策错误、对危险情况的处理不当等。在所有的驾驶员错误中,最常见的是知觉延迟和决策错误,这些错误会产生注意力不集中、反映迟钝、操作不当等,产生这些错误的根本原因就是驾驶疲劳。 随着我国生活水平的提高,人们的衣食住行等方面有了很大的改善,在交通方面更是有了质的飞跃。四通八达的道路、便捷的交通工具大大地缩短了人与人的距离,其中汽车保有量更是与日俱增,一个家庭拥有两辆以上的小车已经不是什么新鲜的事

心情不好发朋友圈的说说 内心压抑憋屈的心情短语

心情不好发朋友圈的说说内心压抑憋屈的心情短语 1.与你无关的事,别问,别想,别多嘴。 2.多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。 3.有些事藏在心里是莫大的委屈,话到嘴边又觉得无足挂齿不值一提。 4.最怕的不是说出秘密,而是两个人的秘密,你却在第三个人那里听见。 5.放弃并不是心血来潮,各种失望累积在一起,最终在沉默中爆发。没有声音,没有吵闹,就这么静悄悄的放弃了。 6.人都会有心情不好的时候,说不上来的失落,道不明白的难过,理不清楚的交错。 7.活得累是因为心里装了多余的东西,跟吃饱了撑的是一个道理。 8.不要在人前哭,也不要在深夜做任何决定。 9.突如其来的脾气大概是积攒了很久的委屈。 10.这世界上根本不存在“不会做”这回事,当你失去了所有的依靠的时候,自然就什么都会了。 11.无论你活成什么样子,背地里都会有人对你说三道四。一笑了之,给自己一个灿烂的阳光,一片自由的海洋,让自己不断变强,其实就是最好的蔑视。 12.不卑不亢,落落大方,但行好事,莫问前程。 13.想得开,也就那么一回事。想不开,什么都是事。

14.我心里一直有你,只是比例变了而已。 15.爱到收不住,才是真的输。 16.要没点自我安慰的本事,还真活不到现在。 17.去找一个像太阳一样的人,帮你晒晒所有不值一提的迷茫。 18.奉劝各位:除了灾难、病痛,时时刻刻要快乐。 19.幸福如人饮水,冷暖自知,你的幸福,不在别人眼里,而在自己心里。 20.我是一个经常笑的人,可我不是经常开心的人 21.生活没那么多剧情,靠谱的人花样不多却能陪你过平淡生活。 22.有时候,明明心如刀割,却要灿烂的微笑,明明很脆弱,却表现的如此坚强,眼泪在眼里打转,却告诉每个人我很好。 23.世界再大还是遇见你,世界再小还是丢了你。 24.有些人,有些事,该忘就忘了吧,人家从没把你放心里过,你又何必自作多情。 25.有些事,现在看来不过如此,但在当时,真的就是一个人一秒一秒熬过来的。 26.愿我们,都有能力爱自己,有余力爱别人。 27.你真的很奇怪,烟对你不好你喜欢,酒对你不好你喜欢,我对你这么好,你却不喜欢。在我青春岁月里,唯有你最深得我意,也只有你最不识抬举。

关于发在朋友圈表示心情抑郁,很不开心,心情压抑的伤感说说100句

关于发在朋友圈表示心情抑郁,很不开心,心情压抑的伤感说说100句 寂寞的人总是会用心的记住他生命中出现过的每一个人,于是我总是意犹未尽地想起你在每个星光陨落的晚上一遍一遍数我的寂寞。这份关于心情抑郁,很不开心,心情压抑的伤感说说希望大家会喜欢。 1、我总是躲在梦与季节的深处,听花与黑夜唱尽梦魇,唱尽繁华,唱断所有记忆的来路。 2、逃避,不一定躲得过;面对,不一定最难过。孤独,不一定不快乐;得到,不一定能长久。失去不一定不再拥有,可能因为某个理由而伤心难过。 3、足够真心的人经得起等待,随口说说的人转身就牵了别人的手。 4、后来我才知道,那些真正要走的人,吝啬得连说再见都觉得是浪费时间。 5、曾经,我想和你分享我的所有秘密,但现在,你成了我心底的秘密。 6、想你的滋味,就象喝了一杯冰冷的水,然后凝成了滴滴热泪。 7、这世上没有真正的公主!除非你老爸家资亿万,能引来一帮图你油水的男生女生常绕在左右虚意奉承,否则,你别指望全世界的人都能宠你若宝!

8、我忘记了哪年哪月的哪一天,我在哪面墙上刻下了一张微笑着,忧伤着,凝望着我的脸。 9、想你的时候有些幸福,幸福得有些难过。幸福对我说,你还太小。 10、人,不怕渺小,只怕卑微;人,可以无傲气,但不可无傲骨,无论别人怎样看你,你要自己看得起自己。 11、在这个城市里,我不断地迷路,不断地坐错车,并一再下错车,常常不知道自己在哪里,要去什么地方。 12、总有一些文字,触动心灵。总有一段心语,痛彻心扉。总有一些句子,你看着看着就哭了。 13、我耗尽了热情,丢失了自己,伤痛处还含着淡淡的甜蜜,原来只是场奇迹。 14、有些歌,深入人心,有时候我不知道我是在听歌,还是在听自己? 15、如果时间不可以令你忘记那些不该记住的人,我们失去的岁月又有什么意义。 16、有些话,说与不说都是伤害;有些人,留与不留都会离开。 17、遗忘是我们不可更改的宿命,所有的一切都像是没有对齐的图纸,从前的一切回不到过去就这样慢慢延伸一点一点的错开来。也许错开了的东西我们真的应该遗忘了。 18、绾青丝,挽情思,任风雨飘摇,人生不惧。浮生一梦醉眼看,海如波,心如皓月,雪如天赐。你自妖娆,我自伴。 19、我不是真的想踩着你的头往上爬,我也没有办法,他踩我,我踩你,踩来踩去大家也就习惯了。真高兴往上爬的人是我,

心情不好发朋友圈的说说,心情不好时发的朋友圈

心情不好发朋友圈的说说,心情不好时发的朋友圈 1、心情不好,也不想好。 2、你可能也不爱我,只是刚好遇见我。 3、其实我很难过,只是骄傲不让我哭,宁愿坚强转身,也不委屈留下。 4、唯你最深得我心,也只有你最不识抬举。 5、起码我不后悔爱过你,永远也不会忘记你。 6、怀孕时要担心心情不好哭泣会影响宝宝发育,坐月子了还要担心心情不好分泌乳汁对宝贝不好,为什么我总要担心这样的破问题…… 7、心情不好的时候,我只想一个人安安安静的待着。 8、明明不是陌生人,却装旳比陌生人还陌生。 9、有些事情好像在冥冥中早已注定,譬如遇见,比如感觉,比如离开。 10、最近吃的都很少,虽然吃的少会心情不好,不过无所谓啦,少吃起码还能瘦一瘦,毕竟吃的多了心情也没好过。 11、莫名其妙心情不好。差不多见到谁都想打一架。

12、不开心就不要想,对自己好些,因为没有谁会真的在乎你。 13、寂静的夜里,难以入眠。有一种情不自禁的感觉在撩拨着我的心弦。 14、有时候,没有下一次,没有机会重来,没有暂停继续。有时候,错过了现在,就永远永远的没机会了。 15、走过每个场景,都是回忆,你要我怎么忘记。 16、是否你也像我一样,用言不由衷的话语,逼走最爱的人,然后独自心痛。 17、以朋友的名义爱着一个人,连吃醋的资格都没有,有多喜欢,就有多心酸。 18、其实我还好,只是突然回首,看到了个陌生的自己和一条回不去的路。 19、我想我的思念是种病,久久不能痊愈。 20、没有回应,再深的感情也得憋回去。 21、我在努力的变成你喜欢的样子,可是你却告诉我你爱的是她。 22、世界上最残忍的事,不是没遇到爱的人,而是遇到了却是最终错过。 23、你本来很爱一个人,可是,当所有的失望累积到了一个临界

朋友圈说说心情不好短语,心情不好的说说发朋友

朋友圈说说心情不好短语,心情不好的说说发朋友 1、最荒芜的不是这个世界,而是人心。 2、不要轻易说爱,许下的承诺就是欠下的债! 3、时间不是让人忘了痛,它只是让人习惯痛。 4、我的硬伤不过是你的名字而已。总是一千次的忘记你,但又一千零一次的想起你。 5、天空下起了绵绵细雨,不知是否太过悲伤,连上帝也忍不住哭泣。 6、终于你只是一个名字而不是一段往事。 7、我们似乎都忘了那段感情,我忘得刻意,你忘得随意。 8、寂寞是听见某个熟悉名字,不小心想起某些故事;孤独是路过我身边的影子,笑着对我说似曾相识。 9、头发越剪越短,穿的越来越简单,睡的也越来越早,在乎的越来越少。 10、我会莫名其妙的心情不好,然后不惜得罪任何人。 11、有时候,没有下一次,没有机会重来,没有暂停继续。有时候,错过了现在,就永远永远的没机会了。

12、我没有朋友又怎样,这之后让我变得更加坚强。 13、一个人自以为刻骨铭心的回忆。别人也许早已经忘记了。 14、一停下来就迷失了方向,心情不好就是自己在这里坐坐,不管什么情绪都不会有人看见!想哭就哭吧! 15、我说我喜欢猫,可到现在为止,我也没拥有过猫。 16、懂我的人知道我一发笑脸就是心情不好。 17、当初我们那么不甘心,最后还不是成了陌生人。 18、看不见的时候以为忘记了,重逢时只需一眼还是会溃不成军。 19、你的长相,影响了我滴健康成长,我看到你,心情比上坟还要纠结。 20、真正疼的要命的哭泣。不是有太多的情绪。而是面无表情的留下一滴一滴的苦泪。 21、一个人值不值得你穷极一生去喜欢,不是看他能对你有多好,而是看他心情不好的时候能对你有多差。 22、不需要有谁能够看穿我的笑容,因为我知道,那里面藏着一个真实的自己。 23、我想我的思念是种病,久久不能痊愈。 24、每次看到你的背影,我都拼命去追。

疲劳驾驶检测系统创业计划书

融合车辆CANBUS数据和计算机视觉方法的疲劳驾 驶检测系统创业计划书 目录

1.执行纲要 (4) 1.1公司简介 (4) 1.2市场描述 (5) 1.3组织与人力资源 (6) 1.4企业发展战略 (6) 2.项目背景 (6) 2.1产业背景 (6) 2.2公司产品 (7) 2.2.1 产品简介 (7) 2.2.2产品优点 (7) 2.2.3产品前景 (8) 3.市场调查和分析 (8) 3.1目标客户 (8) 有车一族 (8) 3.2市场前景调查 (8) 3.3竞争分析 (11) 3.3.1 竞争因素分析 (11) 3.3.2 竞争优势分析 (12) 3.4市场发展走势分析 (12) 4.公司战略 (13) 4.1公司总体战略 (13)

4.2发展战略 (13) 4.2.1 近期发展目标(1-2年) (13) 4.2.2 中期发展计划(3-5年) (14) 4.2.3 中期发展计划(5-10年) (14) 5.生产技术管理 (16) 5.1工厂建设 (16) 5.2原材料的采购与管理 (16) 5.3产品质量管理 (17) 5.3.1. 技术研发管理 (17) 5.3.2 原材料采购管理 (17) 5.3.3生产流程管理 (17) 在生产阶段,实行“三检查”方式。具体如下: (17) 6.市场营销 (19) 6.1营销计划 (19) 6.1.1 市场进入和开发阶段(1-2年) (19) 6.1.2 市场成长阶段(3-5年) (21) 6.1.3 市场成熟阶段(5-10年) (23) 6.2 定价战略 (25) 7. 风险分析与规避 (26) 7.1技术风险分析与规避 (26) 7.2市场风险分析与规避 (26) 7.3管理风险分析与规避 (27)

发朋友圈心情不好的句子,心情不好发的句子

发朋友圈心情不好的句子,心情不好发的句子 1、多希望你能看穿我的不安心和难过可是你没有。 2、不合适就是,我不能逗你笑,你也只会让我哭。 3、有些事情,只有经历了,才有穿透心扉的体验。 4、也许你会爱很多人,会拥抱很多人,但你皑皑老去的时候,只会有一个人,十年如一日的让你清晰的怀念或痛。 5、有一个很长很长的故事,我长话短说,我有个爱人,他不爱我了。 6、总在一次次的失落和沮丧中,找到了自我,那是一种多么真实的疼痛。 7、坐月子每天连半只鸡都吃不完,心情不好也跟奶水有关系啊,大家都不用那么......唉!会挺过去的 8、每当我心情不好的时候,我就去照镜子。 9、以后我们桥归桥路归路老死不相往来。 10、原谅我爱你好深,却一声不吭。 11、每个人都有一段悲伤,想隐藏却欲盖弥彰。 12、两个人的回忆那么多,可是看客却只剩下我一个。

13、我爱你,你却没有同样的想法。 14、用力的爱过,被狠狠的伤害过,撕心裂肺的哭过,最后全都一笑而过。 15、人生就像蒲公英,看似自由,却身不由己。有些事,不是不在意,而是在意了又能怎样。 16、如果不爱我,伤我的时候别太轻,要狠,要绝,我怕忘不了,更怕自己死不了心。 17、人人都是自顾不暇的泥菩萨,别指望谁能帮你度过现实这条河。 18、当心情不好时,就选择沉默,孤独者的表现。 19、当我不再执着时,你却说你爱上了我。那凋零了半世纪的树梢,现在已经变得光秃,没有了一片落叶。 20、就算全世界都抛弃了我。那又如何?我不放弃自己就好。 21、难过了,不要告诉别人,自己知道就好。 22、爱一个人可以一见钟情,可是忘掉一个人我不知道还要煎熬多少个日夜。 23、既然还不能学会放下,就不要拿起来。 24、成熟就是自己吞下苦难、眼泪、委屈、转脸还能给别人一个

疲劳驾驶预警系统

疲劳驾驶预警系统 疲劳驾驶预警系统作为一个新兴的汽车安全辅助驾驶产品,国际和国内刚处于起步研究状态,还没有完全成熟的产品。西安邦威电子科技有限公司历经3年多时间的集智攻关,突破了一系列技术难题,掌握了疲劳状态检测的核心技术,总体性能达到了国际先进水平。 西安邦威电子科技有限公司研制的SS600疲劳驾驶预警系统是基于车联网应用 的解决驾驶员疲劳驾驶安全隐患的智能检测设备,针对疲劳驾驶行为进行检测、预警和干预,以提高行车安全性。本系统应用公司自主研发的人脸检测算法(AD_FACE算法),依据对驾驶人员视频图像的获取,通过面部生物特征模式技术的检测、分析和判别,对常见的驾驶注意力不集中、反应迟钝、疲劳瞌睡、低头玩手机、接打电话和抽烟等非正常驾驶状态进行提示告警,具体包括:对驾驶员状态进行检测;对驾驶员活跃度、姿态、注意力进行评估;对驾驶疲劳和瞌睡进行告警。产品简便实用、可靠性高,能够全天候、实时非接触式进行驾驶员疲劳状态监测,为安全行车提供有效的汽车主动安全保障。 产品介绍 SS600疲劳驾驶预警系统采用本公司自主研发的人脸检测算法(AD_FACE算法),依据对驾驶人员视频图像的获取,通过面部生物特征模式技术的检测、分析和判别,对常见的驾驶注意力不集中、反应迟钝、疲劳瞌睡、低头玩手机、接打电话和抽烟等非正常驾驶状态进行提示告警,具体包括:对驾驶员状态进行检测;对驾驶员活跃度、姿态、注意力进行评估;对驾驶疲劳和瞌睡进行告警。产品简便实用、可靠性高,能够全天候、实时非接触式进行驾驶员疲劳状态监测,为安全行车提供有效的汽车主动安全保障。 SS600疲劳驾驶预警系统具有如下性能 非接触性:不影响驾驶习惯及驾驶环境。

心情不好适合发朋友圈的说说,心情不爽说说

心情不好适合发朋友圈的说说,心情不爽说说 1、当我心情不好的时候,我总是想做一些不一样的事来告诉别人,我很不好,可是很少有人会发现,而要我装没事像平常一样,我又做不到。 2、我没说话,不意味着我心情差。有时候,我就是想安静点。 3、据说,一个男孩喜欢你,他会一直不叫你的名字。 4、你知道那种感觉吗,明明那个人还在,可以打电话,可以发信息,但你没有任何立场,他永远不再是你的了,那种感觉真的特别难过。 5、我过得不好,我不想撒谎。 6、我知道,即便我挽留你千千万万遍,你也不会为我而驻足。 7、忧虑就是浪费时间,它不会改变任何事,只能搅乱你的脑袋,偷走你的快乐。 8、别用一个人的过去来揭人家的伤口,你听到的你看到的终究不是本质,谁还没有个过去,何必抓着不放。 9、如果你爱一个人,对方没有感觉,那说明对方不爱你,千万不要试着去感动对方,那不是爱,是任性,放过他,也是放过自己。 10、每一个矜持淡定的现在,都有一个很傻很天真的曾经。 11、不需要有谁能够看穿我的笑容,因为我知道,那里面藏着一个真实的自己。 12、不管是美好还是残酷的,不管是伤痛还是幸福的,只要伤痛着有你拥抱着,有你的温度就值得了。

13、真希望自己变回小孩,因为,摔破的膝盖总比破碎的心要容易修补。 14、明明心事重重却一副若无其事的样子,不是不想找人说,只是怕没人懂。 15、分手后的悔恨、不爱后的关怀、高高在上的自尊心、低智商的善良,这是感情世界里最没用的四种东西。 16、假如有一天我们不在一起了,也要像在一起一样。 17、宁愿做过了后悔,也不要错过了后悔。人生就像蒲公英,看似自由,却身不由己。有些话,你不经意的说出口,我却很认真的难过。 18、爱的如此心痛,如果早知如此,何必当初苦苦的追寻。 19、不要在心情糟烂差的时候,用决绝的话伤害爱你的人。 20、好像所有的悲剧都发生在雨天,所以注定人们总在阴雨天感到失落。 21、我们无法忘记一个人,往往不是因为对方有多么难忘,而是因为我们有多么依恋和执着。 22、经常莫名的心情不好,你说这是不是天气的缘故。 23、什么天长地久全部都是假话和废话。 24、我会莫名其妙的心情不好,然后不惜得罪任何人。 25、我知道,忘记是件轻松的事情,只要不看着,不想着,不记着,就忘记了,就像,烟火过后的天。 26、不悲伤不代表不认真,不痛苦不代表不投入,不流泪不代表不感动,不爱不代表没有爱。

心情不好怎么发朋友圈,心情不好的朋友圈说说

心情不好怎么发朋友圈,心情不好的朋友圈说说 1、那名叫岁月的苦茶,不好喝,依然吞下它。 2、这个城市没有草长莺飞的传说,它永远活在现实里面,快速的鼓点,匆忙的身影,麻木的眼神,虚假的笑容,而我正在被同化。 3、就算心情在不好也不应该把脾气洒在对自己好的人的身上。 4、承诺算个屁呀,你说你会和我一直走下去,可现在呢,还不是各奔东西。 5、既然无法言说,不如一笑而过;既然无法释怀,不如昂然自若。 6、当我不再执着时,你却说你爱上了我。那凋零了半世纪的树梢,现在已经变得光秃,没有了一片落叶。 7、淡淡的日子,淡淡的心情,淡淡的阳光,淡淡的风,凡事淡淡的,就好。 8、如果心情不好就吃顿好的。 9、在空气里感觉到你,来不及吸入与呼出,就静放在心里想你。 10、大家都是情不知所起,一往而深,我不一样,我是钱不知所去,一贫如洗。

11、很多事不是我想,就能做到的。很多东西,不是我要,就能得到的。很多人,不是我留,就能留住的。 12、没用的东西,再便宜也不要买;不爱的人,再寂寞也不要依赖! 13、我们总喜欢幻想未来应当如何,未来如何完美,可到最后我们总会发现现实和理想相差太多。 14、我的硬伤不过是你的名字而已。总是一千次的忘记你,但又一千零一次的想起你。 15、每个故事都是合理的。主角演完完整的故事,配角在片段里充当过客。 16、没有过不去的事情,只有过不去的心情。只要把心情变一变、世界就完全不一样了。 17、心情不好导致这么晚了却还是毫无困意心里莫名的不开心难过到想哭却哭不出。 18、如果没有感觉,就不要给我错觉。 19、我会莫名其妙的心情不好,然后不惜得罪任何人。 20、有些事情好像在冥冥中早已注定,譬如遇见,比如感觉,比如离开。

关于一个人心情不好的句子 心情低落说说发朋友圈

关于一个人心情不好的句子心情低落说说发朋友圈 4、可怕的不是爱错人、而是不敢再用真心爱人。 5、你做对一件事没人说你好、你做错一件事全世界都在指责你。 6、有一种孤独、不是做一些事没有人陪伴、而是做一些事没有人理解。 7、真的不必把太多人请进生命里、太过热情总是不被珍惜。 8、每个单身的人背后至少藏着一个让人心碎的秘密。 9、当你很努力的想要挽留一个人的感情、那种瞬间变得卑微了的感觉真恶心。 10、当眼泪流下来、才知道、分开也是另一种明白。 11、为了一个你、和多少人淡了关系、结果你走了、他们也没了。

12、任何一颗心灵的成熟、都必须经过寂寞的洗礼和孤独的磨炼。 13、错过的过错是孤单、想念的念想是离别、看这反反复复的无奈、可怜的结局总会等待。 14、我嫉妒你身边每一个无关紧要的人、他们就那样轻而易举、见到我朝思暮想的你。 15、难不难过都是自己过、伤不伤心都是一颗心、我们都喜欢逞强、都喜欢流着眼泪笑着说没事。 16、活着活着、活成了讨厌的样子。笑着笑着、笑成了可笑的角色。走着走着走丢了、只剩影子和我。 17、当时间消磨掉了你的热情、你便会发现、那些曾令你歇斯底里的去执着的人、现已变得可有可无。 18、假如人生不曾相遇、我还是我、你依然是你、只是错过了人生最绚丽的奇遇!

19、记住了并不代表是永恒、忘却了也不等于没发生。 20、到最后、只是我们与旧时光相遇。一见如故、再见陌路。 21、有时候、亲密并不一定和爱有关、而疏离并不代表不喜欢 22、我不后悔爱过你、只是如果可以回到从前、我会选择不认识你。 23、和好容易、如初太难、你是我喉咙里的刺、拔出来会痛、咽下去会死。 24、只是一起走过一段路而已、何必把怀念弄的比经过还长。 25、你之所以感到孤独、并不是没有人关心你、而是你在乎的那个人没有关心你。 26、最深的绝望、是你明知道自我渴望、却得对它装聋作哑。 27、这次没有争吵、没有拉黑、但我们都懂、从此再无交集、这应该可以算是最好的离开方式。

发朋友圈的句子心情不好,心情不好的朋友圈句子

发朋友圈的句子心情不好,心情不好的朋友圈句子 1、每次心情不好的时候都想去看看张云雷,他真的是我又丧又糟的时间里,唯一的精神慰藉了。 2、淡淡的日子,淡淡的心情,淡淡的阳光,淡淡的风,凡事淡淡的,就好。 3、每个人都用文字来诉说自我的悲伤,不料却越写越伤。 4、情人最后难免沦为朋友,可是,我们连朋友都做不成。 5、神马鸟人,老婆坐月子,老公打牌打到现在还没回!是当老婆的太纵容,还是当老公的太不当回事!!要抑制住,不能心情不好! 6、每次看到你的背影,我都拼命去追。 7、爱的如此心痛,如果早知如此,何必当初苦苦的追寻。 8、有些事情,我们不得不承认,即使拼命的去挽回,故事的结尾还是遍体鳞伤。 9、痛过之后就不会觉得痛了,有的只会是一颗冷漠的心。 10、道理我们都懂只是有时故事太撩人情绪在作祟。 11、坐月子哭对身体不好,本来奶水就不够心情不好还会回奶,这些道理我都懂。可是我就是止不住的难过。

12、心无定数,自然迷茫,心无定所,自然孤独。 13、那么多爱,那么多痛,那么多爱你,最后却终究是分离。 14、坐月子中,想着为孩子好,反正是烧什么吃什么,TM吃的跟猪一样的,冒火心情不好! 15、有的人,该忘就忘了吧,人家不在乎你,又何必委屈自己呢?再怎么痛,再怎么难过,人家也看不到,也不会心疼你,你难过给谁看? 16、别让不好的事物影响了自己的心情,你是为自己而活。 17、表象只能骗得了别人的眼睛,但骗不了自己内心。 18、睡不着的时候,往事就一件件浮上来,特别是那些值得后悔的事,就像撕得失败的标签,再怎么抠仍然黏有半块在心上。 19、招惹你的是我,舍不得的是我,感动你的是我,放不下的也是我,我一个人包揽了所有的剧,你累了不想演了,不肯剧终的是我。 20、愿你比别人更不怕一个人独处,愿日后想起时你会被自己感动。 21、最感叹的莫过于一见如故,最悲伤的莫过于再见陌路。 22、我不是淑女,心情不好的时候,我也想优雅地,骂个脏话。 23、曾经深爱过,毫不留余地的伤过,现在默然了,不是不爱了,

相关文档