文档库 最新最全的文档下载
当前位置:文档库 › 第九章 套管和绝缘子的状态分析与诊断

第九章 套管和绝缘子的状态分析与诊断

第九章 套管和绝缘子的状态分析与诊断
第九章 套管和绝缘子的状态分析与诊断

第九章套管和绝缘子的状态分析与诊断

套管和绝缘子在搬运和施工过程中,可能会因碰撞而留下伤痕;在运行过程中,可能由于雷击,而使其破碎或损伤;由于机械负荷和高电压的长期联合作用,而导致劣化,这都将使其击穿电压不断下降。当绝缘子击穿电压下降至小于沿面干闪电压时,就称为低值绝缘子。当低值绝缘子的内部击穿电压为零时,就称为零值绝缘子。当绝缘子串存在低值或零值绝缘子时,在污秽环境中,在过电压甚至在工作电压作用下就易发生闪络事故。因此,及时检出运行中存在的不良绝缘子,排除隐患,对减少电力系统事故、提高供电可靠性是很重要的。

第一节套管和绝缘子的绝缘试验

一、套管绝缘试验

预防性试验项目主要有:主绝缘及电容型套管末屏对地绝缘电阻的测试和对地tan 的测试;在大修后或必要时进行油中溶解气体色谱分析、交流耐压试验和局部放电试验。

1、绝缘电阻的测试

套管的绝缘电阻测量是为了初步检查套管的绝缘情况,在交流耐压试验前后均须进行。

测量前要先用干燥清洁的布擦去其表面污垢,并检查套管有无裂纹及烧伤情况。

应用2500V兆欧表进行测量,兆欧表的两个端钮分别接在套管的导杆和法兰上。

2、介质损耗角正切和电容量的测量

测量20kV及以上非纯瓷套管的介质损耗角正切和电容值是判断高压套管绝缘的一项重要指标。因为套管劣化、受潮等都会导致其介质损耗角正切的增加,所以根据介质损耗角正切的变化可以较灵敏地反映出绝缘的劣化

和其他局部缺陷。

测量套管的介质损耗角正切可采用QS1型西林电桥,用西林电桥测量单独套管的tanδ值,可采用正接线方式。

已安装于电力设备上的高压套管,其法兰盘与设备金属外壳直接连接并接地。测量这些套管的tanδ值时,首先应将与套管连接的引线或绕组断开。

除接地屏经小套管引出时可用上述正接线法测量外,一般用反接线法测量。 在采用西林电桥测量套管的介质损耗角正切时,有时往往只测电容芯子的介质损耗角正切,或只测量油纸套管导电芯对抽压或测量端子间的tanδ,而不测量端子或抽压端子的介质损耗角正切。由于套管内部初期进水受潮时,潮气和水分只进入末屏附近的绝缘层,故占总体积的比例甚小,往往反映不出来,这给电气设备安全运行留下隐患。

3、交流耐压实验

套管在交接时或大修后需要进行交流耐压试验,试验时应先将被试套管表面擦干净。对于变压器或油断路器等充油设备上的套管,应将下部浸于绝缘油内,法兰与油箱外壳连接并接地,接地屏同时接地,在导杆上施加试验电压。

4、局部放电测量

对66kV及以上的电容型套管在大修后可测量局部放电作为辅助试验。

二、绝缘子绝缘试验

支柱绝缘子和悬式绝缘子的预防性试验项目主要包括:零值绝缘子检测、绝缘电阻测量、交流耐压试验、绝缘子表面污秽物的等值盐密测定等。

1、绝缘电阻的测试

清洁干燥的良好绝缘子,其绝缘电阻是很高的。电瓷有裂纹时,绝缘电阻一般也没有明显的降低。当电瓷龟裂处有湿气及灰尘、脏污入侵后,绝缘电阻将显著下降,仅为数百甚至数十兆欧,用兆欧表可以明显地检出。测量多元件支柱绝缘子每一元件的绝缘电阻时,应在分层胶合处绕铜线,然后接到兆欧表上,以免在不同位置测得的绝缘电阻数值相差太大,造成误判断。《规程》规定,用2500V

兆欧表测量绝缘电阻时,多元件支柱绝缘子和每片悬式绝缘子的绝缘电阻不应低于300MΩ。500kV悬式绝缘子的绝缘电阻不低于500MΩ。

2、交流耐压试验

对于单元件的支柱绝缘子,交流耐压目前是最有效、最简易的试验方法。

预防性试验时,可用交流耐压试验代替测量电压分布和绝缘电阻,或用它来最后判断用上述方法检出的绝缘子。

对于绝缘子的交流耐压试验,各级电压的支柱绝缘子和悬式绝缘子的交流耐压试验电压标准见表9-1和表9-2。按试验电压标准耐压1min,在升压和耐压过程中不发生跳弧为合格。

表9-1 支柱绝缘子的交流耐压试验标准(kV)

对运行中的35kV变电所内的支柱绝缘子,可以连同母线进行整体耐压,试验电压为100kV,时间为1min。耐压完毕后,必须测量各胶合元件的绝缘电阻,以检出不合格的元件。

对于穿墙套管绝缘子,应根据实际状态进行加压。

对变压器出线套管,如系35kV电压等级,试验时套管内应充满油,下半部应浸入绝缘油中再加压。

3、表面污秽物等值盐密测定

定量评价绝缘子“脏”的程度而使用的最为广泛的一种方法。

等值盐密法是把绝缘子表面污秽密度按照其导电性转化为单位面积上NaCl含量的一种表示方法。具体来说是用300ml蒸馏水,清洗并溶下

一片绝缘子表面的污秽,在另一杯300ml 蒸馏水中逐渐放入NaCl ,直到2杯水的电导率相同,则用放入的NaCl 的量除以绝缘子的面积,所得结果称为该绝缘子的等值附盐密度。 当盐密值超过规定时,应根据具体情况采取相应的清扫措施。

等值盐密法的最大优点是直观易懂,便于推广。其缺点是不反映污秽成分,不反映非电物质的含量,不反映污秽在绝缘子上的分布。而污秽又分为4个阶段:污秽的沉积、受潮、干区的形成和局部电弧的发展,所以等值盐密法的测量结果只反映积累污秽的结果,不反映过程。不能反映局部电弧的发展状况。

第二节 绝缘子的电位分布实验

一、绝缘子串电压分布规律

由于每个绝缘子的金属部分与杆塔(地)间、导线间均存在杂散电容,绝缘子串中每个绝缘子实际所分担的电压并不相同。如图9-2中的曲线3所示。沿绝缘子串的电压分布是极不均匀的,靠近导线的绝缘子电压降最大,离导线愈远的绝缘子两端压降愈小,当绝缘子靠近杆塔横担时,绝缘子电压降又升高。绝缘子串愈长,电压分布愈不均匀,愈容易导致某些部位的绝缘损坏。

1

2

3

4

5

绝缘子编号

每片绝缘子分担的电压(k V )

图9-2 绝缘子串的电压分布曲线

二、绝缘子串电压分布测量方法

测量电压分布的工具有短路叉、电阻分压杆、电容分压杆、火花间隙检验杆等。 1、 短路叉

这是检测损坏绝缘子(又称零值绝缘子)最简便的工具,其检测方法如图9-3所示。

图9-3 短路叉检测法

检测杆端部装上一个金属丝做成的叉子,把短路叉的一端2和下面绝缘子的钢帽接触,当另一端1靠近被测绝缘子的钢帽时,1和钢帽间的空气隙会产生火花。被测绝缘子承受的分布电压愈高,出现火花愈早,而且火花的声音也愈大,因此根据放电情况可以判断被测绝缘子承受电压的情况。

如果被测绝缘子是零值的,就不承受电压,因而就没有火花。这种测杆不能测出电压分布的具体数值,但可以检查出零值绝缘子。在使用时应注意,当电压等级较低时(35kV 及以下)不能因火花间隙放电而引起相对地闪络。 2、 电阻分压杆、电容分压杆

电阻分压杆的内部结构和接线如图9-4所示,其中图9-4 (a) 、(b)是表示测量两点之间电位差的外部结构和内部连接图,适用于110kV 及以上的变电所和线路绝缘子串测量;

图9-4 (c) 、(d)是表示测量某点对地电位的外部结构和内部连接图,适用于35kV 变电所内支柱绝缘子的测量。这种检验杆应预先在室内求出端部电压和微安表读数的关系,并应经常校准。通常盘形悬式绝缘子C ≈50pF ,

C

ω1

=64M Ω。

当采用电阻为220MΩ的绝缘杆与之并联时,阻抗值降为50MΩ,将会导致约20%的误差,这需要在测量中注意。在强电场附近测量时,要注意外界电场对表读数的影响,必要时需采用适当的抗干扰措施。

V

C

A

5×22M

(1W)

22M

(1W)

A

(10-15)

×22M

(1W)

V

C

(a)(b)(c)(d)

图9-4 电阻分压杆测量法

(a)测量两点电位差的外部连接; (b)测量两点电位差的内部连接;

(c)测量某点电位的外部连接; (d)测量某点电位的内部连接

当采用图9-4 (a)方法测量时,若某片绝缘子片的电位差为0,则该片绝缘子即为零值绝缘子。当采用图9-4 (c)方法测量时,应先从母线端开始读取微安表的读数,依次往下进行,所测得的微安数应该是递减的,如出现某片绝缘子与上一片绝缘子电流值相同,则该片绝缘子就是零值绝缘子。

电容分压杆与电阻分压杆类似,只是将电阻串和带有桥式整流的微安表,换成一个或几个串联且能承受被测电压的高压电容器与一个小量程指针式的静电电压表相串联。当电容器的电容量取的足够小的时候,被测量的电压都分布在电容器上,因此小量限的电压表就可测量几千到几万伏的电压。

3、火花间隙检测杆

图9-5 可调火花间隙检测杆测量法

图9-5所示为一种可调火花间隙的检测杆,其测量部分是一个可调的放电间隙和一个小容量的高压电容器相串联,预先在室内校好放电间隙的放电电压值,并标在刻度板上,测杆在机械上可以旋转。这样,在现场将高压电容器和放电间隙串联的部分并联到绝缘子片两端,转动操作杆,改变放电间隙,直至开始放电,即可读出相应于间隙距离在刻度板上所标出的放电电压值。如果某一元件上的分布电压低于规定标准值,而相邻其他元件的分布电压又高于标准值时,则该元件可能有缺陷。为了防止因火花间隙放电短接了良好的绝缘元件而引起相对地闪络,可以用电容与火花间隙串联后再接到探针上去。电容值约为30pF,与一片良好的悬式绝缘子的电容值接近。因为和电容串联的火花间隙的电容量只有几皮法(pF),所以电容的存在基本上不会降低作用于间隙上的被测电压。

这种检测工具的缺点是,动电极容易损伤而变形,放电电压受温度影响,检测结果分散性大,这些都使其检测的准确性较差,而且测量时劳动强度较大,时间也较长,因此,它仅用于检验性测量,对于零值绝缘子的检测还是有效的。

第三节套管和绝缘子故障诊断

一、绝缘子运行状态分析

绝缘子性能主要由电气性能、机械性能、热性能和抗老化性能等决定。

绝缘子的电气性能主要包括:绝缘子闪络特性、各种过电压下的电气性能、

绝缘子的污秽闪络特性、油中工频击穿电压特性;

绝缘子的机械性能主要包括:抗弯强度;绝缘子的热性能主要包括其冷热性能。

《规程》规定,用2500V兆欧表测量绝缘电阻时,多元件支柱绝缘子和每片悬式绝缘子的绝缘电阻不应低于300MΩ。500kV悬式绝缘子的绝缘电阻不低于500MΩ。绝缘子的交流耐压试验前面已论述过。

二、套管运行状态分析

套管式结构是一种容易发生滑闪放电的绝缘结构。为了提高套管的闪络电压,必须采取防止滑闪的措施,改善电场分布。瓷套形外绝缘套管,其放电性能要求与一般绝缘子相同;内绝缘套管是一个电场比较复杂的电容芯子,其热稳定性、耐局部放电性能至关重要。

电容型套管绝缘电阻测量结果应满足:导电芯对抽压端子或测量端子间的绝缘电阻不小于10000MΩ,抽压端子和测量端子间的绝缘电阻不小于1000MΩ,测量端子对法兰的绝缘电阻应不小于1000MΩ。

套管的耐压试验标准见表9-5,试验时间为1min。若试验中该套管无放电现象,内部无击穿响声,仪表指示稳定,则认为合格,试验时允许套管上部有电晕现象。

表9-5 套管的交流耐压试验标准(kV)

《规程》规定20℃时tanδ值(%)不应大于表9-6的规定值。末屏对地绝缘电阻小于1000MΩ时,测量末屏对地的tanδ值,且不大于2%。电容型套管电容值与出厂值或上一次测量值相比超过±5%时要查明原因。在测量套

管介质损耗角正切时,可以同时测得其电容值,其允许偏差为±5%。当套管受潮或电容套管中的一层或数层电容短路时,测得的电容值将增大,此时应查明原因,作出正确分析。

表9-6 高压套管在20℃时的tan 规定值(%)

三.套管和绝缘子故障诊断

通常绝缘材料的老化大多是电的、机械的、热的、环境方面等各种主要因素复杂地交叉作用而引起的,因此呈现的老化也是多种多样的。这些异常现象都是能在维护检查时发现,为了事先预防事故而应列为检查的重要项目。

1、龟裂

在发现瓷绝缘子、绝缘套管及环氧树脂制品上有龟裂的情况,无论从电气性能还是机械性能方面说,都是有危险的,必须尽快更换。局部的裙边缺损或凸缘缺损,虽然不一定会引起事故,但由于会扩展成龟裂,所以应及时早日更换为好。

对于瓷制的和高分子材料制的绝缘子和绝缘套管来说,发生龟裂的原因有下列几方面:

1)瓷绝缘子、绝缘套管龟裂的原因

(1)瓷件表面和内部存在着制造过程中产生的微小缺陷,因反复承受外力等作用,使其受到机械应力,然后发展出现龟裂、裙边断裂等。

(2)过电压或污损引起的闪络,使瓷件受到电弧、局部过热而引起破坏。

(3)绝缘子上涂敷硅脂,一般是作为防污损的措施。当长时间不重涂硅脂

而继续使用时,会因硅脂的老化产生漏电流和局部放电,以及发生瓷绝缘子表面釉剂的剥落,裙边缺损和裂缝。

(4)由于紧固金具过紧,使瓷件的某些部位上受到过大的应力。

(5)由于操作时的疏忽,使绝缘子受到意外的外力打击或投石等外力破坏等原因引起损伤。

(6)使用于设备上的瓷套,如内部设备配合不好,有时会引起瓷套间接性的破坏。

2)高分子材料的绝缘子、套管龟裂的原因

(1)制造过程中材料固化收缩时产生的残留内应力会引起龟裂。

(2)设备在反复运行、停运的过程中造成的热循环,会因不同材料热膨胀系数的差别,而使制品受到循环热应力,从而引起埋入树脂中的金属剥离和发生龟裂。

(3)由于长期运行中绝缘材料机械强度下降或是反复应力引起的疲劳,也会发生龟裂。

(4)紧固部位过份紧固而产生机械应力过大引起龟裂。

2、爬电痕迹

当有机绝缘材料表面被污损而且湿润时,表面流过泄漏电流会形成局部的、绝缘电阻较高的干燥带,使加在这一部分上的电压升高,从而产生微小放电。其结果,绝缘表面被炭化形成了导电通路,这就是爬电痕迹。如果对已产生爬电痕迹的绝缘子原样放置而不顾,就会逐渐发展,最后因闪络而引起接地短路事故。

在更换产生有爬电痕迹的绝缘子的同时,必须设法加强对污损及受潮之类问题的管理,设法采用耐爬电痕迹性能优良的材料等,力求防止爬电痕迹再次发生。

3、漏油

内部装有绝缘油的绝缘套管,会由于瓷套管龟裂,过大的弯曲负载引起瓷管错位,或因密封材料老化等引起漏油。当漏油严重时,不仅会引起套管绝缘击穿而且还可能对装有套管的设备本身如变压器、电抗器、油断路器等造成很大的损害。因此,在万一发现有漏油时,应立即调查其严重程度,根据情况采用必要的措施,如停止运行或更换等。

通过观察油面位置及检查套管安装部位四周的情况就能监视漏油。监视油面

位置的方法(结构)随不同的制造厂而略有差别,当油面低于油位计的可见范围时应引起注意。

还有,套管的密封材料是采用丁腈共聚物软木和合成橡胶等有机材料,所以随使用时间增长不可避免地会发生老化。因此必须定期检查,每隔适当的期限要更换密封材料。

4、电晕声音

端子金具上突出部分的电晕放电、被污损的绝缘表面产生的沿面放电会发生可听得见的声音。但是绝缘子、套管的龟裂和内部缺陷等也会成为发出电晕声音的原因。听到电晕声音时必须及早查明原因,采取适当的措施。另外,此类电晕放电产生的杂散电波会对无线电、电视产生干扰。

5、端子过热

绝缘套管的中心部位贯穿着通电流的导体,此导体经过套管头部的端子金具与母线等相连接。如端子的连接不良,就会发生过热而使端子变色,绝缘物的寿命缩短等故障。

因此,在用示温涂料或示温片等对导体连接部位进行温度监视的同时,须定期检查此处各种螺栓的紧固状态。

井下套管损坏机理及围压分析-英文翻译

套管钻井和阶段性工具的结合:一种独特的 缓和井底条件的方法 Combination of Drilling With Casing and Stage Tool Cementing: A Unique Approach to Mitigating Downhole Conditions 作者:R. R o b i n s o n,S a n d R i d g e E n e r g y, a n d S. R o s e n b e r g, S P E, B. L i r e t t e, S P E, a n d A.C. O d e l l,S P E, W e a t h e r f o r d I n t l. L t d. 起止页码:1-12 出版日期(期刊号):2007年2月20日 出版单位:SPE/IADC Drilling Conference 摘要 目前科罗拉多州重大挑战是在派深斯盆地西北部的天然气田钻井和套管方案的设计。这一地区地质情况较为复杂,其与浸渍形成岩床,导致“克鲁克德钻洞“的产生。因此造成的问题,包括钻井时失去流通,并未能使水泥下到水泥工作台的9 5/8寸套管,可能造成套管达不到总钻探的深度。 通过对问题的勘察,管理人员在该地区得出结论认为,一种不同的方法得到授 权是和选定的套管钻井(DWC)作为以前勘察的替代。钻井与套管,加上固井的表面外壳,预计将产生显著有效的表面和套管钻孔作业,从而减少了非生产性时间(NPT)和相关的成本。 本文回顾了在派深斯盆地中遇到的问题即传统的表面钻井和套管作业。同时也 审查了钻井监督关于套管和钻井的实施方案。 背景 自2003年以来投资方已在派深斯盆地开采天然气。图1显示普通区域的地图。在遇到比较困难的钻井和套管表面制造空穴,钻井监督人员有丰富的经验来判断以及解除困难。这通常是针对约3100英尺的钻采深度。钻井所造成的问题浸渍形成岩床,失去了循环间隔,而且岩石的强度不够。常规钻井泥浆马达使用的做法和低重位(钻压)钻探了十二寸又四分之一深。表面空穴因为高钻压与常规钻井测试 。 结果往往有严重的增加倾向,有时超过7 。表l列出了一个典型的常规钻具组合,

第九章 套管和绝缘子的状态分析与诊断

第九章套管和绝缘子的状态分析与诊断 套管和绝缘子在搬运和施工过程中,可能会因碰撞而留下伤痕;在运行过程中,可能由于雷击,而使其破碎或损伤;由于机械负荷和高电压的长期联合作用,而导致劣化,这都将使其击穿电压不断下降。当绝缘子击穿电压下降至小于沿面干闪电压时,就称为低值绝缘子。当低值绝缘子的内部击穿电压为零时,就称为零值绝缘子。当绝缘子串存在低值或零值绝缘子时,在污秽环境中,在过电压甚至在工作电压作用下就易发生闪络事故。因此,及时检出运行中存在的不良绝缘子,排除隐患,对减少电力系统事故、提高供电可靠性是很重要的。 第一节套管和绝缘子的绝缘试验 一、套管绝缘试验 预防性试验项目主要有:主绝缘及电容型套管末屏对地绝缘电阻的测试和对地tan 的测试;在大修后或必要时进行油中溶解气体色谱分析、交流耐压试验和局部放电试验。 1、绝缘电阻的测试 套管的绝缘电阻测量是为了初步检查套管的绝缘情况,在交流耐压试验前后均须进行。 测量前要先用干燥清洁的布擦去其表面污垢,并检查套管有无裂纹及烧伤情况。 应用2500V兆欧表进行测量,兆欧表的两个端钮分别接在套管的导杆和法兰上。 2、介质损耗角正切和电容量的测量 测量20kV及以上非纯瓷套管的介质损耗角正切和电容值是判断高压套管绝缘的一项重要指标。因为套管劣化、受潮等都会导致其介质损耗角正切的增加,所以根据介质损耗角正切的变化可以较灵敏地反映出绝缘的劣化

和其他局部缺陷。 测量套管的介质损耗角正切可采用QS1型西林电桥,用西林电桥测量单独套管的tanδ值,可采用正接线方式。 已安装于电力设备上的高压套管,其法兰盘与设备金属外壳直接连接并接地。测量这些套管的tanδ值时,首先应将与套管连接的引线或绕组断开。 除接地屏经小套管引出时可用上述正接线法测量外,一般用反接线法测量。 在采用西林电桥测量套管的介质损耗角正切时,有时往往只测电容芯子的介质损耗角正切,或只测量油纸套管导电芯对抽压或测量端子间的tanδ,而不测量端子或抽压端子的介质损耗角正切。由于套管内部初期进水受潮时,潮气和水分只进入末屏附近的绝缘层,故占总体积的比例甚小,往往反映不出来,这给电气设备安全运行留下隐患。 3、交流耐压实验 套管在交接时或大修后需要进行交流耐压试验,试验时应先将被试套管表面擦干净。对于变压器或油断路器等充油设备上的套管,应将下部浸于绝缘油内,法兰与油箱外壳连接并接地,接地屏同时接地,在导杆上施加试验电压。 4、局部放电测量 对66kV及以上的电容型套管在大修后可测量局部放电作为辅助试验。 二、绝缘子绝缘试验 支柱绝缘子和悬式绝缘子的预防性试验项目主要包括:零值绝缘子检测、绝缘电阻测量、交流耐压试验、绝缘子表面污秽物的等值盐密测定等。 1、绝缘电阻的测试 清洁干燥的良好绝缘子,其绝缘电阻是很高的。电瓷有裂纹时,绝缘电阻一般也没有明显的降低。当电瓷龟裂处有湿气及灰尘、脏污入侵后,绝缘电阻将显著下降,仅为数百甚至数十兆欧,用兆欧表可以明显地检出。测量多元件支柱绝缘子每一元件的绝缘电阻时,应在分层胶合处绕铜线,然后接到兆欧表上,以免在不同位置测得的绝缘电阻数值相差太大,造成误判断。《规程》规定,用2500V

石油套管重量参数表

石油套管重量——套管参数1 2010/9/29 9:14:2钢管 规格Size 重量代 号 Linear Mass lb/ft 外径 Outside diameter 壁厚 Wall thichness 端部加工形式Type of end-finish 钢级Grade ln. mm ln. mm H-40 J-55 K-55 M-65 L-80 C-95 N-80 1类、 Q类 C-90 T-95 P-110 Q-125 6 5/8”20.00 6.625 168.28 0.288 7.32 PS PSLB PSLB -- -- -- -- -- 24.00 6.625 168.28 0.352 8.94 -- PSLB PLB PLB PLB PLB PLB -- 28.00 6.625 168.28 0.41 7 10.59 -- -- PLB PLB PLB PLB PLB -- 32.00 6.625 168.2 8 0.475 12.06 -- -- -- PLB PLB PLB PLB PLB 7” 17.00 7.000 177.80 0.231 5.87 PS -- -- -- -- -- -- -- 20.00 7.000 177.80 0.272 6.91 PS PS PS -- -- -- -- -- 23.00 7.000 177.80 0.317 8.05 -- PSLB PLB PLB PLB PLB -- -- 26.00 7.000 177.80 0.362 9.19 -- PSLB PLB PLB PLB PLB PLB -- 29.00 7.000 177.80 0.408 10.36 -- -- PLB PLB PLB PLB PLB -- 32.00 7.000 177.80 0.453 11.51 -- -- PLB PLB PLB PLB PLB -- 35.00 7.000 177.80 0.498 12.65 -- -- -- PLB PLB PLB PLB PLB 38.00 7.000 177.80 0.540 13.72 -- -- -- PLB PLB PLB PLB PLB 42.70 7.000 177.80 0.625 15.87 -- -- -- -- -- P -- -- 46.40 7.000 177.80 0.687 17.45 -- -- -- -- -- P -- -- 50.10 7.000 177.80 0.750 19.05 -- -- -- -- -- P -- -- 53.60 7.000 177.80 0.812 20.62 -- -- -- -- -- P -- -- 57.10 7.000 177.80 0.875 22.23 -- -- -- -- -- P -- -- 7 5/8’’24.00 7.625 193.68 0.300 7.62 PS - - - - - - - 26.40 7.625 193.68 0.328 8.33 - PSLB PSLB PLB PLB PLB PLB - 29.70 7.625 193.68 0.375 9.53 - - PLB PLB PLB PLB PLB - 33.70 7.625 193.68 0.430 10.92 - - PLB PLB PLB PLB PLB - 39.00 7.625 193.68 0.500 12.70 - - - PLB PLB PLB PLB PLB 42.80 7.625 193.68 0.562 14.27 - - - PLB PLB PLB PLB PLB 45.30 7.625 193.68 0.595 15.11 - - - PLB PLB PLB PLB PLB 47.10 7.625 193.68 0.625 15.88 - - - PLB PLB PLB PLB PLB 51.20 7.625 193.68 0.687 17.45 - - - - - P - - 55.30 7.750 193.68 0.750 19.05 - -- - - P - -

电器测试与故障诊断-金立军-复习宝典

第二章电器的测量基础(填空、简答) 1、简述监测系统的结构(现代测试系统的基本组成单元) 信号变送;信号处理;数据采集;信号传输;数据处理;诊断 2、信号传送时,存在哪些干扰,如何抑制? 系统内部的相互干扰,一般宜采取以下措施来抑制:各个通道间尽可能拉开一定的距离,特别要避免通过高阻相连;保证一点接地;隔离 系统外的电磁干扰,此类干扰主要通过三个途径进入监测系统:电源进入;在信号传送过程中,干扰通过电磁耦合进入系统;通过传感器和信号混叠后一起进入监测系统。这些外部干扰信号按其波形特征可分为周期性干扰信号和脉冲型干扰信号两种。 属于周期性干扰信号的有: (1)连续的周期性干扰信号如广播,电力系统中的载波通信、高频保护信号,谐波,工频干扰等,其波形一般是正弦形。 (2)脉冲型周期性干扰信号如晶闸管整流设备在晶闸管开闭时产生的脉冲干扰信号,旋转电动机电刷和滑环间的电弧等,其特点是该脉冲干扰周期性地出现在工频的某相位上。 属于脉冲型干扰信号的有:高压输电线的电晕放电,相邻电气设备内部放电,以与雷电,开关继电器的断、合,电焊操作等无规律的随机性干扰等均属此类。 常用的抗干扰措施有:平均技术;逻辑判断与开窗;滤波技术;差动平衡系统;电子鉴别系统 3、传感器的分类与其定义 按将外界输入的信号变换为电信号所采用的效应分类:物理传感器;化学传感器;生物传感器

按输出量分类位移、速度、角速度、加速度、力、力矩、压力、流速、液面、温度、湿度、电压、电流、电磁、热、光、气体成分、浓度传感器等按变换过程中是否需要外加辅助能量支持来分类:无源传感器和有源传感器根据传感器技术的发展阶段则可分为:结构型传感器;物性型传感器;智能型传感器 根据工作原理划分:电阻应变式、电感式、电容式、压电式、磁电式 按被测量的性质划分:位移传感器、压力传感器、温度传感器等 5、专家系统的组成:知识库、推理机、数据库、解释程序、知识获取程序 专家系统三种基本成分:知识库;推理机;人机界面 专家诊断系统的基本功能:故障监测、故障分析、决策处理 6、现代测量技术的三大基础:信号采集、传输、处理技术(传感技术)和通信技术和计算机技术。 第三章电器中基本电磁量的测量方法(计算题、填空标题) 1、电流测量的方法:分流器,电流互感器,空心电流传感器(罗柯夫斯基线圈),霍尔效应,光电效应 2、电压测量的方法:基本方法(用电压表直接测量低电压),电压互感器,串联高值电阻测量法,分压器 3、功率因数测量的方法:瓦特表法与功率因数表法(稳态过程,不适于强电流)、相位关系法、直流分量衰减法、电流比值法、脉冲式相位计法 5、电器的磁场和磁路参数测量方法:电磁感应法和霍尔效应法 第四章电器的非电量测量(填空)

MWB套管解体分析

6支MWB套管解体分析报告 近期,上海MWB互感器有限公司生产的110kV变压器套管连续发生多起故障,电科院对石狮上浦变1号主变C相套管、连江文山2号主变B相套管、南安石井变2号主变A、B、C相套管和南平长沙变1号主变A相套管进行解体分析,分析如下: 一、石狮上浦变1号主变C相套管 石狮上浦变1号主变C相套管在运行中发现油位异常升高,判断套管发生内漏。在套管解体前,在注油孔处施加0.2MPa的压力,发现套管底部出现渗漏油,将均压球内密封圈取出,发现O形密封圈上有明显伤痕。套管解体时发现油枕上部蝶形垫圈下面的O形密封圈也存在明显伤痕,同时铝管也有凹痕,这两处伤痕是造成套管内漏的原因。由于变压器油枕油位比套管油位高,当套管油与变压器油连通时,变压器内部绝缘油从套管下部进入套管,套管上部空气从套管油枕上部的密封圈排出,造成套管油位上升。在油枕上部密封失效的情况下,如将军帽内有水分,水分将从套管主密封(即油枕上部蝶形垫圈下面的O形密封圈)进入套管内部。

施加油压后套管下部渗油 内置均压球与铝管间O形密封圈受损

套管内部均压球 套管顶部蝶形弹簧垫圈下O形密封圈受压损伤,铝管凹痕

套管顶部蝶形弹簧垫圈下O形密封圈受压损伤 二、连江文山变2号主变B相套管 连江文山变2号主变B相套管油中乙炔异常升高,并且套管介损相比历史试验数据也有明显上升,外观检查未发现异常,在解体后发现套管末屏引线与引线管内壁均明显有碳黑,末屏引线头处切面平整没有焊锡,分析认为末屏引线与引线管之间焊接工艺存在缺陷,虚焊,在运行的振动作用下,一段时间后末屏引线与引线管壁接触不良,放电。

高电压设备及故障诊断教学大纲

《高电压设备及故障诊断》教学大纲 一、课程基本信息 课程名称:《高电压设备与故障诊断》 课程类别:专业限选 学分/学时:32(2)理论学时:32 实践学时:0 适用对象:电气工程及其自动化 开课单位/教研室:电气工程教研室 二、课程设置目的与教学目标 1、本课程是电气工程及其自动化专业的专业方向选修课程。通过本课程学习使学生掌握各种电介质主要电气特性的基本概念,了解电气设备绝缘结构的基本特性和试验方法,正确理解电力系统绝缘配合的基本概念与方法,了解不断发展的高电压新技术及其应用。 2、教学目标:通过本课程的学习,要求学生掌握各种电介质主要电气特性(特别是击穿过程) 的基本概念,了解电气设备绝缘结构的基本特性和试验方法,重点掌握高电压试验和绝缘预防性试验中常用的高压试验装置及测试仪器的原理与用法,以及高电压试验的特点;掌握电力系统中雷电过电压和主要内部过电压的产生机理、影响因素及防护措施等基本知识,正确理解电力系统绝缘配合的基本概念与方法,了解不断发展的高电压新技术及其应用。 三、教学内容及要求

四、教学基本要求 课程的理论部分以讲授为主,辅以课堂讨论等形式,采用多媒体辅助教学。先修课程为电气工程基础,理论力学,材料力学,物理学。课程考核办法为平时成绩占总成绩的30%,期末考试占总成绩的70%。 五、选用教材及主要参考资料 1、选用教材: [1] 严璋,朱德恒,等. 《高电压绝缘技术》. 北京:中国电力出版社,2007.10 [2] 林福昌.《高电压工程》. 北京:中国电力出版社,2006年 2、参考教材: [1] 张纬钹,等. 《过电压防护与绝缘配合》. 北京:清华大学出版社,2002 [2] 关根志. 《高电压工程基础》. 北京:中国电力出版社,2003 [3] 梁曦东,等. 《高电压工程》. 北京:清华大学出版社,2003 执笔人:刘世林审核人:杜成涛制(修)订时间:2010-03

GlS 盆式绝缘子老化机理研究及工程应用分析

GlS 盆式绝缘子老化机理研究及工程应用分析 发表时间:2018-01-10T14:39:47.487Z 来源:《电力设备》2017年第27期作者:李永成彭彦军赵小林滕本科 [导读] 摘要:GIS的主要组成部件是盆式绝缘子,它在使用中有很重要的作用。 (桂林供电局广西区 541002) 摘要:GIS的主要组成部件是盆式绝缘子,它在使用中有很重要的作用。GIS还可以固定母线和它的插接式触头,它能够使母线穿越盆式绝缘子,只有这样才能由一个气室引到另一个气室。因此要有足够的机械强度;起母线对地或相间(共箱式结构)的绝缘作用,所以要求比较高,必须有足够的绝缘水平,还要有气密性和承受的压力。 关键词:绝缘子老化;机理研究;工程应用 引言: 目前盆式绝缘子采用环氧树脂及其他添加料,并在高真空下浇筑而成内部应无气泡和裂纹。成品要经过局部放电实验鉴定。虽然GIS 设备的应用已受到全国广泛关注,但是最近几年以来,GIS设备经常发生故障。虽然绝缘材料有很高的机械和电气性能,但是对于这种长期处于GIS的高电压高温环境中的盆式绝缘子来说,工作状态和故障检测都是非常困难的。总体来说长期耐电性能的好坏直接关系到了产品的寿命。而盆式绝缘子是极易老化损坏的,当其发生故障的时候,会造成检修周期长,停电面积大等严重的后果,并且检修费用也高。据调查结果显示目前盆式绝缘子的故障比例以达到最高,因此如何通过对盆式绝缘子工作过程中的老化因素进行分析得到有效的绝缘状态和老化寿命评估方法已是迫在眉睫。 1、盆式绝缘子的内部设计及性能 盆式绝缘子,一般由绝缘件和金属附件用胶合剂胶合或机械卡装而成。盆式绝缘子的设计一般包括绝缘设计、力学设计、通流能力设计等几个部分。当盆式绝缘子满足这三个方面的要求时,它才能用于真实的产品。然而在运行过程中,大多数盆式隔板的两侧都会有压力,一般来说大的压力差取决于维护程序,然而这种情况经常会出现在盆式隔板一侧。然而它的另外一侧在进行维护,当然也有盆式隔板一侧承受的压力,假如说一侧长期的处在大气压力的下面,它还需要考虑在阳光辐射的影响下的最高温度,然而在维护期间盆式隔板承压侧的压力时也可以降低。绝缘子的基本性能包括电气、机械和热性能,还有耐环境和耐老化等多种性能。相对来说绝缘子的应用非常广,它属于外绝缘,他可以能够在大气条件下工作。 就一般来说绝缘子不仅可以支持各种外部带电导体,它还能够和大地做到绝缘。最近的一项研究结果展示了:绝缘子表面的金属颗粒往往会使部分的电场发生畸变,它还可以降低绝缘子表面的击穿电压,到了最后也有可能会造成绝缘子沿面放电和绝缘破坏的现象;通常来说仿真和试验得到的结果往往非常接近,然而在试验条件并不充分的情况下,它还可以通过仿真来计算盆式绝缘子的绝缘状态;如果金属异物积聚越多或位置越靠近高压端导体,对绝缘子的危害也就越大。 2、GIS设备故障 GIS 内部空间非常有限,工作场强很高并且绝缘裕度相对比较小,只要出现哪怕只是微不足道的绝缘缺陷,就很容易造成严重的设备故障,影响电网的安全稳定运行,引起长时间大面积停电现象,检修周期长,建筑费用也及其的高。GIS 的内部缺陷其实主要是指导体、壳体和盆式绝缘子上的颗粒或毛刺,自由自动的金属颗粒,盆式、盘式绝缘子内部缺陷,接触不良或者电位悬浮等等。而这些缺陷在运行工作中,可能会迅速发展甚至发设备故障。 气隔就是GIS内部的压力的各电器原件的气室间通过设置的能够使气体互不相通的密封间隔。这种气隔不仅可以将不同SF6气体压力的各个电器原件分割开来,而且能够在检修的时侯缩小停电对的范围,它还可以减少检修时SF6气体的回收。就GIS设备来说,我们要多加强对水平安装绝缘子的检测,更进一步的推广GIS超声波、超高频率局放在线装置地使用,使设备的状态可视化,能够确保设备的安全稳定运行。当实验室条件下,我们需要对输电线路复合绝缘子的老化试验方法,更需要考虑大气环境中各类老化因素,因此可以考虑对GIS内部老化因素进行实验设计。材料因素、环境因素、安装工艺、检修工艺往往会影响GIS盆式绝缘子放电,所以我们在安装或检修过程中必须要控制好清洁度、真空度、密闭行,然后更为重要的是做好GIS投运后的巡视检查和定期工作,这样可以避GIS盆式绝缘子发生故障。 3、人工加速老化实验和设备故障维护 现如今虽然随着 GIS 的广泛应用对盆式绝缘子的研究越来越多,但是没有深入到绝缘老化评估和寿命预测部分,就是因为这些研究都局限于单个问题的研究。现在我国国内所有文献中,对于盆式绝缘子老化机制的研究相对减少了,还没有形成任何可供这方面研究的规律和结论。然而在人工加速老化试验方面,虽然目前IEC及国标还没有关于固体电介质的电热综合因素的老化试验方法,并且复合绝缘子的老化试验方法能够形成了可观和系统的标准。盆式绝缘子是优质环氧树脂浇注而成,导电座浇注在中间,使边缘与金属法兰盘浇注在一起,这时盆式绝缘子爬电距离较短,因此要求其表面绝对不能受到污染,否则将降低其绝缘水平。 部分中间有孔的可以起到支持导体作用但不分隔气室。同样的中间浇注导电座的可以起到连接导体及分隔气室的作用。盆式绝缘子的构成材料是环氧树脂。然而环氧树脂是目前三大通用热固性树脂,它有着优良的力学性能和电绝缘性能,是目前热固性塑料中用量最大、应用最广的品种。往往会由于其耐候性和韧性都比较差,很容易发生光氧化和热老化。 我们很容易得通过对环氧树脂材料的试验数据分析联系到盆式绝缘子老化评估,轻轻松松了解盆式绝缘子老化机制进而避免许多不必要的麻烦故障。但是其中还有一个关键性的问题,就是固体电介质寿命预测模型,迄今为止大都是依照经验公式。 4、开辟盆式绝缘子寿命预测行径 基于盆式绝缘子老化评估的过程之上,我们公开了一种在人工加速老化试验的基础上的盆式绝缘子寿命评估方法。这个发明可以通过测取绝缘失效的绝缘电阻率,我们可以计算出绝缘电阻率的百分比,它被作为寿命终止标志,当环氧树脂材料老化到绝缘电阻率百分比时,它就降为此值,它就被认为是绝缘失效。本实验所述的方法针对盆式绝缘子封闭、高温和长期承受高电压的特点,利用多因子的实验室设计出来的人工加速老化试验平台,这样就可以测量出多个环氧树脂样品在不同老化程度下的特征量。在此基础上,对实验数据进行分析,利用已有的经验公式,采用曲线拟合技术。 我们可以将对环氧树脂材料的试验数据与盆式绝缘子的老化评估建立联系,提出一套盆式绝缘子寿命评估方法。在人工加速老化试验方法的盆式绝缘子寿命评估方法的基础上,我们需要对老化后的环氧树脂板进行电气测量,然后就此分析试验数据,最后通过物理量建立和盆式绝缘子之间的联系。在对不同时间老化后的样品进行电镜观察及电气参数测量,找出能代表老化程度的特征量,画出环氧树脂绝缘

油水井套管损坏机理与防治.doc

科学管理 2016 年第11期 油水井套管损坏机理与防治 杜兴龙 大庆油田有限责任公司采油五厂一矿黑龙江大庆163513 摘要:随着社会经济的不断发展,针对现阶段损坏程度日趋严重以及套损井数目日益增多的问题,已经得到人们的广 泛关注。本文简要分析了套损井损坏机理分析,并深入研究了修复工艺技术应用,最后提出了套损井防治建议。旨在让人 们直观的认识油水井套管的本质,更好地开展相关工作。 关键词:油水井套管损坏机理防治 目前,我国的多数油田已经逐渐进入注水开发阶段。目前,套损通常情况下包括套管变形以及套管破损漏 与此同时,由于现阶段的生产周期的不断增加,相应的,失,相应的会在前期进行一些修复措施,一般采用的修复 由于注水以及地层下沉压实等,进而引起应力的相应变措施有以下几种:水泥浆封堵工艺,其又包括特殊管柱封 化,并伴随着固井质量、油水井套管材质与井下作业等原堵工艺、封堵工艺、大剂量水泥灰浆封堵工艺、化学药剂 因,以至于油水井套管产生破损与变形的状况。总之,套封堵工艺、超细水泥灰浆工艺以及普通水泥灰浆封堵工艺 损井不仅极大的影响了增产和增效,还在一定程度上给井等;套管整形技术,通常情况下借助于变径整形器以及下 下施工作业加剧了风险性以及难度。入梨形铣锥进行相应的机械修复就可以轻松应对套管的轻 1套损井损坏机理分析 微变形,但是如果相应的油水井套损特别严重,且一般是众所周知,油水井套管损坏是由于诸多因素综合作用斜井段时,则必须借助于爆炸整形工艺技术;取换套与套 产生的。通常情况下,其影响因素有以下几种:腐蚀因管补贴工艺。 素、工程因素以及地质因素。一般的,地质因素涉及到岩 3套损井防治建议 3.1 预防建议 层运动、地层出砂造成上覆岩层沉积压实、断层以及泥岩 的蠕变与吸水膨胀等。工程因素涉及到高压注水、射孔及进行必要的井身结构优化:借助于比较探讨地层岩性 措施作业、固井质量以及套管结构等。腐蚀因素在一定程和套损井段的联系,并在后期相应的安排井位时,可以更 度上与该区域矿化度、入井液的含硫、含氧、注入水以及好的远离地层倾角相对较大的泥岩段与断层,与此同时, 地层水有关。进一步加大优化井身结构的力度,以至于在套管易损井段借助对相关的油水井套管损坏的规律以及特点可以得合理的借助更耐用的厚壁套管。尽可能的提升注入水的水 知,综合油田开发特征以及油藏特征,一般的,将影响油质:在此过程中,必须尽可能的降低注入水中的腐蚀性物 水井套管的原因概括为几下几点:质的含量,基于此,添加有效的除垢剂以及杀菌剂,可以 1.1 泥岩吸水后粘土膨胀造成的套管变形 在很大程度上降低注入水对套管的损坏。可以采用添加封隔通常情况下,基于岩性进行研究,各储层中普遍有砂进而极大的保护套管:针对高压注水井以及压裂井必须借助 泥岩互层段以及泥岩段等。所以,在注入水逐渐进入泥岩于合理的封隔措施,从而在根本上保护上部套管,极大的降 层之后,由于在泥岩中普遍存在的粘土矿物会随着吸水量低高压对上部套管的破坏作用。最后,有机的结合射孔层段 的增加,进而产生极大的膨胀变形,以至于泥岩段的成岩地层压力以及固井质量等,从而切实的避免出现压裂酸化和 胶结力在很大程度上会不断降低,从而逐渐塑化,致使其射孔的情况,利用正确的压裂压力和孔密与孔径控制。 3.2 治理建议 移动范围更广泛,与此同时,产生大量的非均匀应力,并 进而作用于油水井套管,极大的加剧了套管的变形程度。在油水井的治理过程中,一定要灵活的采取相应的措 1.2 射孔因素 施。针对套管严重变形的油水井,必须采取爆炸整形以及现阶段,射孔作为一项重要的完井方式,与此同时,机械整形的治理办法;通常情况下,不仅要借助于传统的 其在工作过程中形成的高压能够极大的破坏套管。除此之找漏验套工艺进行油水井的治理,还能够借助于国际上相 外,首先,孔眼周围的固井水泥墙会在很程度上由于射孔关的先进的套损检测技术,像数控超声电视测井以及井径 时受到强烈冲击,从而发生严重变形,以至于固结力降测井等;针对套管已经漏失的油水井,通常情况下会采取 低,从而使其对套管的保护作用降低;其次,射孔也会引相应的封堵,并辅助以卡漏的方法进行彻底治理;针对套 起套管自身的应力的相应变化,进而造成套损。管破损严重的油水井,一般情况下借助于打更新井、侧钻 1.3 腐蚀因素 以及小套管固井;针对轻微变形的油水井,且没有耽误常通常情况下,注入水与产出液中包括的盐和酸性物质规作业时,一般能够继续进行生产。 4结论 等强腐蚀性物质,可以在一定条件下和套管中的铁之间发 生化学反应,从而极大的降低了套管的壁厚,进而引起套总之,油水井套管损坏机理与防治已经得到的人们的 管强度不足,这也能够在一定程度上加剧套管疲劳,甚至广泛关注,也取得了一定的研究成果,但我们应该清楚的 是引起套管发生渗漏现象。一般的,腐蚀作用针对地层水认识到,我国现阶段的油水井套管研究仍处于起步阶段, 以及注水井矿化度相对较高的油水井腐蚀更严重。其发展进程任重道远。本文通过分析油水井套管损坏机理 2修复工艺技术应用 与防治,旨在使人们直观的认识到油水井套管的本质,更 2.1 套损井找漏验套工艺应用 好地开展相关的工作,进而服务于人们。

盆式绝缘子仿真计算数据分析

盆式绝缘子仿真计算数据分析 摘要电流互感器是连接一次和二次的一种特殊变压器,一次端为高压大电流,二次输出相应的信息给测量仪器、仪表和继电保护、自动控制装置。LVQB-550电流互感器主要应用于550kV电力系统中,主要用于测量系统电流,给控制装置发送相应信息,保护系统稳定运行。LVQB-550电流互感器在电力系统中作为一个重要零部件长期带高电压运行,产品自身的绝缘性能对产品的可靠运行十分重要,本文中通过有限元分析软件对LVQB-550电流互感器进行分析,保证产品具有良好的绝缘性能。 关键词绝缘性能;有限元;分析 前言 电流互感器是根据电磁感应原理制造的,如果不不考虑误差,当在一次绕组通过电流I1时,由于电磁感应效应,在二次绕组中也会感应出电流I2,根据电磁感应原理,一次绕组的安匝数与二次绕组的安匝数相等: I1N1=I2N2 (1) 电流互感器的一次侧或取得电磁能是通过铁芯传递至二次侧的,任何能量传递过程中都有损耗。当一次绕组通过电流时,要消耗一部分电流用来励磁,用来励磁的电流I0,励磁电流的安匝I0N1称为励磁电动势。由于电流互感器要消耗励磁安匝,因此二次安匝总是小于一次安匝的,电流互感器就有了误差,二次电流除了有量值误差外,还有方向误差,称为相位差。 I1N1+I2N2=I0N1 (2) 电流互感器在设计时,除了产品的误差及准确级设计等方面的产品性能设计外,产品的内绝缘设计是否优良是直接影响产品正常运行的关键性能,鉴于近年来电流互感器频频出现现场击穿事故,本文主要针对绝缘子的绝缘性能进行了深入的分析,主要包括绝缘子的沿面的绝缘性能。 1 设计模型 本文中涉及LVQB-550kV电流互感器的设计模型如下图所示,对壳体进行简化设计如图所示,由于不计算壳体对地场强等,仅对高电压壳体内表面进行建模;对M-N处的零电压屏蔽及中心零电位导电杆模型简化,E-F处的高电压屏蔽、外屏蔽R及悬浮屏蔽O的模型简化;由于不涉及套管的计算,对套管伞裙进行简化如下图所示: 模型中涉及多个屏蔽结构,主要作用如下:

252kV GIS用盆式绝缘子的设计及应用

252kV GIS用盆式绝缘子的设计及应用 摘要高压GIS开关设备经常使用盆式绝缘子这样一种绝缘支撑件,它起到将通有高电压电流的金属导电部位与地电位的外壳之间隔离开的绝缘作用。同时,盆式绝缘子也将承受金属导体自身重量,运动部位的力等负荷。因此,GIS 用盆式绝缘子不但要满足绝缘性能的要求,还要具有良好的力学性能。本文详细介绍一种252kV GIS盆式绝缘子的设计试验过程,使其最终能够满足产品设计要求。 关键词252kV;GIS;绝缘子 0引言 高压GIS设备中由于需要将通有高电压、大电流的金属导电体部分与地电位隔离开来,往往需要一种使用绝缘材料浇注而成的绝缘支撑件,盆式绝缘子是其中一种重要的绝缘支撑件。盆式绝缘子的设计一般需要分几个步骤进行,包括绝缘设计、力学设计、通流能力设计等。当盆式绝缘子均满足三个方面的要求时,才能应用于实际产品之中。 1 绝缘性能设计 绝缘性能设计是盆式绝缘子设计首要考虑的,绝缘性能是验证盆式绝缘子的第一步骤。通常经过有限元计算软件对盆式绝缘子的电场进行反复优化计算,最终设计出电场分布情况均匀满足绝缘标准要的盆式绝缘子。如图1所示为该盆式绝缘子的电场计算。 介质属性:SF6介电常数:1.0027、绝缘件介电常数:4.95。 边界条件:施加电压:导体和绝缘子上嵌件施加1050kV;外壳赋0电位。 通过计算结果建立各个部位电场对比分析表,可以得出该盆式绝缘子的电场强度分布,可以满足闭锁压力为0.33MPa(20℃表压)时的要求。电场计算结果见表1电场对比分析表。 图1电场分布图 位置最大值 (kV/mm) 判据(kV/mm) 导体表面23.058 ≤24

柳南区块套管损坏机理研究及综合治理技术

柳南区块套管损坏机理研究及综合治理技术 焦金生,焦光辉,薛 涛,朱磊磊 (冀东油田公司陆上油田作业区,河北唐海 063200) 摘 要:针对柳南区块开发中后期套管损坏较多,严重影响油田正常开发生产的情况,对该区块套管损坏的因素进行了分析,总结了套管损坏的规律,并对套管损坏修复和综合治理技术进行了研究和应用,使油井井况好转,区块开发效果明显改善。 关键词:套管损坏;机理研究;综合治理 中图分类号:T E358+ .4 文献标识码:A 文章编号:1006—7981(2012)16—0093—02 柳南区块构造复杂,断层较为发育,非均质性严重,特别是近几年加快了开发速度,油水井措施作业频繁,随着油藏采出程度的增加,油层动用程度提高,又造成地层出砂严重,部分油层经历多次射孔、挤封,极易造成套管破损变形。同时随着开采方式的增加和改进,如负压采油、分采等,套损形势更加复杂,修井难度越来越大。统计分析柳南区块共发生套管损坏井26口,占总井数28.6%,套管损坏严重影响了油田正常的生产。轻者可使生产管柱不能正常下入,重者可造成油井套管外井喷,致使油井报废。套管损坏使部分增产措施不能实施,尤其是部分主力油层段,严重影响区块的开发水平提高,造成局部剩余油暂时无法动用或相当长时间内无法动用,增加了油田稳产难度。因此,加强油井套管损坏机理及治理技术研究,已成为目前油田面临的重要课题。1 套损因素及机理分析1.1 地质因素分析 柳南区块断层的形成和发育主要受高柳断裂和柏各庄边界断裂的影响,断层十分发育,以拉张性正断层占优势,有部分张扭性断层,浅层及上部断裂相对发育,断层交割关系比较复杂。断层或地层局部失稳,使地应力在井壁上集中作用,超过套管的承载能力时,导致套管损坏,损坏形式主要表现为剪切、挤扁和缩径。柳南区块主要沉积相类型为曲流河点坝微相,砂体厚度大,非均质性较为严重,多个单砂体相互叠置,上下层之间主要为泥质砂岩所隔,由于泥质砂岩见水后发生蠕变将地应力作用于套管,导致 一些特定地层的套管极易被挤压损坏。1.2 地层出砂因素分析 柳南浅层油藏明、馆两套储层成岩性较差,胶结物含量较低,胶结疏松易破碎,随着柳南区块进入高含水期而采用大排量提液后,增加了套损井的数量。因为加大采液强度后,会引起地层压力的迅速降低,开采过程中井底油层产生较大激动,高含水对地层岩石的胶结物也有破坏作用,引起油层出砂严重。从近几年柳南作业中发现80%以上油井发现出砂,砂柱高度从11.9米到410米不等。随着出砂量的增多,井筒周围地层砂产出形成空洞,空洞上方的岩石和疏松砂层由于缺乏支撑而塌落,岩体进入新的平衡状态,油井可能继续出砂,如果地层砂没有及时补充过来,套管周围砂岩形成空洞,套管在砂层段外部约束减弱,为套管纵向弯曲创造了条件,由于砂岩油层塌陷和上部地层的沉降,在井筒周围发生复杂的岩层位移,使套管柱受到井壁压、塌、挤造成弯曲变形,甚至错断破裂。 1.3 井下作业因素分析 柳南区块曾经作为油田主力区块,封层补孔、卡水、防砂、提液等措施频繁,导致套管变形损坏。井下卡水堵水施工,用封隔器或挤封进行封隔,封隔器坐封力和挤封里都会使套管内挤压力增大,易损坏套管;砂卡或井内落物,需要冲砂或打捞作业,频繁作业对套管造成损坏;射孔造成套管挤破或开裂,如果套管韧性较差时,会加剧套管的损坏。柳南区块套管损坏点主要分布在Ng 、Nm 组主力小层的射孔井 93  2012年第16期 内蒙古石油化工 收稿日期5作者简介焦金生(—),男,河南巩义人,助理工程师,6年毕业于西南石油大学石油工程专业,获学士学位,现 在中国石油冀东油田陆上油田作业区采油一区担任地质师。 :2012-0-21 :1982200

油管振动导致断裂原因分析及处理方式

#2机EHM管振动导致断裂原因分析及处理方式 《科技与企业》杂志2011年12月(下)大唐莱阳发电厂(湖南省末阳市)王班瑛【摘要】大唐耒阳发电,广’一期丁1987-,年-投产两台200MW气轮发电机 组,采用哈尔滨汽轮机厂制连的55型第7台和第ZION200-- 130/5j5 一次中问再热 凝气式汽轮机,在投产时两台机组均没有采用高压抗燃油EH液压控制系统。后 #1、#2机分别丁2001年、2005年在大修期间进行改造米用了高压抗燃油EH液 压控制系统,EH油系统设备是由上海新华公司提供的配套设备。而#2机的EH油 管是在2005 年69大修期间进行安装的,管道分别是q)25 X 2. 5与(1)14x2的不锈钢管, 由新华公司提供,管道与所有三通、接头、大小头均采用是插入式焊接,EH油泵出口压力为14. 5Mpa EH油温:40” 55。G 【关键词】#2机EH油管;断裂;分析及处理 一.现状分析 我厂#1、2机组EHM系统管道安装后运行超过8年,自设备安装运行以来,#2 机 组丁2008年、2011年7月29K 2011年8月4B共发生了3次中压调门管道焊缝 处裂纹或断裂事故,造成停机。特别是#2机最近一次管道断裂是发生在大修后, 大修期间金相人员对管道三通焊缝进行了检查,未发现异常,但是在大修 后一个多月,中压调门油动机的EH油管道就发生了2次断裂现象。造成了EH 油 的大量泄漏,而导致停机。这对机组的安全运行造成了重大的影响,同时也造 成了严重的经济损失。因为EH油的造价非常贵,每次机组因EHM管道泄漏而造成 的异停,至少造成EH油泄漏1桶以上,丽且开停机有大量的损耗,造成f不必要 的经济损失,同时也加强了运行人员和检修人员的劳动强度。 =.原因分析 引起油管振动的原因主要有以卜几个方面: 1、机组、调门振动。 汽轮机本体与汽门阀组相连,油动机与阀门本体相连,EH油管与油动机相连接,当调门振动加大时,油管道肯定会随之增大振动,200MvM组的4个中压调门、油动机在汽缶工的侧面和最上部,当机组振动增大时,振动会直接或间接的传递到EH 油系统管道,造成EH油管道振动增大。 2、管夹固定不到位。 由一I : EH油管道的管线较长,按照《EH系统安装调试手册》中规定管夹必须可靠固定,如果管道管夹固定不好,布置不合理,不但不能对发生振动的管道起到约束和消振的作用,反而可能会造成管系的共振,加大油管的振动,油管道还必须有相应的固定支架,固定支架必须到位,否则容易造成油管无良好支撑,增大振动量。 3、伺服阀故障。 EH油中电液伺服阀出现故障时,如:伺服阀 卡涩,紧同件松动、卸荷阀内阻尼孔松脱、弹簧管疲劳等等因素 都可以导致EH油系统无法正常运行,产生振荡信号,引起油管振 动。 4、抗燃油油质劣化的因素。 EH油外观透明均匀,无沉淀物,其密度很大,因而有可麓使得管道中的污染物悬 浮在液面而在系统内循环,造成零部件的堵塞和磨损。从而造成管道的振动。而导 致EH油油质劣化。

油管、套管等规格对照表

API油管规格及尺寸 公称尺寸(in)不加厚外径 (mm) 不加厚内径 (mm) 加厚外径 (mm) 加厚内径 (mm) 不加厚接箍 外径(mm) 加厚接箍 外径(mm) 1 1/ 2 48.3 40.3 53.2 40.3 55 63.5 2 3/ 8 60.3 50.3 65.9 50.3 73 78 2 7/ 8 73.0 62.0 78.6 62.0 89.5 93 3 1/ 2 88.9 75.9 95.25 75.9 107 114.5 4 101.6 88.6 107.95 88.6 121 127 4 1/ 2 114.3 100.3 120.65 100.3 132.5 141.5 -1-

石油油管螺纹代号对照表 平式油管螺纹外加厚油管螺纹 GB9253.3 YB239-63 GB9253.3 YB239-63 1.900TBG 1 1/ 2 " 平式扣 1.900UPTBG 1 1/ 2 " 外加厚扣 2 3/ 8 TBG 2" 平式扣 2 3/ 8 UPTBG 2" 外加厚扣 2 7/ 8 TBG 2 1/ 2 " 平式扣 2 7/ 8 UPTBG 2 1/ 2 " 外加厚扣 3 1/ 2 TBG 3" 平式扣 3 1/ 2 UPTBG 3" 外加厚扣 4 TBG 3 1/ 2" 平式扣4UPTBG 3 1/ 2 " 外加厚扣 4 1/ 2 TBG 4" 平式扣 4 1/ 2 UPTBG 4" 外加厚扣 -2-

套管规格及尺寸 外径mm(in)接箍外径 (mm) 内径 (mm) 通径 (mm) 外径 mm(in) 接箍外径 (mm) 内径 (mm) 通径 (mm) 114.3 (4 1/ 2) 127.0 103.9 100.7 177.8 (7) 194.5 166.1 162.9 102.9 99.7 164.0 160.8 101.6 98.4 161.7 158.5 99.6 96.4 159.4 156.2 127 (5)141.3 115.8 112.6 193.7 (7 5/ 8 ) 215.9 178.5 175.3 114.1 111.0 177.0 173.8 112.0 108.8 174.6 171.5 108.6 105.4 171.8 168.7 139.7 (5 1/ 2) 153.7 127.3 124.1 219.1 (8 5/ 8 ) 244.5 205.7 202.5 125.7 122.6 203.7 200.5 124.3 121.1 201.2 198.0 121.4 118.2 198.8 195.6 -3-

电厂#炉H主汽管热偶套管断裂事件分析报告

电厂# 1 0 炉 H P 主汽管热偶套管断裂事件分析报告 1、事件经过 (1) 3月1日上午,运行人员在巡检中发现# 10炉HP过热器出口热偶备用套管堵头螺牙处有轻微漏汽,即发了缺陷单通知检修检查。当天,检修人员到现场查看,发现在用及备用套管(相隔约40cm) 均漏汽。由于# 10机在 2日、3日均连续运行,检修部未能安排该缺陷的处理。 (2)4日零点班,# 10 机停运。检修部安排人员处理该缺陷。在# 10转冷炉后于 4:45 时办理工作票,检修开工。 ( 3) 5:30 时,经检修人员割下热偶套管发现:备用套管的主汽管内管段在缩口过渡处已断裂,脱落在主汽系统内;在用套管的缩口过渡处有约为 1/3 周长的肉眼可视裂纹。检修工作负责人随即将检查情况汇报了部长,要求联系相关专业人员共同检查。 ( 4) 7:50 时,在用套管更换完毕,备用套管则进行了封堵。此后对锅炉、汽机的主蒸汽管道进行检查,查找脱落的热偶套管。 (5)经采取多种检查方法,终于在 17:30时利用射线探测到所断套管在从 HP主汽管上引出的# 10 炉对外供汽管路的水平弯管内。因该管路尚未投运,不影响主汽系统的安全运行,为了使#10炉能 够尽快投入运行,暂未取出该脱落套管(已作了标记)。 2、原因分析 (1)经查#10炉这次已断裂和有裂缝的二套管失效部位特征:无明显塑性变形,断裂、开裂部位均在构件根部、近焊缝(6?7mm的大小变径过渡尖口上。初步判断是构件的应力分布处理不合理造成,具体为疲劳失效,部位在应力最大区段的应力集中线上。

(2)前年# 1 炉同样部位的同样套管已断裂过(也进入蒸汽管内),当时将该情况通报了杭锅,答复为该构件为行业标准件,出现断裂属产品质量问题,为个别现象,在允许范围之内。所以当时没有作进一步的详细分析和落实相关反措。 3、防范措施 (1)检修部负责检查全厂杭锅产配 9E 炉所有高、低压主汽管上该类套管,全部拆下进行着色和射线探伤。现# 3、#10 炉已完成,未见异常,# 1 炉正待安排进行。 2)检修部负责将# 10 炉已有裂纹的套管送权威专业机构进行综合分析,要求尽快提出分析报告。 3)现库房已向杭锅订购的 10 根同样套管停止使用,待分析结论和有杭锅的明确说法后再作处理。 4)检修部速订购目前各火电厂机、炉通用的可拆卸(螺口)的锥体型热偶套管,并分批进行更换 (5)明确今后机、炉主汽管道上的热偶套管的定检周期(每年一次)、检查办法(着色和射线探伤)和标准(无裂纹)。 (6)因我公司有多台杭锅产配 9E 炉,为防止此类事情的发生(代价很大),及时把此故障情况及相关分析报告上报公司,转发各下属电厂。 (7)今后本厂所有锅炉、压力容器及压力管道部件,尤其是高温部件的提前失效,要进行结构、材质分析,找出确切原因,落实具体防范措施。 8)由生产管理部组织相关技术人员制定主汽管内遗留套管的处理方案,在供热系统调试前取出

相关文档
相关文档 最新文档